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ABSTRACT: Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable
process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic
traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop
development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of
switchgrass (Panicum virgatum L.) grown across three common garden sites. Samples from 331 switchgrass genotypes were collected
and analyzed for carbohydrate and lignin components. Considering plant survival and biomass after multiple years of growth, we
found that 84 of the genotypes analyzed may be suited for commercial production in the southeastern U.S. These genotypes show a
range of growth and compositional traits across the population that are apparently independent of each other. We used these data to
conduct techno-economic analyses and life cycle assessments evaluating the performance of each switchgrass genotype under a
standard cellulosic ethanol process model with pretreatment, added enzymes, and fermentation. We find that switchgrass yield per
area is the largest economic driver of the minimum fuel selling price (MSFP), ethanol yield per hectare, global warming potential
(GWP), and cumulative energy demand (CED). At any yield, the carbohydrate content is significant but of secondary importance.
Water use follows similar trends but has more variability due to an increased dependence on the biorefinery model. Analyses
presented here highlight the primary importance of plant yield and the secondary importance of carbohydrate content when
selecting a feedstock that is both economical and sustainable.
KEYWORDS: feedstock variability, techno-economic analysis, life cycle analysis, switchgrass, bioethanol, minimum fuel selling price,
composition, biomass yield

■ INTRODUCTION
A sustainable biobased economy requires the development and
use of robust feedstocks with high yields and other desirable
traits including tailored feedstock composition and abiotic/
biotic stress resistance. Switchgrass (Panicum virgatum), a model
herbaceous feedstock, has been the focus of research and
development as a sustainable feedstock.1 Switchgrass has a
broad native range in the U.S. and can be found across many
temperate biomes, with higher productivity and ecosystem
carbon storage than most conventional crops.2 Switchgrass is

also desirable as a lignocellulosic crop as it can be grown on

marginal lands otherwise unsuitable for food crops.3 However,
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switchgrass genotypes are typically adapted to only a narrow
climatic range, and therefore, breeding has focused on selecting
genotypes that produce high yield based on climate adaptation.3

Recent work on understanding the genetic basis of adaptation to
different climates will assist with the development of high
yielding cultivars targeted for different climatic zones.4

Producing dedicated energy crops at low costs depends on
achieving high per-area yield rates to spread the many fixed costs
of production (e.g., field preparation, nutrient application, etc.)
across the greatest possible amount of biomass product. While
there are large amounts of data on energy crop yields from small-
scale breeding plots, experience with commercial-scale
production is still limited. Small-scale plots may systematically
overestimate the yield achievable at commercial production
scales due to plot edge effects, the relatively high quality of land
where many trials are located, and differences in biomass
recovery efficiency between harvesting individual plants by hand
versus large-scale mechanized harvest.5 For switchgrass, some
studies show large differences between small plots and hectare-
scale plantings,5 and others show no effect.6 Calculated per-area
yield rates are systematically lower in gridded breeding plots
compared to sward plots, though different varieties will perform
better or worse under the competition of denser planting.7

There is currently no standard method for correcting planting
density and estimating commercial-scale yield potential from
breeding trial data.
Producing biofuels and other bioproducts from biomass is

also sensitive to the chemical composition of that biomass.
Lignocellulosic biomass from a nominal crop type can vary
widely in cellulose, hemicellulose, lignin, ash, and moisture
content depending on the crop variety, as well as environmental
and management factors.8 Efforts to optimize biomass for
biochemical conversion have often focused on reducing lignin
content or adjusting lignin chemistry to decrease recalcitrance or
facilitate greater solubilization of the carbohydrate fraction of
the plant cell wall.9 In biochemical conversion, lignin in the cell
wall creates a barrier to microbial, enzymatic, and even chemical
deconstruction of fermentable sugars.10 Field studies of
switchgrass have shown that genetically modifying cell wall
characteristics via downregulating the caffeic acid O-methyl-
transferase (COMT) pathway in switchgrass leads to greater
sugar release and ethanol yield11 along with a decrease in total
lignin and alteration of the S/G ratio.12 Recent studies looking at
environmental and climate change impacts on biofuel feedstocks
have shown that drought stressed plants appear more
recalcitrant to biochemical conversion, leading to lower fuel
yields.13 Additional pretreatment steps may be required to
overcome drought- or stress-induced plant recalcitrance.14

Finally, optimization of biochemical conversion is more likely
to be cost-effective through using multiple avenues at once such
as combining the use of less recalcitrant transgenic plants with
pretreatment strategies.15−17

The wide genetic variability in natural populations of
undomesticated (or partially domesticated) candidate bioen-
ergy crops, such as switchgrass, provides an opportunity to select
advantageous biomass properties. Previous work has identified
phenotypic variation in switchgrass plant architecture, adapta-
tion, growth, and cell wall compositional traits as analyzed in
different switchgrass ecotypes and natural variants.18−21

Climate−gene−biomass associations were observed by Lovell
et al. with the latitude from where a genotype originated being
predictive of its survival in that region and of biomass
production.4 Breeding efforts to improve feedstock biomass

quality must simultaneously maintain the agronomic perform-
ance and yield of the feedstock crop.9

To understand the economic impacts of trait variations in
switchgrass on a biorefinery process, techno-economic analysis
(TEA) and life cycle assessment (LCA) need to be performed.
TEA provides a means to understand both process-wide
implications and economic impacts of parameter changes on a
process. In the context of biorefineries, while several methods for
these analyses exist, in this study, TEA is performed by utilizing
an industrial-scale process simulation and then considering the
cost of equipment, feedstock cost, additional operating
expenses, and other economic considerations solve a discounted
cashflow rate of return analysis for the minimum fuel selling
price (MFSP). While growers will typically focus on biomass
yield, biorefineries must focus on process yield, which can vary
depending on both the type of biomass and the type of
conversion. For this study, the purpose of a TEA is to bring both
grower and biorefinery goals together under one metric, namely,
fuel yield per land area per year. Additionally, the MFSP is
regarded as an indirect measure of feedstock quality while
considering all major economic drivers, including potentially
heavy operating and capital costs. Previously, TEA models
constructed using growth and compositional data showed the
importance of feedstock composition as an important but
secondary factor after yield in the MFSP in Populus
trichocarpa.22 This work used compositional and yield data
from several hundred natural poplar variants planted in common
gardens and grown under the same conditions for up to seven
years.
Building on our previous work on Populus,22 here we conduct

TEA on a natural variant population of switchgrass and also
apply a cradle-to-biorefinery-gate attributional LCA to estimate
associated environmental impacts. LCA quantifies material and
energy inputs to the biofuel and feedstock production processes,
as well as the associated emissions and environmental impacts,
and is a crucial tool to use in concert with TEA. Our LCA
quantifies the variability in ethanol life cycle global warming
potential (GWP), cumulative energy demand (CED), and
Available Water Remaining (AWARE) indicator due to
variability in on-farm yield and fermentable carbohydrate mass
fraction (FCMF) from the switchgrass natural variant
population.23 GWP and CED values are compared with extant
literature values as a way of validating the results of this study.
AWARE is important due to water use in the biorefinery, even
though the switchgrass was rain-fed. Ultimately, this work
provides a comprehensive analysis of switchgrass as a biofuel
feedstock and will allow feedstock producers to choose a crop
that has been bred to complement climate, land use, and
biorefinery economics.

■ RESULTS
Switchgrass Yield and Cost.Our estimates of commercial-

scale yield potential for the different genotypes in the
switchgrass natural variant population are shown in Figure 1.
About a quarter of the original natural variant genotypes (i.e., 84
of 331) showed survival of all replicates across the three
common garden sites (Tifton, GA; Watkinsville, GA; Knoxville,
TN), minimal between-replicate variability, and a projected
commercial-scale yield potential greater than 7.5 dry Mg/ha.
Less than half of the genotypes in this collection achieve a
commercial-scale yield above 15 dryMg/ha, and only one in five
(17 genotypes) achieves > 20 dry Mg/ha. These three common
garden sites are in hardiness zones 7b (Knoxville, TN), 8a
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(Athens, GA), and 9a (Tifton, GA). Most upland genotypes,
which are adapted to the northern U.S., experienced mortality or
low yields in our common gardens, so the 84 genotypes included
in Figure 1 and subsequent analyses are weighted toward
lowland and coastal ecotypes. For comparison, AP13 � a clonal
genotype from the Alamo switchgrass landrace and the first
switchgrass genotype sequenced4 � had an estimated
commercial yield of 4.9 Mg/ha in these trials and thus was not
included in further analyses.
Typical perennial switchgrass cultivation involves planting

with yield increases over several yields. Postsenescent harvesting
by mowing and baling generally maximizes the sustainability.
Baled switchgrass is stored either on farm or after transport to
the biorefinery, where it is further chipped before conversion.
In order to estimate the delivered cost of switchgrass in an

industrially relevant supply chain, a harvest and logistics cost
model was executed for the range of yields in Figure 1. The
model considers the costs of production (land, planting, and

annual maintenance), harvest (mowing, baling with a large
rectangular baler, and in-field transport to field edge), storage,
transport, and preprocessing (milling or chipping) at the
biorefinery. Figure 2 summarizes these results for each of the
selected genotypes and indicates the contribution of these
inputs. Figure S1 plots these model estimates separately based
on the estimated biomass yield. Harvest, transport, and land
maintenance costs decrease as the switchgrass yield increases
from 5 to 17 dry Mg/ha. An increase in yield reduces the land
requirement, which affects the harvest and land maintenance
cost, while the reduced supply shed footprint affects the
transport cost. However, total costs become much less sensitive
to yield above 18 dry Mg/ha, with less than two percent change
in total cost per megagramwhen increasing the yield by 1Mg per
hectare. It should be noted that this metric is not the price that a
biorefinery would pay for feedstock at the refinery gate but
rather a techno-economic cost that would be incurred if the
refinery managed the feedstock supply chain up to the beginning
of the conversion processes or at the “reactor throat.” We
assumed that if the refinery was purchasing the feedstock from
local growers, then the purchase cost would be based on the
incurred cost plus a factor of grower profit.
For the purposes of this study, potential compositional

variability that can be introduced during harvest, handling, and
storage is neglected, and optimal management practices are
assumed. While this does neglect key information that would be
needed by a biorefinery in designing a feedstock supply chain, it
is an acceptable simplification for assessing biological variability,
the focus of this study. Costs range from $70/dry Mg−1 for the
highest-yielding genotypes to almost $120/dry Mg−1 for the
lowest yields at our cutoff of 7.5 dry Mg/ha; genotypes with
lower yields would likely not be of commercial interest in the
region. These costs are comparable to those estimated by
Womac et al. (2018) for a yield of 17Mg/ha based on field trials
in East Tennessee.24 Delivered cost decreases sharply as yield

Figure 1. Histogram of estimated commercial-scale yield rates > 7.5
Mg/ha for switchgrass genotypes.

Figure 2. Delivered switchgrass costs including production (land rental, establishment, and maintenance), harvest, storage, transport, and
preprocessing at the biorefinery. Shaded areas show the results of the cost model over the range of yields observed; purple dots show estimated costs for
the 84 specific genotypes selected from the natural variant population for this study.
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increases, showing a clear relationship to aid selection of the
most economically attractive genotypes.

Cell Wall Composition in Natural Variant Panel. The
331 natural variant switchgrass genotypes from the Watkinsville
common garden panel were analyzed for structural carbohydrate
(sugar) and lignin using nuclear magnetic resonance (NMR)
spectroscopy and pyrolysis molecular beam mass spectrometry.
1H NMR was used for high-throughput analysis to analyze
hydrolysate samples generated in duplicate as described

previously.22 Partial Least Squares models for four monomeric
sugars (glucose, xylose, galactose, and arabinose; mannose is not
present in switchgrass) were built using high performance liquid
chromatography (HPLC) determined concentrations from a
model sample set to predict sugar composition in NMR spectra
of hydrolysates.
Figure 3 gives the histogram plots of estimated glucose, xylose,

galactose, and arabinose for the natural variant switchgrass
sample set based on the anhydrous biomass solids. Bin widths

Figure 3. Frequency distribution (n = 331) of sugar composition across the switchgrass natural variant population. Bin width was calculated using
Scott’s Normal Reference Rule for each monomeric sugar: (a) 0.01 mg glucose mg biomass−1; (b) 0.01 mg xylose mg biomass−1; (c) 0.001 mg
galactose mg biomass−1; (d) 0.002 mg arabinose mg biomass−1.

Figure 4. Frequency distribution (n = 331) of percent lignin and S/G ratios across the switchgrass natural variant population. Bin width was calculated
using Scott’s Normal Reference Rule: a) 0.48 for % lignin; b) 0.08 for S/G ratio.
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were calculated using Scott’s Normal Reference Rule. Table S1
presents the overall averages and statistics of the sample set.
There is variation in the glucose and xylose ranges, with values

of more than ±1 standard deviation from the average of the set

and glucose having a broader distribution than xylose. Unlike
our previous P. trichocarpa analysis, this switchgrass population
has greater variation in the two detected minor sugars, galactose
and arabinose. Previous analysis of switchgrass composition

Figure 5. Frequency distribution for a switchgrass subset (n = 84) incorporated in the techno-economic analysis highlighting economic and yield
metrics: a) MFSP, b) process ethanol yield, and c) field ethanol yield.

Figure 6. Relationships between (a, b) theMFSP ($/L), (c, d) process ethanol yield (L/dryMg), and (e, f) field ethanol yield (L/ha/year) against the
mass fraction of fermentable carbohydrates (glucan, xylan, arabinan) and switchgrass yield. Linear trends are observed for the MFSP and field ethanol
yield against switchgrass yield and process ethanol yield against the fraction of fermentable carbohydrates in the switchgrass samples. R2 values: (a)
0.207, (b) 0.744, (c) 0.997, (d) 0.050, (e) 0.080, and (f) 0.996.
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found higher values of arabinose than reported here, although
those values were only among a handful of a small subset of
switchgrass cultivars.26,26 Additionally, the glucose values
reported here are higher than reported previously, but the
xylose values in the natural variant population have a similar
range as some previous studies of whole plants but a lower range
than a study that used stems only.25,26 Generally, the switchgrass
natural variant population has more samples close to the average
values, with less plants on the extreme end of variation ranges
than we saw previously in our poplar study.22 The current study
did not consider leaf to stem ratios, and it has been shown
previously that structural sugars vary between stems and leaves
in grasses.25

Figure 4 shows that lignin content in the natural variant
population varied between 15 and 21% (w/w) (ranging from
0.15 to 0.21 mg/mg biomass dry weight) with an average of 19%
(±1%) (w/w). The monomeric ratio of the lignin polymers (S/
G ratio) varied from 0.47 to 0.91 with an average of 0.68
(±0.08). These lignin trait values are consistent with those
reported for switchgrass elsewhere; overall variability of the
lignin traits is lower in the switchgrass common garden in
comparison to poplar natural variants and pedigrees.22,27 The S/
G ratio in switchgrass may be related to biomass productivity
and sustainability traits as well as conversion processing yields
and product distributions but is not included in this analysis.28,29

Techno-Economic Analysis. Frequency distributions for
the 84 switchgrass samples used in process modeling are shown
in Figure 5 for a) MFSP: x̅ = $0.64/L, σ = $0.04/L (6.04%), b)
Process ethanol yield: x̅ = 372 L/dry Mg, σ = 10 L/dry Mg
(2.63%), and c) field ethanol yield: x̅ = 5,700 L/ha/year, σ =
2,320 L/ha/year (40.6%).
To determine potential drivers behind the MFSP, process

ethanol yield, and field ethanol yield, each was plotted against
either fermentable carbohydrate mass fraction or switchgrass
yield (Figure 6). These data are combined into Figure 7 which
plots the MFSP versus estimated switchgrass yield with the
carbohydrate composition indicated by color (data from Figure

6a). We note that in the process model used, conversion to
ethanol is only directly influenced by the fermentable
carbohydrates; lignin quality or other compositional phenotypes
are not included in this basic biorefinery model. Figure 6d shows
the plot of the two important yields−switchgrass yield (Mg/ha)
versus conversion yield (L ethanol/Mg)−which are poorly
correlated. Due to the high correlation seen in Figure 6c of
conversion yield versus carbohydrate mass fraction, a plot of
carbohydrate mass fraction versus switchgrass yield appears
almost identical to that in Figure 6d. Due to the multiple
assumptions, these values should only be used for genotype
comparison not as an absolute economic value. Given the higher
the yielding genotypes (estimated to be >7.5 dry Mg/Ha), the
primary economic importance of switchgrass biomass yield is
clear.

Life Cycle Assessment. Numerical LCA results (GWP,
CED, and AWARE) for each switchgrass variant are given in
Table S2 alongside the fermentable carbohydrate mass fraction,
on-field yield, and MFSP values. Statistical summaries of the
GWP, CED, and AWARE values observed in this study are given
in Table S3.
GWP values observed range from 466−586 g CO2e/L, with a

mean of 517 g CO2e/L, and CED values range from 8.70−10.5
MJ/L, with a mean of 9.50 MJ/L. The GWPs observed align
with values reported previously.30 Both the GWPs and CEDs
observed are substantially above analogous values obtainable
from the 2021 Greenhouse gases, Regulated Emissions, and
Energy use in Technologies (GREET) model31 (CED was not
reported in Nocentini et al.30). That GWP in this study is higher
than that calculated with GREET is likely due to the exclusion in
this study of any agriculture-related greenhouse gas sequestra-
tion, soil carbon changes, or other land use change impacts, since
this is a general model that is not associated with a specific
location or soil. GREET includes impacts from land use change
that for switchgrass result in a net GWP reduction. The current
study also uses variant-specific inventories of agricultural inputs
and biorefinery inputs that generally differ from the default
inventory for switchgrass ethanol provided with GREET, which
likely contributes to the higher CED and GWP values observed.
Tables S4 and S5 provide comparisons of these inventories. The
AWARE indicators observed in this study range from 45.3−51.7
m3/L with a mean of 48.3 m3/L. To our knowledge, there is no
extant work applying the AWARE indicator to a comparable
switchgrass ethanol life cycle.
In addition to total life cycle impacts for each variant, a

process contribution analysis (PCA) was also performed for
selected variants that represent the full range of yield and
fermentable carbohydrate mass fraction (FCMF) values in this
study. Details of which variants are included in the PCA are
given in Figure S2. The PCAwas done to identify any trends that
exist in process-specific impacts due to variability in either
FCMF or in switchgrass yield. A description of the PCA
methods is given in the Process Contribution Analysis section in
the SI. Graphical PCA results are given in Figures S3, S4, and S5,
and numerical PCA results are given in Tables S6 and S7.
Overall, increased switchgrass yield corresponds to decreased
impacts in each process category, while increased FCMF does
not correspond uniformly to decreased or increased impacts in
each process category.
GWP (g of CO2e/L) is plotted against annual switchgrass

yield (dryMg/ha) in Figure 8 with color indicating the FCMF of
each variant. The overall trend is an increased switchgrass yield
corresponding to decreased GWP (R2 = 0.76). This is because as

Figure 7. MFSP ($/L) plotted against switchgrass yield (dry Mg/ha)
with the mass fraction of fermentable carbohydrates (glucan, xylan, and
arabinan) shown for each sample by color. The MFSP is most strongly
influenced by switchgrass yield, decreasing as yield increases, while the
range of the MFSP for a given switchgrass yield trends toward being
driven by the mass fraction of fermentable carbohydrates with higher
fractions of glucan, xylan, and arabinan (red) toward the lower end of
the MFSP and lower fractions (blue) toward the higher end of MFSPs.
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yield per acre increases, the total amount of land that must be
cultivated to supply the biorefinery decreases, resulting in overall
lower impacts from the agricultural operations in the life cycle.
Among variants with similar yields, increased FCMF corre-
sponds to lower GWP. The variability in FCMF is roughly
constant across the range of observed yields.
CED (MJ/L) is plotted against the switchgrass yield in Figure

S6, with FCMF again indicated by color; this figure appears
similar to Figure 8. Increased switchgrass yield corresponds to a
lower CED, with an R2 of 0.77. Increased FCMF generally
corresponds to lower CED among variants with similar yields,
with this trend being most pronounced for moderate yields and
less pronounced at high yields. Both trends are analogous to the
trends seen for GWP and the MFSP, because both the LCA and
TEA results are derived largely from the quantity of material and
energy inputs used to produce switchgrass and ethanol.
Finally, the AWARE indicator (m3 water/L) is plotted against

the switchgrass yield and FCMF in Figure 9. There is again a
trend of decreasing AWARE with an increasing yield, although
the trend is significantly weaker than for GWP or CED (R2 =

0.49). A higher FCMF also corresponds to a lower AWARE
value for variants with similar yields, as was the case for both
GWP and CED. Much of the AWARE indicator value is due to
the production of inputs to the biorefinery (as shown in the PCA
results, Figure S5) as the switchgrass growth is assumed to be
rain-fed. Biorefinery inputs vary primarily with FCMF, leading
to increased variability in AWARE indicator values relative to
CED and GWP values, which depend more heavily on
switchgrass agriculture and logistics than on the biorefinery.

■ DISCUSSION
The field ethanol yield is very strongly correlated to the
switchgrass yield (R2 = 0.996), demonstrating that the
switchgrass yield is the most important factor in maximizing
the amount of ethanol produced for any given land area; these
data were drawn from the 84 higher yielding genotypes with an
estimated associated per-area biomass yield of 7.5−39 Mg/ha.
There is a strong trend of the process yield (Figure 6c, L
ethanol/dry Mg switchgrass) versus the mass fraction of
fermentable carbohydrates (R2 = 0.997), which may be expected
as fuel yields are a function of sugar concentration. This process
ethanol yield varies slightly due to the composition of the
individual fermentable carbohydrates and minor changes in the
ethanol yield for each specific fermentable sugar. The overall
field ethanol yield, however, showed no correlation to mass
fraction fermentable carbohydrates (R2 = 0.05) despite the field
ethanol yield being derived from a combination of the process
ethanol yield and switchgrass yield.
There is a weak trend when using all of the data for the MFSP

against the fermentable carbohydrate mass fraction overall. This
trend is much stronger if one limits the consideration to any
particular yield value. For example, when considering only the
higher yielding switchgrass variants (≥20 dry Mg/ha), there is a
clear trend of the decreased MFSP with the increasing
fermentable carbohydrates (see Figure S7). For these high
yielding genotypes, an incremental increase in the biomass yield
may have a similar economic impact as an incremental increase
in fermentable carbohydrates. There is a wider degree of natural
variation among genotypes in the switchgrass field yield (from
<7.5 to 39 dry Mg/ha) than in the switchgrass compositional
quality (from 0.62 to 0.67 mass fraction of fermentable
carbohydrates). The data suggests that the biomass yield and
fermentable carbohydrate composition are largely uncorrelated
by genotype. This implies that there is the possibility to breed or
engineer switchgrass to improve both traits at the same time.
For the LCA results, the conclusions are broadly similar. Here,

we utilize GWP, CED, and AWARE as indicators of important
sustainability outputs for CO2 release, energy use, and water use.
The pattern observed for GWP is almost identical with that of
the MFSP, with yield being the most important, followed by
quality (as indicated by the blue-to-red color shift in fermentable
carbohydrates at any specific yield value in Figure 8). There are
diminishing returns observed at the highest yields: the reduction
in impacts with increased yield decreases as yield increases
beyond approximately 25 dry Mg/ha. The tight relationship
between the TEA and LCA results is expected because both
assessments are based on quantities of the various material and
energy inputs into the feedstock and fuel production process.
TEA and LCA results might start to diverge if the LCA were
expanded to include soil carbon changes or nitrous oxide
emissions, nonengineered processes that show a great deal of
unavoidable biological variability.32

Figure 8. Global warming potential (g of CO2e/L of ethanol) shows a
strong negative correlation (R2 = 0.76) with switchgrass yield (dry Mg/
ha). Higher FCMF is generally associated with lower GWP among
variants with similar yields.

Figure 9. Ethanol Available Water Remaining indicator (AWARE, m3/
L) shows some negative correlation with the switchgrass yield (R2 =
0.49). Increased FCMF corresponds to lower AWARE values among
variants with similar yields.
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Both GWP and CED fall by about 20% over the range of
switchgrass yields. This analysis points out the importance of
considering a range of the most critical parameters (e.g., yield),
as the insights gained from the GWP and CED values of
individual variants are much more insightful than the mean
values, as shown in Table S3. AWARE only falls by about 10%
over the range of biomass yields. This is partly because water use
is more closely associated with the biorefinery inputs than the
feedstock production inputs. This points out a limitation of
much prior work that tends to use a single parameter for the
analysis as representative of an entire crop species or limits the
sensitivity analysis to a single biorefinery parameter at a
time.33,34

In this study, the 84 genotypes included in the full analysis
were predominantly lowland and coastal genotypes, as most of
the upland genotypes had lower survival when grown in the
southeast U.S. Further studies may show other advantages for
additional switchgrass variants or other feedstocks better suited
for other regions. We note that the MSFP or LCA values
presented should be used for initial comparison of genotypes
and assumptions for further study. Plant breeders, growers, and
biorefineries have many factors to consider when choosing a
feedstock, and understanding the variation in both growth and
compositional phenotypes, as well as the resulting variation in
environmental impact, is essential. Based on the observed field
ethanol yield, on average, switchgrass requires less land area than
poplar to produce an equivalent amount of ethanol than poplar.
The TEA trends for switchgrass (this paper) and for poplar22

show that yield is the most important factor but has less
incremental impact at the highest yields. Like poplar, for any
given switchgrass yield, the MFSP looks to be determined by
composition quality. The compositional impact on cost and
LCA is somewhat less for switchgrass than that for poplar. Still,
within a yield range, composition starts to carry importance.
Therefore, when growers need to make a choice between
multiple high yielding accessions that are suitable for cultivation
in their growing region, they should consider feedstock quality
as a secondary criterion. It seems that for truly sustainable
feedstock both yield and composition matter.

■ CONCLUSIONS AND FUTURE DIRECTIONS
This analysis shows the critical and primary importance of the
overall biomass yield as a determinant of ultimate fuel cost and
environmental impacts. However, for variants with similar
yields, these impact factors tend to be ranked by composition
(the amount of fermentable carbohydrates). It also shows the
value of exploring natural variation in largely undomesticated
feedstocks, such as switchgrass. These common gardens are
being used for genome-wide association studies.35,36 Process-
specific updates and additional feedstock quality aspects such as
ash/silica which influences milling and chipping costs or lignin
composition, which influences possible valorization, were not
considered here (where lignin was just used for heat) and would
increase the influence of composition. These compositional and
process improvements (especially for lignin) should be the
subject of future efforts. Likewise higher glucan genotypes would
have slightly higher fuel yields, as the glucans are currently more
easily converted. The potential for other factors to directly
influence the results were not considered−these include known
inhibitory effects of drought-stressed switchgrass.14,37 However,
we expect biomass land yield to remain dominant except to
distinguish among the highest biomass producing variants.

Switchgrass yield is the primary factor in both the TEA and
LCA metrics. This needs to be used as a primary driver for the
selection and field testing of natural variants. The range of these
variants grown under common conditions and their consistent
yield performance at different latitudes in the Southeast indicate
strong genetic determinants. Razar et al. (2022) observed QTLs
related to switchgrass yield38 that can be targeted in breeding.
Here, we show the value of considering variation as an
opportunity to improve the biorefinery system−not as a risk
to be avoided. Further TEA and LCA studies should start to
examine feedstock yield variability in the context of environ-
mental effects such as drought, location-specific effects,
switchgrass stand age, land management decisions such as the
amount and timing of fertilizer application, and process
variability. These studies may be used to inform decisions in
precision agriculture and improve the accuracy of LCA impacts
and indicators such as GWP.

■ MATERIALS AND METHODS
Switchgrass Natural Variant Diversity Panel and Tissue

Sampling. A core switchgrass diversity panel consisting of 331
genotypes, of which a majority were provided by Thomas Juenger at the
University of Texas-Austin (as described in Lovell et al.4), was
propagated at the University of Georgia in 2018 and 2019. The panel is
comprised exclusively of tetraploid genotypes, with a bias toward
southern adapted ecotypes (35% lowland, 41% coastal, 24% upland).
Four replicate panels were established at Knoxville, TN (Spring 2019)
(35.903094, −83.959253), six at Tifton, GA (four in Summer 2018 and
two in Spring 2019) (31.438345, −83.580185), and two at Watkins-
ville, GA (one in Spring 2019 and one in Summer 2020) (33.721096,
−83.310268). Field layout for the Knoxville and Watkinsville panels
followed Lowry et al.,20 using a honeycomb design (3.5 and 3 m
between linear plants, respectively), Dewitt weed cloth, and cultivar
Blackwell border plants. The Tifton panel had a 0.9 m grid layout
without weed cloth. In late fall/early winter of 2019 and subsequent
years, entire plants were harvested at 10 cm above ground level and
weighed; for nearly all cultivars, this was postsenescence. A subsample
from each plant was chipped, weighed, and dried at 60 °C. Dried
samples were weighed for dry mass correction. 319 genotypes from the
2019Watkinsville panel were processed using aWiley #4mill and 1mm
screen for chemical analysis at NREL. More details on the use of these
populations will be communicated in a future paper.

Biomass Quality Analysis. Hydrolyzate Preparation. Prior to
hydrolysate preparation, samples were destarched, and ethanol was
extracted to remove starch, free sugars, and extractives not related to
structural cellulose, hemicellulose, or lignin. The NREL laboratory
analytical procedure “Determination of Structural Carbohydrates and
Lignin from Biomass” was scaled down as described previously.22,39,40

Samples were stored for up to 1 week at 4 °C before being filtered prior
to preparation for NMR analysis.

NMR Parameters. Liquid hydrolysates were prepared as reported
previously.22 Briefly, a D2O stock solution was added to hydrolysates
for a final concentration of 0.01 mg mL−1 TSP-d4 (Cambridge Isotope
Laboratories, Andover MA, USA) used for chemical shift reference. 1H
spectra were collected at 25 °C with a Bruker 5 mm BBO probe using
NOESY 1D presaturation to suppress the water peak, 64 scans, and a 5 s
recycle delay. A SampleJet automatic sample changer with 96-tube
racks was used for high-throughput analysis on a Bruker Avance III
spectrometer (Bruker Bio-Spin, Billerica, MA, USA) at 14.1 T (600.16
MHz). Standard processing parameters were used, and all spectra were
processed in Topspin 3.5pl7.

Prediction of Sugar Composition Using Partial Least-Squares
Models. Bruker’s AMIX software was used to divide spectra into 0.005
ppm buckets in the region of 3.10−4.15 ppm. The methanol peak, a
byproduct of hydrolysis and centered at 3.37 ppm, was subtracted from
all spectra both for models and predictions. PLS models were
constructed from a model sample set using HPLC calculated sugar
concentrations from hydrolysates of thirty-four samples from 12
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biomass feedstocks (alfalfa, bagasse, corn stover, eucalyptus, fescue,
guayule, miscanthus, pine, poplar, sunflower, switchgrass, and wheat
straw) and performed in the Unscrambler v. 10.5 (CAMO A/S,
Trondheim, Norway).

Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS)
Analysis. Py-MBMS analysis was conducted as described previ-
ously.27,41,42 A Frontier PY2020 unit pyrolyzed 4 mg of destarched
and ethanol extracted biomass samples at 500 °C for 30 s in 80 μL
deactivated stainless steel cups. An Extrel Super-Sonic MBMS Model
Max 1000 was used to collect mass spectral data from m/z 30 to 450 at
17 eV which was processed using Merlin Automation software (V3)
and The Unscrambler X (V10.5). Lignin content and monomeric ratios
were estimated as described previously (refs above) based on relative
responses from standards of known Klason lignin content.22,27,41,42

Switchgrass Yield and Cost.We used individual plant biomass yield
data collected at the three common garden field trial sites to estimate
the commercial-scale per-area yield potential associated with the 331
different switchgrass genotypes in the natural variant population. For
each genotype, we derived a single representative yield estimate for the
broad southeastern U.S. region covered by the common garden sites. In
gardens with multiple replicates subjected to different treatments, only
the control treatment data (2 replicates in Knoxville, three in Tifton,
and one in Watkinsville) were used. Since switchgrass and similar
perennial grasses require approximately three seasons of growth in
order to fully establish and reach their maximum yield potential,30 we
focus exclusively on the year 3 biomass data for the rest of the analysis.
At the time of analysis, three years of growth data were available for
three replicates at the Tifton common garden site, two replicates at the
Knoxville site, and a single replicate at the Watkinsville site. This
assumes switchgrass yield is constant after 3 years before declining at
the end of the life of a stand.43 The use of only year 3 yield data and the
variation between sites lower the ability to make an absolute ranking of
genotypes from these results. We excluded from further analysis any
genotype that experienced mortality in any replicate at any common
garden site or showed a plant biomass yield coefficient of variation
greater than one between replicates at any individual site to focus on
genotypes that are best adapted to the region.

Planting Density Correction. In breeding plots, individual switch-
grass plants are typically planted in a grid or hexagon pattern at densities
of less than 5 plants per square meter (m−2) to facilitate phenotyping.
However, for commercial production, switchgrass is usually broadcast-
seeded in dense swards, with tens or hundreds of plants m−2. Planting
density affects total per-area yields, and the relative performance of
different switchgrass varieties will change depending on whether they
are planted at low or high density.7 The Knoxville, Watkinsville, and
Tifton common garden sites are planted at densities of 0.17, 0.22, and
1.20 plants m−2, respectively. We multiplied the year 3 per-plant
biomass data from each site by the site planting density to translate the
observed yields to a per-area basis. Next, we calculated a weighted
average per-area yield for each genotype across all three sites, weighting
the Tifton data three times higher than that from Knoxville and
Watkinsville, because the Tifton planting density was much closer to a
commercially relevant density. We also applied a factor of 1.4 to
represent the higher switchgrass yields in densely planted swards
compared to spaced breeding plots (planting density of ∼1.3 plants
m−2), based on data from four upland and four lowland varieties
reported in Casler et al.7 The genotypes with the highest projected
commercial-scale yield potential (35 and 39 dry Mg/ha) also achieved
the highest yields at the more densely planted Tifton site (which was
weighted more heavily in scaling).

Commercial-Scale Losses Correction. Per-area yield rates for
commercial-scale energy crop production on marginal land are likely
to be lower than that inferred from breeding plots due to plot edge
effects, land quality, imperfect management, and biomass losses during
mechanized harvest and bailing. Searle and Malins (2014)4 estimates
yield rates of 2−10Mg/ha for commercial-scale switchgrass production
on marginal lands in temperate and warm temperature climate zones
where most US production might occur. This range is approximately
one-half of the yield range simulated by Lee et al.44 for the DOE Sun
Grant Initiative Regional Feedstock Partnership using a hybrid model

and expert judgment approach and the yield range compiled by
McLaughlin et al.45 for a single-cut switchgrass systems across the sites
of the DOE Bioenergy Feedstock Development Program. Thus, we
apply a final correction factor of 0.5 to translate from plot-scale yield
rates to the future commercial-scale yield potential. This value is also
consistent with the guidance of Mola-Yudego et al.46 for estimating
near-term commercial poplar yield expectations based on small plot
data.

Harvest and Logistics Cost Model. To estimate the cost of
switchgrass delivered to the biorefinery, a simulation model of the
switchgrass supply chain (harvest, transport, storage, and grinding) was
constructed in ExtendSim (Imagine That Inc., San Jose, CA, USA) by
using the IBSAL 2.0 framework. The refinery feedstock requirement
was assumed to be 2000 dry U.S. tons per day with a 3% dry matter loss
(DML) during storage.47 The harvest window was assumed to be 120
days. Our switchgrass harvest process included mowing, baling with a
large square baler, and in-field transport to the field side. The estimated
processing rate and estimated cost per hour for each operation can be
found in Table S8. All hourly costs included fuel and labor. Additional
parameters for the feedstock supply and logistics cost models are given
in Tables S8 and S9. These include estimates on the range the
switchgrass is drawn from and the density of switchgrass fields around
the biorefinery.

The delivered feedstock cost included not only the harvest and
transport cost from the switchgrass discrete event simulation model but
also land rental, planting, land maintenance, storage, and grinding as
shown in Table S9. We assumed the crop would be planted on marginal
nonirrigated pastureland. We assumed a hybrid storage system near the
refinery where 50% of the feedstock would be tarped on a gravel pad
and the remaining 50% would be stored in a pole barn.48 We also
assumed the refinery would have limited feedstock storage of less than a
week’s worth of inventory while it was being processed through a
grinder. Total reactor-throat feedstock costs could then be expressed as
a function of per-area switchgrass yield rates. This cost model was then
interpolated to estimate the production cost associated with the
commercial-scale yield rates estimated previously for each individual
genotype. We excluded genotypes with a projected commercial-scale
yield potential of less than 7.5 Mg/ha from further analysis, as these
varieties would likely be uneconomical to produce (i.e., biomass costs
greater than $115 Mg−1).

Techno-Economic Analysis. A subset of switchgrass samples from
the natural variant common garden with complete compositional data
for carbohydrates, lignin, and ash, feedstock yield model data, and
feedstock cost model data was used in techno-economic analysis (n =
84). The compositional mass fractions of glucose, xylose, galactose,
arabinose, and lignin from 1H NMR and lignin from py-MBMS were
normalized by a factor of 0.95 to account for the destarched and ethanol
extracted biomass used in compositional analysis. Where compositional
data was not available, mannose, acetate, sucrose, and protein mass
percentage were assumed to be 0, 2.00, 0, and 3.10 wt %, respectively.
The ash content ranged from 1 to 5 wt % but was not considered further
in this analysis. To achieve 100% mass closure, nonethanol soluble
extractives were varied to complete the mass balance.

The process conversion TEA/LCA is based on a straightforward
conversion model based on corn stover.49 We note that the MSFP or
LCA values presented should be used for comparison of genotypes and
of parameters or assumptions for further study−not for an absolute
projected cost. Some other studies have performed similar analysis with
actual lab-conversion data for single feedstocks.13,50 A limitation of this
study is the assumption that the prior corn stover conversion models
can be applied to switchgrass. Humbird et al.49 estimated an MSFP of
∼$0.57/L from stover which compares reasonably to our estimates.
Much focus can fall upon the absolutes of the MFSP, compared to
current energy costs, alternative fuel production pathways, or the
ultimate potential of a process. In the context of this study, however, in
efforts to understand the qualitative impacts of feedstock supply chain
logistics versus compositional variation, the relative variation of the
MFSP provides valuable insights into the biggest cost drivers in the
process and where research focusmay be placed to optimize economics.
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For each sample, modified compositional data as described above
were inputted into an Aspen-Plus model for cellulosic ethanol
production for thermodynamically rigorous mass and energy balance
calculations surrounding the process. This Aspen-model is updated
from Humbird49,51 and consisted of dilute acid pretreatments followed
by simultaneous saccharification and fermentation by yeast with added
cellulolytic enzymes. Conversion rates and yield for each carbohydrate
were based on corn stover data and varied from about 0.7 for arabinose
to 0.9 for glucose. Galactose was not fermented in this model. In this
model, lignin residuals are used for heating. Since the potential impact
of lignin quality (e.g., S/G ratio) is not included in this conversion
model, we do not make assumptions in current models that the S/G
ratio impacts yields of sugars. Therefore, other compositional
phenotypes (i.e., lignin quality) only indirectly influence the overall
yield by their effect on the total fermentable carbohydrates. Resultant
material and energy flows from the simulation and feedstock cost data
were used in economic calculations to solve a discounted cashflow rate
of return analysis for an ethanol minimum fuel selling price using
methods and economic assumptions similar to those described in our
previous work.22 Additionally, total material and energy inputs and
outputs to and from the biorefinery were used to generate a life-cycle
inventory for life cycle assessment (methods described below). Process
ethanol yields were normalized to the perMg basis using the volumetric
ethanol output of the biorefinery divided by the total switchgrass feed.
Field ethanol yields were calculated by multiplying the process ethanol
yield by the feedstock yield per hectare.

Life Cycle Assessment. Goal and Scope. The goal of this study is
to assess the variability in ethanol GWP, CED, and AWARE due to
inherent variability in switchgrass on-field yield and fermentable
carbohydrate mass fraction based on a natural variant switchgrass
population. We used these three LCAmodel outputs (GWP, CED, and
AWARE) as estimates of “sustainability” of different genotypes in a
biorefinery context. Obviously, many more aspects of sustainability can
be considered. While these GWP estimates are lower than the range of
those for gasoline, the goal is not to compare impacts associated with
ethanol produced from switchgrass to other biofuels or to fossil fuels for
the purpose of choosing a less impactful feedstock or biorefinery.

The scope of this study is the cradle-to-biorefinery-gate, and a system
boundary diagram is given in Figure 10. All agricultural and logistical
operations for a 10-year switchgrass rotation are within scope, including
site preparation, cultivation, and harvesting and baling. Operations
following the final harvest of the rotation that could prepare the land for

a second rotation or for another land use type are not included in the
scope. Long-term switchgrass storage operations are excluded from the
scope. At the biorefinery, all material and energy inputs and coproducts
are within scope. Excess electricity sold to the grid by the biorefinery is
included as a coproduct, and energy-based allocation is applied to
attribute impacts to the ethanol product. The ethanol use phase is
excluded from the scope; thus, emissions released during ethanol
combustion are not included. Biogenic emissions from the biorefinery
and any carbon or greenhouse gas uptake or releases by switchgrass
agriculture are not included in the scope. Impacts from direct and
indirect land use change are not included in the scope.

Inventory Development. The functional unit of this study is 1 L of
ethanol fuel produced from switchgrass.

The foreground life cycle inventory was developed from three main
data sources. Agricultural operations and material and energy inputs
follow Field et al.,52 with fuel consumption for yield-dependent
operations and biomass logistics from the harvest and logistics cost
model also used in the TEA. Material and energy inputs to the
biorefinery for each switchgrass composition were obtained fromAspen
simulations performed for the TEAs in this study and are summarized in
Table S5. The background database used was the DATASMART life
cycle inventory package, which combines Ecoinvent v2 process data
with U.S.-based electricity grid information.53 Additional information
about the foreground inventories for switchgrass agriculture is given in
Table S4.

Simplifications, Proxy Data, and Assumptions. Grass seed
production is used as a proxy for switchgrass seed production, for
which data were not available. The grass seed transportation distance
was assumed to be 161 km (100 miles) and to take place in the
southeast United States. Switchgrass yield was originally provided as
annual data (dryMg/ha-year). Yield values were assumed to apply to all
9 years of the rotation in which harvesting takes place. Finally,
application of the two herbicides is assumed to take place
simultaneously; that is, a single pass of the field sprayer is assumed to
apply both herbicides.

Impact Analysis. The impacts calculated for this study were 100-
year global warming potential (GWP) as g CO2e/L ethanol, cumulative
energy demand (CED) as MJ/L ethanol, and the Available Water
Remaining (AWARE) indicator as m3 water/L ethanol.23 GWP was
calculated by excluding all biogenic emissions from the biorefinery and
carbon sequestration and uptake by switchgrass agriculture.

Figure 10. System boundary diagram for the switchgrass-to-ethanol life cycle. Transportation is included throughout the life cycle, although it is not
shown explicitly, except for switchgrass transportation.
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Nine tables and seven figures as called out in the text:
Table S2 contains the data used in Figures 6, 7, 8, 9 and
Figure S6. Figure S7 plots MSP versus carbohydrate for
only the highest yield genotypes. Additional details of the
feedstock cost model are in Figure S1, Table S8, Table S9;
input parameters for the TEA and LCA are in Table S4,
Table S5. Process contributions and statistics are in the
other tables and figures. In addition, a data doi of
intermediate data used in the figures and tables has been
created at 10.25983/2217356 (PDF)
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