Skip to main content
ACS AuthorChoice logoLink to ACS AuthorChoice
. 2023 Jan 20;12(2):172–182. doi: 10.1021/acsmacrolett.2c00701

Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility

Alec C Marmo , Melissa A Grunlan ‡,*
PMCID: PMC10848296  PMID: 36669481

Abstract

graphic file with name mz2c00701_0007.jpg

Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si–O–Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.

1. Introduction

Silicones have a long history of use in biomedical devices, including cardiovascular (e.g., hemodialysis catheters and heart valve prostheses),1 ophthalmic (e.g., intraocular lenses [IOLs] and contact lenses),2,3 plastic and reconstructive prostheses (e.g., breast implants and facial prosthetics),4,5 and soft electrodes (e.g., electrocardiogram, electroencephalogram, and blood pressure;6Figure 1).

Figure 1.

Figure 1

Pervasive utility of silicones for biomedical devices. Recent strategies based on modifications using additives can improve surface, rheological, mechanical, and electrical properties are described herein.

The utility of biomedical silicones is attributed to their unique properties stemming from the siloxane (Si–O–Si) backbone that features a high degree of flexibility and chemical stability.7,8 Upon cross-linking, the resulting silicones display unique elastomeric mechanical properties and resistance to degradation, as well as oxygen permeability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility.9 Successful modification of silicones to address these limitations could lead to superior and new biomedical devices.

The last comprehensive review on the modification of biomedical silicones was published by Abbasi et al. over 20 years ago.10 Recent reviews either do not focus solely on silicones or only discuss one type of silicone modification strategy.1115 Historically, several general strategies have been considered to modify properties of silicones. First, the pendant group chemistry may be altered from the dimethyl groups of polydimethylsiloxane (PDMS), the most widespread type of silicone. For instance, diphenyl silicones exhibit improved optical properties and thermal stability.16 Second, cross-linking density, afforded by terminal or pendant reactive groups, can also be used to tailor mechanical properties.17 In another broadly used strategy, silica fillers are added to reinforce silicones for improved strength and toughness.18 More recently, silicones have been combined with other polymers, such as in the case of interpenetrating polymer networks (IPNs).1921 This strategy is exemplified in the creation of silicone hydrogel contact lenses, which are IPNs comprised of a dimethyl silicone and a thermoplastic, hydrophilic polymer.22 Thus, the oxygen permeability of the silicone and lubricity stemming from the hydrated hydrophilic polymer are synergistically combined.22 More recently, additives have been leveraged to modify biomedical silicones and are highlighted herein.

2. Overview of Silicone Cure Chemistries

Silicones are formed via different curing chemistries that vary in terms of cross-linking group, catalyst type, and cure conditions that must be considered for biomedical device fabrication.23 Silicone cure systems are commonly broken down into two main categories, room-temperature-vulcanizing (RTV), and high-temperature-vulcanizing (HTV; Figure 2).8 RTV silicones include one-component moisture cure, and two-component condensation or addition cure systems. Moisture-cured silicones proceed through the hydrolysis of functional groups (e.g., acetoxy, alkoxy, and oxime) by moisture in the air, resulting in silanol (Si–OH) groups, which can then further cure through tin (Sn)-catalyzed condensation.24 The reaction side products, such as acetic acid (e.g., acetoxy cure), can take up to a week to evaporate from the cured silicone. Additionally, the rate of moisture penetration limits the thicknesses of moisture-cured silicones and so are generally used only in systems requiring thin films, coatings, or adhesives. Two-component condensation also relies on a Sn-catalyst but does not require atmospheric moisture and therefore can be used to prepare larger objects. The use of Sn-catalysts may cause potential toxicity for implanted devices, particularly if levels are not minimized.25 Moisture-cured silicones also suffer from shrinkage caused by the evaporation of condensation products and so can present challenges for devices that require precise tolerances. Additionally, cured silicones rely on a platinum (Pt)-catalyzed hydrosilylation reaction between silane (Si–H) and vinyl groups. Pt has shown to be nontoxic in its zero-oxidation state,4 and is also commonly used among HTV silicones for accelerating curing. HTV silicones also include peroxide cure systems that rely on the free radical polymerization of vinyl groups. Peroxide catalysts can lead to the formation of voids caused by volatile byproducts.26 Care must also be taken to remove these byproducts post curing to avoid toxicity issues.27

Figure 2.

Figure 2

Silicone cure chemistries.

3. Surface Modifications

Silicones surfaces are characterized by low surface tension and hydrophobicity.28 This is attributed to the low intermolecular forces of nonpolar pendant groups (e.g., methyl) and their often compact size that obscures the polar contributions of the siloxane backbone. This hydrophobicity renders silicones highly susceptible to biological adhesion.2934 Adhesion is mediated by nonspecific protein adsorption wherein a conformational change orients the protein’s hydrophobic domains to the silicone surface and hydrophilic domains to the aqueous surrounding of the body. The decrease in silicone surface energy caused by protein adsorption exceeds the entropic loss caused by the conformational changes, thus making adsorption thermodynamically advantageous.35 Protein adsorption initiates the foreign body reaction (FBR),36,37 as well as thrombosis and infection,3840 and can lead to eventual device failure.4144 Thus, numerous chemical and physical approaches have been explored to modify the surfaces of silicones, particularly focusing on direct surface treatments to induce hydrophilicity.4551 A primary obstacle is the susceptibility of modified silicone surfaces to hydrophobic recovery, stemming from the unique chain flexibility and mobility of the siloxane backbone.52,53 For instance, ionized gas (e.g., oxygen plasma) can introduce polar hydroxyl groups to the silicone surface, but are retained only if immediately immersed and maintained in an aqueous solution.5457 Thus, any successful surface modification must contend with this reorganization mechanism to ensure long-term stability. For the surface modification of silicones, recent approaches to reduce biofouling have focused on surface patterning, surface grafting, layer-by-layer (LBL) coatings, and blending with surface modifying additives (SMAs; Figure 3).

Figure 3.

Figure 3

Surface modification of silicones and aqueous interface behavior.

Surface patterning relies on the use of macro-, micro-, and nanotopographies to induce changes in surface thermodynamic interactions. Patterning can either enhance or discourage biofouling based on pattern length scale, height, and feature spacing.58 Silicone IOL haptics59,60 and textured breast implants61 have utilized patterning to promote cell and eventual tissue growth in order to inhibit postsurgical movement. Haptics, the “arms” connected to the optic of an IOL, serve a 2-fold purpose of providing radial tension to the capsular bag and securing of the IOL. To improve long-term rotational stability, newer IOLs rely on “frosting” of the haptics via a surface pattern created during the molding process. The pattern increases frictional forces of the haptics with the capsular bag and allows for enhanced cell growth to secure the IOL.62,63 Similarly, breast implants have historically relied on texturing to inhibit implant movement6466 and also to reduce the rate of capsular contracture.67,68 Doloff et al. (2021)69 showed that contracture was most reduced with patterns having smaller and more abundant roughness features. However, texturing can lead to negative results. Breast implants with macrotexture (e.g., Biocell) have shown higher rates of failure stemming from wear debris from the textured surface that led to chronic inflammation, pain, and their eventual recall.7072

In other cases, patterning of silicones has been leveraged to reduce biological adhesion. However, silicones are highly susceptible to pattern deformation caused by external loads due to their characteristic low modulus. Atthi et al. (2022)73 designed a durable silicone micropattern with improved antifouling properties (Figure 4). The design relied on the Wenzel model of contact angle, wherein surface roughness factor, a ratio of surface area of the rough surface and surface area of the ideal surface, is maximized.74 Combining this approach with interconnected features allowed for a more robust pattern than the typical pillared approach. Unfortunately, the addition of complex surface patterning may not be feasible for many biomedical devices as it can be time-consuming and limited by device design parameters.

Figure 4.

Figure 4

Representation of silicone surface pattern described by Atthi et al. (2022) for reduction of biofouling.

One of the primary approaches for hydrophilization of silicone surfaces is the grafting of polyethylene glycol (PEG).75,76 PEG is known for its exceptional protein resistance,7578 and several mechanisms contribute to the efficacy of grafted chains. An excluded volume effect is induced by the flexibility and conformational mobility of the PEG backbone, resulting in steric repulsion of proteins and blocking of underlying adsorption sites.79 Grafted PEG chains also form a hydration layer which blocks interactions between proteins and the material surface, thereby eliminating protein conformational changes necessary for adsorption.80 The protein resistance of grafted PEG has shown great success on “ideal” substrates (e.g., glass, gold, and silicon).78,8185 Yet, on polymer substrates, a decrease in effectiveness is observed due to issues with surface grafting density, low control of chain length, and disruption caused by shear forces.86 PEG brushes have been formed on silicone surfaces with a variety of chemistries, but relies on first pretreating the surface (e.g., oxygen plasma) or the use of a functionalized silicone (e.g., silanol and silane). In general, PEG-grafted silicone surfaces are observed to lose efficacy ∼30 days under flow and aqueous conditions.87 In addition to PEG, other hydrophilic polymers have been grafted onto silicone surfaces to induce hydrophilization. Zwitterionic groups such as sulfobetaines and carboxybetaines are commonly used due to their enhanced wettability caused by the polarity of the charged groups.8792

LbL coatings have been formed on silicones to modify surfaces properties,93 with potential for superior stability versus grafted polymer chains.94 LBL coatings are comprised of alternating layers held together by secondary forces. Most commonly, LbL coatings are formed from alternating positively and negatively charged polymers applied sequentially by dipping.9597 This allows for fine control of the coating thickness and complete surface coverage. Silicone surfaces are typically first treated with oxygen plasma followed by grafting of carboxylic acid functional groups to create a charged surface that can support formation of the LbL coating. Several studies have reported silicones with LbL coatings comprised of alternating layers of hyaluronic acid (HA) and a polycation (e.g., chitosan and poly-l-lysine).98100 The resulting LbL-modified silicone surfaces displayed significant improvement in hydrophilicity as well as a decrease in cell adhesion. Unfortunately, charged layers of LbL coatings may be susceptible to rearrangement or delamination,101 as well as increase interactions with proteins.102 Vaterrodt et al. (2016)103 formed LbL coatings on silicones that incorporated zwitterionic polymers as well as peroxide-producing enzymes for antifouling and antibacterial properties, respectively. A freeze-drying step was utilized to improve immobilization of the enzyme and to reduce surface roughness. Overall, strategies exist to improve LBL stability and functionality. However, the associated complexity of chemistries and processing may prove to be an obstacle for translation to medical devices.

The use of SMAs to modify silicone surfaces is an appealing strategy given the relative simplicity of incorporation through blending. Typically, SMAs are composed of amphiphilic block copolymers wherein one portion of the chain is hydrophilic and the other is hydrophobic.104107 Exposure to the aqueous, biological environment creates a thermodynamic incentive for the restructuring of the hydrophilic portions to the material surface. Meanwhile, the hydrophobic portions interact with the bulk material, ensuring proper dispersion and inhibiting leaching. Our research group has previously reported the modification of silicones, both a room temperature vulcanization (RTV) and addition cure system, with poly(ethylene oxide) (PEO)-silane amphiphiles (PEO-SAs). These were comprised of an oligo(dimethylsiloxane) (ODMSm) tether, a PEO headgroup (PEO8), and either a triethoxysilane (TES) group [α-(EtO)3Si-(CH2)2-ODMSm-block-PEO8-OCH3; m = 13 or 30] or a silane (Si–H) group [H-Si-ODMSm-block-PEO8-OCH3; m = 13 or 30]. The resulting modified silicones exhibited rapid and substantial water-driven surface hydrophilicity, resulting in broad spectrum biofouling resistance (e.g., proteins, bacteria, platelets, and lens epithelial cells).53,108117 In contrast, silicones modified with a PEO-silane (i.e., no siloxane tether) did not exhibit such surface and antibiofouling behaviors. Thus, the siloxane tether is hypothesized to improve the miscibility of the amphiphilic SMA in the silicone bulk, improving the ability of PEO segments to migrate to the aqueous interface.

4. Rheological Modifications

Silicones are useful in many medical devices which require intricate structures, such as flexible electronics, soft robotics, and maxillofacial prostheses.118120 Traditional fabrication techniques like compression molding, extrusion, and spin coating are limited by resolution, cost, and time.121123 Direct ink write (DIW) 3D printing on the other hand, provides a more robust mechanism for the fabrication of silicone devices.124 This process requires that the “ink” exhibit thixotropic rheological behavior.125 In other words, the silicone ink must undergo fluidization at high shear and stiffening at low shear or rest.126 Thus, to improve printability of silicones, rheological modifiers such as silica filler, and thixotropic additives (THXAs) have been used (Figure 5).

Figure 5.

Figure 5

Rheological modification of silicone to create printable inks rely on silica fillers (left) and thixotropic additives (THXAs), such as PEG (middle) and amphiphiles (right).

To improve strength and toughness, silicones are often reinforced with silica fillers at levels of up to ∼30 wt %.127 The chemical similarity of silica fillers and silicones gives rise to their compatibility, facilitating dispersion.128,129 The silanol-containing surface of silica can also be refined with numerous chemistries to further enhance dispersion.130,131 Silica–silicone intermolecular interactions can give rise to thixotropy to form printable inks,129 with shearing of the silica–silicone network producing fluidification during extrusion.125 However, depending on the silicone, the requisite silica loading levels result in poor compatibility of the mixture and increased nozzle pressure during printing.132 In a study by Zhou et al. (2019),124 printable silicone inks were prepared by combining nonsurface modified silica filler (up to 8 wt %) with various commercial silicones. However, in another study, for Sylgard 184 (a silica-filled Pt-cure silicone), neither incorporation of ∼17 wt % hexamethyldisilazane (HMDS)-treated or dimethyldichlorosilane (DiMeDi)-treated silica alone was able to produce printable inks.133 Other common fillers such as aluminum oxide, titanium oxide, and graphite have been investigated for their use as thixotropic additives for silicones; however, they only achieved printability when silica filler was also added.132 Bai et al. (2020)134 used polytetrafluoroethylene (PTFE) micropowder as a substitute for silica. PTFE’s nonpolarity allowed for the creation of improved polymer–filler interaction and resulted in a thixotropic ink without the need for silica filler. However, to achieve the necessary properties for DIW inks, the PTFE had to be loaded at high amounts (55 wt %).

THXAs may decrease the required silica loading to form printable silicone inks, attributed to the increase in silica–matrix interactions. Courtial et al. (2019)135 reported that the incorporation of PEO in a silica-filled (0.5–8 wt %) silicone led to thixotropy through H-bonding with the silica’s silanol surface groups. PEO of lower molecular weights (450 g/mol) was able to improve rheological properties, without inducing a plasticizing effect in the final prints. However, a printable ink could not be achieved, attributed to weak PEO–matrix interactions. Our group further demonstrated that PEO was not an effective THXA for Sylgard 184.133 Thus, amphiphilic PEO-SAs (i.e., comprised of siloxane tethers and PEO segments) of varying architectures were evaluated as alternatives. Star and triblock PEO-SAs (5 wt %) were able to create printable inks for Sylgard 184 that also contained ∼17 wt % DiMeDi-silica filler. Formulations based on star PEO-SA produces surfaces were also capable of water-driven surface restructuring and so are anticipated to enhance antibiofouling behavior.

5. Electrical Modifications

The use of wearable continuous monitoring devices has been prompted by a reduction in the size of electronic components.136 Continuous monitoring has the advantage of alerting users to temporal changes in biological indicators (e.g., blood pressure, blood glucose, heart rate),137139 rather than relying on intermittent measurements. This keeps users informed about important changes and trends that may otherwise be missed. Many such devices currently rely on light sensing which becomes less accurate with higher levels of pigmentation or subcutaneous fat.140,141 Thus, continuous monitoring shifted to electrical sensing, which relies on hard metal electrodes (e.g., Ag/AgCl). However, these lack the ability to conform to the skins surface and increase noise, leading to poor signal quality.142 Soft, gel-based, Ag/AgCl electrodes allow for a conformal fit, but are limited by skin irritation and limited long-term stability.143 This prompted the demand for flexible, dry skin electrodes. Silicones’ low modulus and elastomeric nature make them ideal candidates to interface with skin.144 To achieve the necessary electrical properties, silicones may be loaded with conductive fillers such as carbon black, graphene, and carbon nanotubes (CNTs).145148 Silicone-based CNT composites hold particular promise,149,150 as the high aspect ratio of CNTs allows them to reach a theoretical percolation threshold at relatively lower loading levels.151153 However, CNTs suffer from strong van der Waals interactions, making their dispersion in polymer matrices difficult.154 Current techniques for improving their dispersion include mechanical separation, surface modification, polymer wrapping, and the addition of dispersive additives (DSPAs), such as surfactants (Figure 6).

Figure 6.

Figure 6

Methods for dispersing CNTS (left to right): sonication, covalent surface modification, polymer wrapping, and amphiphilic DSPAs.

Mechanical separation relies on the use of high shear mixing or sonification to interrupt the van der Waals interactions of CNTs. These methods can cause damage to the tubes as the energy imparted into the mixture is not specifically targeted.142,149 This decreases their aspect ratio and, in some cases, reduces their ability to readily transport electrons, thereby necessitating higher loading amounts. Furthermore, mixing times can be upward of 15 h and have specific viscosity requirements, making broad adoption difficult. Chemical surface modifications instead decrease aggregation by directly interrupting tube–tube interactions.155 This is commonly achieved through the addition of carboxyl groups to the CNT surface. Yet, these modifications also lead to a decrease in intrinsic conductivity due to fracturing of CNTs, thereby increasing the effective loading amount required to impart electrical conductivity.142,149,156

To avoid the damage incurred by the aforementioned dispersion techniques, other research has looked into the use of noncovalent modifications such as polymer wrapping. Polymer wrapping works similarly to surface modification; however, it relies on strong physical interactions rather than covalent linkages.157160 Bai et al. (2017)161 achieved this through the use of polymethylphenylsiloxane (PMPS), which adsorbs onto the CNT surface through π–π stacking and methyl−π interactions. Unfortunately, polymer wrapping requires a precise balance between polymer desorption and adsorption. If there is too much adsorption, there are no tube–tube interactions, thereby eliminating the materials conductivity, and if there is too little, then separation does not occur. Dynamic dispersion using surfactants is instead used to avoid the pitfalls of polymer wrapping and other static dispersion methods.

Surfactants are characterized by their ability to form supramolecular structures (i.e., micelles, bilayers), caused by the thermodynamically favorable separation of their hydrophilic and hydrophobic moieties.162,163 These structures are leveraged to assist in the separation of carbon nanotubes by creating physical barriers between CNTs.164 Yang et al. (2020)165 used sodium dodecyl sulfate (SDS) in order to improve CNT separation in a silicone. Nonetheless, this required a pretreatment to impart negative charges at the surface of the CNTs to ensure proper adhesion with the positively charged SDS. Our group has focused on the creation and use of a PEO-silane DSPA, which would allow for simple CNT separation.166 DSPA architecture (linear and star) and siloxane length were systematically varied to investigate their impact on CNT dispersion. These were combined with CNTs and an addition cure silicone, without modification to CNTs, addition of solvents, or exhaustive mixing protocols. Silicone-CNT composites formed with PEO-SAs containing siloxane tethers with 12 repeat units achieved the highest conductivity (σDC). The top-performing composite displayed a σDC ∼ 140× higher than that of a composite prepared with no PEO-SA. The skin-electrode impedance for the top performing composite achieved similar results versus an Ag/AgCl electrode. Thus, PEO-SAs may act as effective DSPAs for the convenient and effective formation of silicone–CNT composites for soft skin electrodes useful for long-term monitoring.

6. Conclusion

In summary, numerous additive-based approaches have recently been leveraged to improve the outcomes of silicones used in biomedical applications. These ideally seek to modify silicones to permit tailoring of various properties key to success. Surface modifications selectively tune protein adsorption to improve device longevity by reducing failure caused biofouling. Rheological modifications enhance the use silicones for 3D printing applications, expanding the complexity of device designs. Finally, electrical modifications permit silicones to be used for advanced healthcare sensing. Given the potential impact on medical devices, continued work to improve biomedical silicones is a critical endeavor.

The authors declare no competing financial interest.

References

  1. Coulter F. B.; Schaffner M.; Faber J. A.; Rafsanjani A.; Smith R.; Appa H.; Zilla P.; Bezuidenhout D.; Studart A. R. Bioinspired heart valve prosthesis made by silicone additive manufacturing. Matter 2019, 1 (1), 266–279. 10.1016/j.matt.2019.05.013. [DOI] [Google Scholar]
  2. Stringham J.; Werner L.; Monson B.; Theodosis R.; Mamalis N. Calcification of different designs of silicone intraocular lenses in eyes with asteroid hyalosis. Ophthalmology 2010, 117 (8), 1486–1492. 10.1016/j.ophtha.2009.12.032. [DOI] [PubMed] [Google Scholar]
  3. Lin C.-H.; Yeh Y.-H.; Lin W.-C.; Yang M.-C. Novel silicone hydrogel based on PDMS and pegma for contact lens application. Colloids Surf. B. Biointerfaces 2014, 123, 986–994. 10.1016/j.colsurfb.2014.10.053. [DOI] [PubMed] [Google Scholar]
  4. Brook M. A. Platinum in silicone breast implants. Biomaterials 2006, 27 (17), 3274–3286. 10.1016/j.biomaterials.2006.01.027. [DOI] [PubMed] [Google Scholar]
  5. Guiotti A. M.; Goiato M. C.; dos Santos D. M. Evaluation of the shore a hardness of silicone for facial prosthesis as to the effect of storage period and chemical disinfection. J. Craniofac. Surg. 2010, 21 (2), 323. 10.1097/SCS.0b013e3181cf5fa4. [DOI] [PubMed] [Google Scholar]
  6. Stauffer F.; Thielen M.; Sauter C.; Chardonnens S.; Bachmann S.; Tybrandt K.; Peters C.; Hierold C.; Vörös J. Skin conformal polymer electrodes for clinical ecg and eeg recordings. Adv. Heathc. Mater. 2018, 7 (7), 1700994. 10.1002/adhm.201700994. [DOI] [PubMed] [Google Scholar]
  7. Huang Y.; Guo M.; Tan J.; Feng S. Impact of molecular architecture on surface properties and aqueous stabilities of silicone-based carboxylate surfactants. Langmuir 2020, 36 (8), 2023–2029. 10.1021/acs.langmuir.9b03653. [DOI] [PubMed] [Google Scholar]
  8. Lorenz G.; Kandelbauer A.. Silicones. In Handbook of Thermoset Plastics, 3rd ed.; Dodiuk H., Goodman S. H., Eds.; William Andrew Publishing: Boston, 2014; pp 555–575. [Google Scholar]
  9. Modjarrad K.; Ebnesajjad S.. Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2013. [Google Scholar]
  10. Abbasi F.; Mirzadeh H.; Katbab A.-A. Modification of polysiloxane polymers for biomedical applications: A review. Polym. Int. 2001, 50 (12), 1279–1287. 10.1002/pi.783. [DOI] [Google Scholar]
  11. Mazurek P.; Vudayagiri S.; Skov A. L. How to tailor flexible silicone elastomers with mechanical integrity: A tutorial review. Chem. Soc. Rev. 2019, 48 (6), 1448–1464. 10.1039/C8CS00963E. [DOI] [PubMed] [Google Scholar]
  12. Hasan M. M.; Hossain M. M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. J. Mater. Sci. 2021, 56 (27), 14900–14942. 10.1007/s10853-021-06248-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Douglass M.; Garren M.; Devine R.; Mondal A.; Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. Prog. Mater. Sci. 2022, 130, 100997. 10.1016/j.pmatsci.2022.100997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen S.; Tan W. S.; Bin Juhari M. A.; Shi Q.; Cheng X. S.; Chan W. L.; Song J. Freeform 3D printing of soft matters: Recent advances in technology for biomedical engineering. Biomed. Eng. Lett. 2020, 10 (4), 453–479. 10.1007/s13534-020-00171-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zare M.; Ghomi E. R.; Venkatraman P. D.; Ramakrishna S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 2021, 138 (38), 50969. 10.1002/app.50969. [DOI] [Google Scholar]
  16. Ershova T.; Anisimov A.; Krylov F.; Polshchikova N.; Temnikov M.; Shchegolikhina O.; Muzafarov A. A new highly efficient method for the preparation of phenyl-containing siloxanes by condensation of phenylsilanols in liquid ammonia. Chem. Eng. Sci. 2022, 247, 116916. 10.1016/j.ces.2021.116916. [DOI] [Google Scholar]
  17. Han Y.; Zhang J.; Yang Q.; Shi L.; Qi S.; Jin R. Novel polymethoxylsiloxane-based crosslinking reagent and its in-situ improvement for thermal and mechanical properties of siloxane elastomer. J. Appl. Polym. Sci. 2008, 107 (6), 3788–3795. 10.1002/app.27505. [DOI] [Google Scholar]
  18. Aziz T.; Waters M.; Jagger R. Development of a new poly(dimethylsiloxane) maxillofacial prosthetic material. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 65B (2), 252–261. 10.1002/jbm.b.10559. [DOI] [PubMed] [Google Scholar]
  19. Shimizu T.; Goda T.; Minoura N.; Takai M.; Ishihara K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 2010, 31 (12), 3274–3280. 10.1016/j.biomaterials.2010.01.026. [DOI] [PubMed] [Google Scholar]
  20. Steffensen S. L.; Vestergaard M. H.; Møller E. H.; Groenning M.; Alm M.; Franzyk H.; Nielsen H. M. Soft hydrogels interpenetrating silicone—a polymer network for drug-releasing medical devices. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104 (2), 402–410. 10.1002/jbm.b.33371. [DOI] [PubMed] [Google Scholar]
  21. Riber L.; Burmølle M.; Alm M.; Milani S. M.; Thomsen P.; Hansen L. H.; Sørensen S. J. Enhanced plasmid loss in bacterial populations exposed to the antimicrobial compound irgasan delivered from interpenetrating polymer network silicone hydrogels. Plasmid 2016, 87–88, 72–78. 10.1016/j.plasmid.2016.10.001. [DOI] [PubMed] [Google Scholar]
  22. Chekina N. A.; Pavlyuchenko V. N.; Danilichev V. F.; Ushakov N. A.; Novikov S. A.; Ivanchev S. S. A new polymeric silicone hydrogel for medical applications: Synthesis and properties. Polym. Adv. Technol. 2006, 17 (11–12), 872–877. 10.1002/pat.820. [DOI] [Google Scholar]
  23. Braley S. The chemistry and properties of the medical-grade silicones. J. Macromol. Sci., Pure Appl. Chem. 1970, 4 (3), 529–544. 10.1080/00222337008074361. [DOI] [Google Scholar]
  24. White C.; Tan K.; Wolf A.; Carbary L., Advances in structural silicone adhesives. In Advances in Structural Adhesive Bonding; Dillard D. A., Ed.; Woodhead Publishing, 2010; pp 66–95. [Google Scholar]
  25. Lu G.; Schneider A. F.; Vanderpol M.; Lu E. K.; Wong M. Y.; Brook M. A. Tunable, catalyst-free preparation of silicone gels. Ind. Eng. Chem. Res. 2021, 60 (42), 15019–15026. 10.1021/acs.iecr.1c02369. [DOI] [Google Scholar]
  26. Colas A.; Curtis J.. Silicones. In Biomaterials Science, 3rd ed.; Ratner B. D., Hoffman A. S., Schoen F. J., Lemons J. E., Eds.; Academic Press, 2013; pp 82–91. [Google Scholar]
  27. Park E.-S. Mechanical properties and antibacterial activity of peroxide-cured silicone rubber foams. J. Appl. Polym. Sci. 2008, 110 (3), 1723–1729. 10.1002/app.28750. [DOI] [Google Scholar]
  28. Owen M. J. Silicone surface fundamentals. Macromol. Rapid Commun. 2021, 42 (5), 2000360. 10.1002/marc.202000360. [DOI] [PubMed] [Google Scholar]
  29. Chen H.; Brook M. A.; Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials 2004, 25 (12), 2273–2282. 10.1016/j.biomaterials.2003.09.023. [DOI] [PubMed] [Google Scholar]
  30. Anderson J. M.; Ziats N. P.; Azeez A.; Brunstedt M. R.; Stack S.; Bonfield T. L. Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. J. Biomater. Sci. Polym. Ed. 1996, 7 (2), 159–169. 10.1163/156856295X00670. [DOI] [PubMed] [Google Scholar]
  31. Brash J. L. Hydrophobic polymer surfaces and their interactions with blood. Ann. N.Y. Acad. Sci. 1977, 283 (1), 356–371. 10.1111/j.1749-6632.1977.tb41781.x. [DOI] [Google Scholar]
  32. Wu G.; Fanzo J.; Miller D. D.; Pingali P.; Post M.; Steiner J. L.; Thalacker-Mercer A. E. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N.Y. Acad. Sci. 2014, 1321 (1), 1–19. 10.1111/nyas.12500. [DOI] [PubMed] [Google Scholar]
  33. Percival S. L.; Suleman L.; Vuotto C.; Donelli G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J. Med. Microbiol. 2015, 64 (4), 323–334. 10.1099/jmm.0.000032. [DOI] [PubMed] [Google Scholar]
  34. Raad I.; Hanna H.; Maki D. Intravascular catheter-related infections: Advances in diagnosis, prevention, and management. Lancet Infect. Dis. 2007, 7 (10), 645–657. 10.1016/S1473-3099(07)70235-9. [DOI] [PubMed] [Google Scholar]
  35. Gong P.; Grainger D. W. Nonfouling surfaces. Microarrays 2007, 381, 59–92. 10.1385/1-59745-303-X:59. [DOI] [PubMed] [Google Scholar]
  36. Avula M. N.; Rao A. N.; McGill L. D.; Grainger D. W.; Solzbacher F. Modulation of the foreign body response to implanted sensor models through device-based delivery of the tyrosine kinase inhibitor, masitinib. Biomaterials 2013, 34 (38), 9737–9746. 10.1016/j.biomaterials.2013.08.090. [DOI] [PubMed] [Google Scholar]
  37. Swartzlander M. D.; Barnes C. A.; Blakney A. K.; Kaar J. L.; Kyriakides T. R.; Bryant S. J. Linking the foreign body response and protein adsorption to peg-based hydrogels using proteomics. Biomaterials 2015, 41, 26–36. 10.1016/j.biomaterials.2014.11.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ratner B. D.; Hoffman A. S.; Schoen F. J.; Lemons J. E.. Biomaterials science: An introduction to materials in medicine; Elsevier Academic Press, 2004; pp 697–707. [Google Scholar]
  39. Raad I. I.; Luna M.; Khalil S.-A. M.; Costerton J. W.; Lam C.; Bodey G. P. The relationship between the thrombotic and infectious complications of central venous catheters. JAMA 1994, 271 (13), 1014–1016. 10.1001/jama.1994.03510370066034. [DOI] [PubMed] [Google Scholar]
  40. Lloyd D. A.; Shanbhogue L. K. R.; Doherty P. J.; Sunderland D.; Hart C. A.; Williams D. F. Does the fibrin coat around a central venous catheter influence catheter-related sepsis?. J. Pediatr. Surg. 1993, 28 (3), 345–349. 10.1016/0022-3468(93)90229-E. [DOI] [PubMed] [Google Scholar]
  41. Diaz Blanco C.; Ortner A.; Dimitrov R.; Navarro A.; Mendoza E.; Tzanov T. Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach. ACS Appl. Mater. Interfaces 2014, 6 (14), 11385–11393. 10.1021/am501961b. [DOI] [PubMed] [Google Scholar]
  42. Learn G. D.; Lai E. J.; Wilson E. J.; von Recum H. A. Nonthermal plasma treatment of polymers modulates biological fouling but can cause material embrittlement. J. Mech. Behav. Biomed. Mater. 2021, 113, 104126. 10.1016/j.jmbbm.2020.104126. [DOI] [PubMed] [Google Scholar]
  43. Abela-Formanek C.; Amon M.; Schild G.; Schauersberger J.; Heinze G.; Kruger A. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses. J. Cataract Refract. Surg. 2002, 28 (1), 50–61. 10.1016/S0886-3350(01)01122-1. [DOI] [PubMed] [Google Scholar]
  44. Hu H.; Jacombs A.; Vickery K.; Merten S. L.; Pennington D. G.; Deva A. K. Chronic biofilm infection in breast implants is associated with an increased t-cell lymphocytic infiltrate: Implications for breast implant–associated lymphoma. Plast. Reconstr. Surg. 2015, 135 (2), 319–329. 10.1097/PRS.0000000000000886. [DOI] [PubMed] [Google Scholar]
  45. Zhang H.; Annich G. M.; Miskulin J.; Osterholzer K.; Merz S. I.; Bartlett R. H.; Meyerhoff M. E. Nitric oxide releasing silicone rubbers with improved blood compatibility: Preparation, characterization, and in vivo evaluation. Biomaterials 2002, 23 (6), 1485–1494. 10.1016/S0142-9612(01)00274-5. [DOI] [PubMed] [Google Scholar]
  46. Abbasi F.; Mirzadeh H.; Katbab A.-A. Bulk and surface modification of silicone rubber for biomedical applications. Polym. Int. 2002, 51 (10), 882–888. 10.1002/pi.1069. [DOI] [Google Scholar]
  47. Hron P. Hydrophilisation of silicone rubber for medical applications. Polym. Int. 2003, 52 (9), 1531–1539. 10.1002/pi.1273. [DOI] [Google Scholar]
  48. Bodas D.; Khan-Malek C. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng. 2006, 83 (4), 1277–1279. 10.1016/j.mee.2006.01.195. [DOI] [Google Scholar]
  49. Yao K.; Huang X.-D.; Huang X.-J.; Xu Z.-K. Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties. J. Biomed. Mater. Res., Part A 2006, 78A (4), 684–692. 10.1002/jbm.a.30741. [DOI] [PubMed] [Google Scholar]
  50. Yeh S.-B.; Chen C.-S.; Chen W.-Y.; Huang C.-J. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014, 30 (38), 11386–11393. 10.1021/la502486e. [DOI] [PubMed] [Google Scholar]
  51. Ngo B. K. D.; Grunlan M. A. Protein resistant polymeric biomaterials. ACS Macro Lett. 2017, 6 (9), 992–1000. 10.1021/acsmacrolett.7b00448. [DOI] [PubMed] [Google Scholar]
  52. O’Brien D. J.; Sedlack A. J. H.; Bhatia P.; Jensen C. J.; Quintana-Puebla A.; Paranjape M. Systematic characterization of hydrophilized polydimethylsiloxane. J. Microelectromech. Syst. 2020, 29 (5), 1216–1224. 10.1109/JMEMS.2020.3010087. [DOI] [Google Scholar]
  53. Rufin M. A.; Ngo B. K. D.; Barry M. E.; Page V. M.; Hawkins M. L.; Stafslien S. J.; Grunlan M. A. Antifouling silicones based on surface-modifying additive amphiphiles. Green Mater. 2017, 5 (1), 4–13. 10.1680/jgrma.16.00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Liston E. M. Plasma treatment for improved bonding: A review. J. Adhes. 1989, 30 (1–4), 199–218. 10.1080/00218468908048206. [DOI] [Google Scholar]
  55. Owen M. J.; Smith P. J. Plasma treatment of polydimethylsiloxane. J. Adhes. Sci. Technol. 1994, 8 (10), 1063–1075. 10.1163/156856194X00942. [DOI] [Google Scholar]
  56. Kuznetsov A. Y.; Bagryansky V. A.; Petrov A. K. The surface relaxation of glow discharge-treated silicone polymer. J. Appl. Polym. Sci. 1995, 57 (2), 201–207. 10.1002/app.1995.070570208. [DOI] [Google Scholar]
  57. Xia Y.; Whitesides G. M. Soft lithography. Angew. Chem., Int. Ed. 1998, 37 (5), 550–575. . [DOI] [PubMed] [Google Scholar]
  58. Choi W.; Lee C.; Yoo C. H.; Shin M. G.; Lee G. W.; Kim T.-S.; Jung H. W.; Lee J. S.; Lee J.-H. Structural tailoring of sharkskin-mimetic patterned reverse osmosis membranes for optimizing biofouling resistance. J. Membr. Sci. 2020, 595, 117602. 10.1016/j.memsci.2019.117602. [DOI] [Google Scholar]
  59. D’Ovidio T. J.; Friederich A. R. W.; de Herrera N.; Davis-Hall D.; Mann E. E.; Magin C. M. Micropattern-mediated apical guidance accelerates epithelial cell migration to improve healing around percutaneous gastrostomy tubes. Biomed. Phys. Eng. Express 2019, 5 (6), 065027. 10.1088/2057-1976/ab50d5. [DOI] [Google Scholar]
  60. Wormstone I. M.; Damm N. B.; Kelp M.; Eldred J. A. Assessment of intraocular lens/capsular bag biomechanical interactions following cataract surgery in a human in vitro graded culture capsular bag model. Exp. Eye Res. 2021, 205, 108487. 10.1016/j.exer.2021.108487. [DOI] [PubMed] [Google Scholar]
  61. Maxwell G. P.; Gabriel A. The evolution of breast implants. Clin. Plast. Surg. 2009, 36 (1), 1–13. 10.1016/j.cps.2008.08.001. [DOI] [PubMed] [Google Scholar]
  62. Takaku R.; Nakano S.; Iida M.; Oshika T. Influence of frosted haptics on rotational stability of toric intraocular lenses. Sci. Rep. 2021, 11 (1), 15099. 10.1038/s41598-021-94293-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Osawa R.; Oshika T.; Sano M.; Yuguchi T.; Kaiya T. Rotational stability of modified toric intraocular lens. PLoS One 2021, 16 (3), e0247844. 10.1371/journal.pone.0247844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Collis N.; Coleman D.; Foo I. T. H.; Sharpe D. T. Ten-year review of a prospective randomized controlled trial of textured versus smooth subglandular silicone gel breast implants. Plast. Reconstr. Surg. 2000, 106 (4), 786–791. 10.1097/00006534-200009020-00005. [DOI] [PubMed] [Google Scholar]
  65. Wong C.-H.; Samuel M.; Tan B.-K.; Song C. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: A systematic review. Plast. Reconstr. Surg. 2006, 118 (5), 1224–1236. 10.1097/01.prs.0000237013.50283.d2. [DOI] [PubMed] [Google Scholar]
  66. Kyle D. J. T.; Oikonomou A.; Hill E.; Bayat A. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts. Biomaterials 2015, 52, 88–102. 10.1016/j.biomaterials.2015.02.003. [DOI] [PubMed] [Google Scholar]
  67. Derby B. M.; Codner M. A. Textured silicone breast implant use in primary augmentation: Core data update and review. Plast. Reconstr. Surg. 2015, 135 (1), 113–124. 10.1097/PRS.0000000000000832. [DOI] [PubMed] [Google Scholar]
  68. Capuani S.; Malgir G.; Chua C. Y. X.; Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng. Transl. Med. 2022, 7 (3), e10300. 10.1002/btm2.10300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Doloff J. C.; Veiseh O.; de Mezerville R.; Sforza M.; Perry T. A.; Haupt J.; Jamiel M.; Chambers C.; Nash A.; Aghlara-Fotovat S.; Stelzel J. L.; Bauer S. J.; Neshat S. Y.; Hancock J.; Romero N. A.; Hidalgo Y. E.; Leiva I. M.; Munhoz A. M.; Bayat A.; Kinney B. M.; Hodges H. C.; Miranda R. N.; Clemens M. W.; Langer R. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 2021, 5 (10), 1115–1130. 10.1038/s41551-021-00739-4. [DOI] [PubMed] [Google Scholar]
  70. Swanson E. Plastic surgeons defend textured breast implants at 2019 U.S. Food and drug administration hearing: Why it is time to reconsider. Plast. Reconstr. Surg. 2019, 7 (8), e2410. 10.1097/GOX.0000000000002410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Van Slyke A. C.; Carr M.; Carr N. J. Not all breast implants are equal: A 13-year review of implant longevity and reasons for explantation. Plast. Reconstr. Surg. 2018, 142 (3), 281e. 10.1097/PRS.0000000000004678. [DOI] [PubMed] [Google Scholar]
  72. K Groth A.; Graf R. Breast implant-associated anaplastic large cell lymphoma (bia-alcl) and the textured breast implant crisis. Aesthetic Plast. Surg. 2020, 44 (1), 1–12. 10.1007/s00266-019-01521-3. [DOI] [PubMed] [Google Scholar]
  73. Atthi N.; Sripumkhai W.; Pattamang P.; Thongsook O.; Srihapat A.; Meananeatra R.; Supadech J.; Klunngien N.; Jeamsaksiri W. Fabrication of robust PDMS micro-structure with hydrophobic and antifouling properties. Microelectron. Eng. 2020, 224, 111255. 10.1016/j.mee.2020.111255. [DOI] [Google Scholar]
  74. Yang C.; Tartaglino U.; Persson B. N. J. Influence of surface roughness on superhydrophobicity. Phys. Rev. Lett. 2006, 97 (11), 116103. 10.1103/PhysRevLett.97.116103. [DOI] [PubMed] [Google Scholar]
  75. Jo S.; Park K. Surface modification using silanated poly(ethylene glycol)s. Biomaterials 2000, 21 (6), 605–616. 10.1016/S0142-9612(99)00224-0. [DOI] [PubMed] [Google Scholar]
  76. Prime K. L.; Whitesides G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc. 1993, 115 (23), 10714–10721. 10.1021/ja00076a032. [DOI] [Google Scholar]
  77. Prime K. L.; Whitesides G. M. Self-assembled organic monolayers: Model systems for studying adsorption of proteins at aurfaces. Science 1991, 252 (5009), 1164–1167. 10.1126/science.252.5009.1164. [DOI] [PubMed] [Google Scholar]
  78. Sofia S. J.; Premnath V.; Merrill E. W. Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules 1998, 31 (15), 5059–5070. 10.1021/ma971016l. [DOI] [PubMed] [Google Scholar]
  79. Atha D. H.; Ingham K. C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 1981, 256 (23), 12108–12117. 10.1016/S0021-9258(18)43240-1. [DOI] [PubMed] [Google Scholar]
  80. Xiang Y.; Xu R.-G.; Leng Y. Molecular dynamics simulations of a poly(ethylene glycol)-grafted polyamide membrane and its interaction with a calcium alginate gel. Langmuir 2016, 32 (18), 4424–4433. 10.1021/acs.langmuir.6b00348. [DOI] [PubMed] [Google Scholar]
  81. Schlapak R.; Pammer P.; Armitage D.; Zhu R.; Hinterdorfer P.; Vaupel M.; Frühwirth T.; Howorka S. Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays. Langmuir 2006, 22 (1), 277–285. 10.1021/la0521793. [DOI] [PubMed] [Google Scholar]
  82. Kikuchi Y.; Nakanishi J.; Nakayama H.; Shimizu T.; Yoshino Y.; Yamaguchi K.; Yoshida Y.; Horiike Y. Grafting poly (ethylene glycol) to a glass surface via a photocleavable linker for light-induced cell micropatterning and cell proliferation control. Chem. Lett. 2008, 37 (10), 1062–1063. 10.1246/cl.2008.1062. [DOI] [Google Scholar]
  83. Pale-Grosdemange C.; Simon E. S.; Prime K. L.; Whitesides G. M. Formation of self-assembled monolayers by chemisorption of derivatives of oligo (ethylene glycol) of structure hs (ch2) 11 (och2ch2) moh on gold. J. Am. Chem. Soc. 1991, 113 (1), 12–20. 10.1021/ja00001a002. [DOI] [Google Scholar]
  84. Uz M.; Bulmus V.; Alsoy Altinkaya S. Effect of peg grafting density and hydrodynamic volume on gold nanoparticle–cell interactions: An investigation on cell cycle, apoptosis, and DNA damage. Langmuir 2016, 32 (23), 5997–6009. 10.1021/acs.langmuir.6b01289. [DOI] [PubMed] [Google Scholar]
  85. Sharma S.; Johnson R. W.; Desai T. A. Xps and afm analysis of antifouling peg interfaces for microfabricated silicon biosensors. Biosens. Bioelectron. 2004, 20 (2), 227–239. 10.1016/j.bios.2004.01.034. [DOI] [PubMed] [Google Scholar]
  86. Zoppe J. O.; Ataman N. C.; Mocny P.; Wang J.; Moraes J.; Klok H.-A. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 2017, 117 (3), 1105–1318. 10.1021/acs.chemrev.6b00314. [DOI] [PubMed] [Google Scholar]
  87. Plegue T. J.; Kovach K. M.; Thompson A. J.; Potkay J. A. Stability of polyethylene glycol and zwitterionic surface modifications in PDMS microfluidic flow chambers. Langmuir 2018, 34 (1), 492–502. 10.1021/acs.langmuir.7b03095. [DOI] [PubMed] [Google Scholar]
  88. Huang K.-T.; Yeh S.-B.; Huang C.-J. Surface modification for superhydrophilicity and underwater superoleophobicity: Applications in antifog, underwater self-cleaning, and oil–water separation. ACS Appl. Mater. Interfaces 2015, 7 (38), 21021–21029. 10.1021/acsami.5b07362. [DOI] [PubMed] [Google Scholar]
  89. Zhou J.; Yuan J.; Zang X.; Shen J.; Lin S. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids Surf. B. Biointerfaces 2005, 41 (1), 55–62. 10.1016/j.colsurfb.2004.11.006. [DOI] [PubMed] [Google Scholar]
  90. Zhang A.; Cheng L.; Hong S.; Yang C.; Lin Y. Preparation of anti-fouling silicone elastomers by covalent immobilization of carboxybetaine. RSC Adv. 2015, 5 (107), 88456–88463. 10.1039/C5RA17206C. [DOI] [Google Scholar]
  91. Qin X.-H.; Senturk B.; Valentin J.; Malheiro V.; Fortunato G.; Ren Q.; Rottmar M.; Maniura-Weber K. Cell-membrane-inspired silicone interfaces that mitigate proinflammatory macrophage activation and bacterial adhesion. Langmuir 2019, 35 (5), 1882–1894. 10.1021/acs.langmuir.8b02292. [DOI] [PubMed] [Google Scholar]
  92. Cheng L.; Liu Q.; Lei Y.; Lin Y.; Zhang A. The synthesis and characterization of carboxybetaine functionalized polysiloxanes for the preparation of anti-fouling surfaces. RSC Adv. 2014, 4 (97), 54372–54381. 10.1039/C4RA09171J. [DOI] [Google Scholar]
  93. Puciul-Malinowska A.; Zapotoczny S. Robust nanocoatings based on ionic silicones. Nanoscale 2018, 10 (26), 12497–12504. 10.1039/C8NR03090A. [DOI] [PubMed] [Google Scholar]
  94. Stauffer F.; Peter B.; Alem H.; Funfschilling D.; Dumas N.; Serra C. A.; Roques-Carmes T. Polyelectrolytes layer-by-layer surface modification of PDMS microchips for the production of simple o/w and double w/o/w emulsions: From global to localized treatment. Chem. Eng. Process. 2019, 146, 107685. 10.1016/j.cep.2019.107685. [DOI] [Google Scholar]
  95. Akashi M.; Akagi T. Composite materials by building block chemistry using weak interaction. Bull. Chem. Soc. Jpn. 2021, 94 (7), 1903–1921. 10.1246/bcsj.20210089. [DOI] [Google Scholar]
  96. Kim B.-S.; Park S. W.; Hammond P. T. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2008, 2 (2), 386–392. 10.1021/nn700408z. [DOI] [PubMed] [Google Scholar]
  97. Escobar A.; Muzzio N.; Moya S. E. Antibacterial layer-by-layer coatings for medical implants. Pharmaceutics 2021, 13 (1), 16. 10.3390/pharmaceutics13010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Lin C.-H.; Cho H.-L.; Yeh Y.-H.; Yang M.-C. Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique. Colloids Surf. B. Biointerfaces 2015, 136, 735–743. 10.1016/j.colsurfb.2015.10.006. [DOI] [PubMed] [Google Scholar]
  99. da Silveira G. A. T.; Rocha Neto J. B. M.; Kerwald J.; Carvalho H. F.; Beppu M. M. Surface modification of PDMS substrates for tumour cell adhesion: Influence of roughness parameters. Med. Devices Sens. 2021, 4 (1), e10142. 10.1002/mds3.10142. [DOI] [Google Scholar]
  100. Yoo B. Y.; Kim B. H.; Lee J. S.; Shin B. H.; Kwon H.; Koh W.-G.; Heo C. Y. Dual surface modification of PDMS-based silicone implants to suppress capsular contracture. Acta Biomater. 2018, 76, 56–70. 10.1016/j.actbio.2018.06.022. [DOI] [PubMed] [Google Scholar]
  101. Gregurec D.; Olszyna M.; Politakos N.; Yate L.; Dahne L.; Moya S. E. Stability of polyelectrolyte multilayers in oxidizing media: A critical issue for the development of multilayer based membranes for nanofiltration. Colloid Polym. Sci. 2015, 293 (2), 381–388. 10.1007/s00396-014-3423-5. [DOI] [Google Scholar]
  102. Gray J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 2004, 14 (1), 110–115. 10.1016/j.sbi.2003.12.001. [DOI] [PubMed] [Google Scholar]
  103. Vaterrodt A.; Thallinger B.; Daumann K.; Koch D.; Guebitz G. M.; Ulbricht M. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly. Langmuir 2016, 32 (5), 1347–1359. 10.1021/acs.langmuir.5b04303. [DOI] [PubMed] [Google Scholar]
  104. Tanzi M. C. Bioactive technologies for hemocompatibility. Expert Rev. Med. Devices 2005, 2 (4), 473–492. 10.1586/17434440.2.4.473. [DOI] [PubMed] [Google Scholar]
  105. Rahimi A.; Stafslien S. J.; Vanderwal L.; Finlay J. A.; Clare A. S.; Webster D. C. Amphiphilic zwitterionic-PDMS-based surface-modifying additives to tune fouling-release of siloxane-polyurethane marine coatings. Prog. Org. Coat. 2020, 149, 105931. 10.1016/j.porgcoat.2020.105931. [DOI] [Google Scholar]
  106. Portier É.; Azemar F.; Benkhaled B. T.; Bardeau J.-F.; Faÿ F.; Réhel K.; Lapinte V.; Linossier I. Poly(oxazoline) for the design of amphiphilic silicone coatings. Prog. Org. Coat. 2021, 153, 106116. 10.1016/j.porgcoat.2020.106116. [DOI] [Google Scholar]
  107. Camós Noguer A.; Olsen S. M.; Hvilsted S.; Kiil S. Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings. Prog. Org. Coat. 2017, 106, 77–86. 10.1016/j.porgcoat.2017.02.014. [DOI] [Google Scholar]
  108. Murthy R.; Cox C. D.; Hahn M. S.; Grunlan M. A. Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers. Biomacromolecules 2007, 8 (10), 3244–3252. 10.1021/bm700543c. [DOI] [PubMed] [Google Scholar]
  109. Hawkins M. L.; Grunlan M. A. The protein resistance of silicones prepared with a PEO-silane amphiphile. J. Mater. Chem. 2012, 22 (37), 19540–19546. 10.1039/c2jm32322b. [DOI] [Google Scholar]
  110. Hawkins M. L.; Rufin M. A.; Raymond J. E.; Grunlan M. A. Direct observation of the nanocomplex surface reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile. J. Mater. Chem. B 2014, 2 (34), 5689–5697. 10.1039/C4TB01008F. [DOI] [PubMed] [Google Scholar]
  111. Rufin M. A.; Gruetzner J. A.; Hurley M. J.; Hawkins M. L.; Raymond E. S.; Raymond J. E.; Grunlan M. A. Enhancing the protein resistance of silicone via surface-restructuring PEO–silane amphiphiles with variable PEO length. J. Mater. Chem. B 2015, 3 (14), 2816–2825. 10.1039/C4TB02042A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Rufin M. A.; Barry M. E.; Adair P. A.; Hawkins M. L.; Raymond J. E.; Grunlan M. A. Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration. Acta Biomater. 2016, 41, 247–252. 10.1016/j.actbio.2016.04.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Hawkins M. L.; Schott S. S.; Grigoryan B.; Rufin M. A.; Ngo B. K. D.; Vanderwal L.; Stafslien S. J.; Grunlan M. A. Anti-protein and anti-bacterial behavior of amphiphilic silicones. Polym. Chem. 2017, 8 (34), 5239–5251. 10.1039/C7PY00944E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Ngo B. K. D.; Lim K. K.; Stafslien S. J.; Grunlan M. A. Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration. Polym. Degrad. Stab. 2019, 163, 136–142. 10.1016/j.polymdegradstab.2019.03.010. [DOI] [Google Scholar]
  115. Ngo B. K. D.; Barry M. E.; Lim K. K.; Johnson J. C.; Luna D. J.; Pandian N. K. R.; Jain A.; Grunlan M. A. Thromboresistance of silicones modified with PEO-silane amphiphiles. ACS Biomater. Sci. Eng. 2020, 6 (4), 2029–2037. 10.1021/acsbiomaterials.0c00011. [DOI] [PubMed] [Google Scholar]
  116. Marmo A. C.; Rodriguez Cruz J. J.; Pickett J. H.; Lott L. R.; Theibert D. S.; Chandler H. L.; Grunlan M. A. Amphiphilic silicones to mitigate lens epithelial cell growth on intraocular lenses. J. Mater. Chem. B 2022, 10 (16), 3064–3072. 10.1039/D2TB00213B. [DOI] [PubMed] [Google Scholar]
  117. Dogbevi K. S.; Ngo B. K. D.; Blake C. W.; Grunlan M. A.; Coté G. L. Pumpless, “self-driven” microfluidic channels with controlled blood flow using an amphiphilic silicone. ACS Appl. Polym. Mater. 2020, 2 (4), 1731–1738. 10.1021/acsapm.0c00249. [DOI] [Google Scholar]
  118. Silva A. L.; Corrêa M. M.; de Oliveira G. C.; Florez-Rodriguez P. P.; Rodrigues Costa C. A.; Semaan F. S.; Ponzio E. A. Development of graphite/silicone composites for use as flexible electrode materials. J. Alloys Compd. 2017, 691, 220–229. 10.1016/j.jallcom.2016.08.232. [DOI] [Google Scholar]
  119. Majidi C. Soft-matter engineering for soft robotics. Adv. Mater. Technol. 2019, 4 (2), 1800477. 10.1002/admt.201800477. [DOI] [Google Scholar]
  120. Mitra A.; Choudhary S.; Garg H.; H G. J. Maxillofacial prosthetic materials- an inclination towards silicones. J. Clin. Diagnostic Res. 2014, 8 (12), ZE08–ZE13. 10.7860/JCDR/2014/9229.5244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Maghsoudi K.; Vazirinasab E.; Jafari R.; Momen G. Evaluating the effect of processing parameters on the replication quality in the micro compression molding of silicone rubber. Mater. Manuf. Processes 2020, 35 (14), 1567–1575. 10.1080/10426914.2020.1779942. [DOI] [Google Scholar]
  122. Rahimi A.; Mashak A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plast. Rubber Compos. 2013, 42 (6), 223–230. 10.1179/1743289811Y.0000000063. [DOI] [Google Scholar]
  123. Cortez M. A.; Quintana R.; Wicker R. B. Multi-step dip-spin coating manufacturing system for silicone cardiovascular membrane fabrication with prescribed compliance. Int. J. Adv. Manuf. Technol. 2007, 34 (7), 667–679. 10.1007/s00170-006-0649-5. [DOI] [Google Scholar]
  124. Zhou L.-y.; Gao Q.; Fu J.-z.; Chen Q.-y.; Zhu J.-p.; Sun Y.; He Y. Multimaterial 3D printing of highly stretchable silicone elastomers. ACS Appl. Mater. Interfaces 2019, 11 (26), 23573–23583. 10.1021/acsami.9b04873. [DOI] [PubMed] [Google Scholar]
  125. Lewis J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 2006, 16 (17), 2193–2204. 10.1002/adfm.200600434. [DOI] [Google Scholar]
  126. Duoss E. B.; Weisgraber T. H.; Hearon K.; Zhu C.; Small W.; Metz T. R.; Vericella J. J.; Barth H. D.; Kuntz J. D.; Maxwell R. S.; Spadaccini C. M.; Wilson T. S. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater. 2014, 24 (31), 4905–4913. 10.1002/adfm.201400451. [DOI] [Google Scholar]
  127. Berry M. G.; Davies D. M. Breast augmentation: Part i – a review of the silicone prosthesis. Journal of Plastic, Reconstructive & Aesthetic Surgery 2010, 63 (11), 1761–1768. 10.1016/j.bjps.2009.07.047. [DOI] [PubMed] [Google Scholar]
  128. Boonstra B. B.; Cochrane H.; Dánnenberg E. M. Reinforcement of silicone rubber by particulate silica. Rubber Chem. Technol. 1975, 48 (4), 558–576. 10.5254/1.3539660. [DOI] [Google Scholar]
  129. Chiulan I.; Panaitescu D. M.; Radu E.-R.; Frone A. N.; Gabor R. A.; Nicolae C. A.; Jinescu G.; Tofan V.; Chinga-Carrasco G. Comprehensive characterization of silica-modified silicon rubbers. J. Mech. Behav. Biomed. Mater. 2020, 101, 103427. 10.1016/j.jmbbm.2019.103427. [DOI] [PubMed] [Google Scholar]
  130. Yue Y.; Zhang C.; Zhang H.; Zhang D.; Chen X.; Chen Y.; Zhang Z. Rheological behaviors of fumed silica filled polydimethylsiloxane suspensions. Compos. Part A Appl. Sci. Manuf. 2013, 53, 152–159. 10.1016/j.compositesa.2013.06.005. [DOI] [Google Scholar]
  131. Song Y.; Yu J.; Dai D.; Song L.; Jiang N. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber. Materials & Design 2014, 64, 687–693. 10.1016/j.matdes.2014.08.051. [DOI] [Google Scholar]
  132. Talley S. J.; Branch B.; Welch C. F.; Park C. H.; Watt J.; Kuettner L.; Patterson B.; Dattelbaum D. M.; Lee K.-S. Impact of filler composition on mechanical and dynamic response of 3-D printed silicone-based nanocomposite elastomers. Compos. Sci. Technol. 2020, 198, 108258. 10.1016/j.compscitech.2020.108258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Suriboot J.; Marmo A. C.; Ngo B. K. D.; Nigam A.; Ortiz-Acosta D.; Tai B. L.; Grunlan M. A. Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone. Soft Matter 2021, 17 (15), 4133–4142. 10.1039/D1SM00288K. [DOI] [PubMed] [Google Scholar]
  134. Zheng R.; Chen Y.; Chi H.; Qiu H.; Xue H.; Bai H. 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2020, 12 (51), 57441–57449. 10.1021/acsami.0c18201. [DOI] [PubMed] [Google Scholar]
  135. Courtial E.-J.; Perrinet C.; Colly A.; Mariot D.; Frances J.-M.; Fulchiron R.; Marquette C. Silicone rheological behavior modification for 3D printing: Evaluation of yield stress impact on printed object properties. Addit. Manuf. 2019, 28, 50–57. 10.1016/j.addma.2019.04.006. [DOI] [Google Scholar]
  136. Sundriyal P.; Sahu M.; Prakash O.; Bhattacharya S., Recent advancement in the fabrication of energy storage devices for miniaturized electronics. In Nano-energetic materials, Bhattacharya S.; Agarwal A. K.; Rajagopalan T.; Patel V. K., Eds. Springer Singapore: Singapore, 2019; pp 215–240. [Google Scholar]
  137. Chung E.; Chen G.; Alexander B.; Cannesson M. Non-invasive continuous blood pressure monitoring: A review of current applications. Front. Med. 2013, 7 (1), 91–101. 10.1007/s11684-013-0239-5. [DOI] [PubMed] [Google Scholar]
  138. Rodbard D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016, 18 (S2), S2-3–S2-13. 10.1089/dia.2015.0417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Achten J.; Jeukendrup A. E. Heart rate monitoring. Sports Med. 2003, 33 (7), 517–538. 10.2165/00007256-200333070-00004. [DOI] [PubMed] [Google Scholar]
  140. Fallow B. A.; Tarumi T.; Tanaka H. Influence of skin type and wavelength on light wave reflectance. J. Clin. Monit. Comput. 2013, 27 (3), 313–317. 10.1007/s10877-013-9436-7. [DOI] [PubMed] [Google Scholar]
  141. Katsuyuki Y.; Masatsugu N.; Ling L.; Toshikazu S.; Nobuki K.; Makoto T. In Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer; BiOS Europe ’97, 1998. [Google Scholar]
  142. Lee S. M.; Byeon H. J.; Lee J. H.; Baek D. H.; Lee K. H.; Hong J. S.; Lee S.-H. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 2014, 4 (1), 6074. 10.1038/srep06074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Lin C.; Liao L.; Liu Y.; Wang I.; Lin B.; Chang J. Novel dry polymer foam electrodes for long-term eeg measurement. IEEE Trans. Biomed. Eng. 2011, 58 (5), 1200–1207. 10.1109/TBME.2010.2102353. [DOI] [PubMed] [Google Scholar]
  144. Grigatti A.; Gefen A. What makes a hydrogel-based dressing advantageous for the prevention of medical device-related pressure ulcers. Int. Wound J. 2022, 19 (3), 515–530. 10.1111/iwj.13650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Song P.; Wang G.; Zhang Y. Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sens. Actuator A Phys. 2021, 323, 112659. 10.1016/j.sna.2021.112659. [DOI] [Google Scholar]
  146. Liu C.; Yu C.; Sang G.; Xu P.; Ding Y. Improvement in emi shielding properties of silicone rubber/poe blends containing ils modified with carbon black and MWCNTs. Appl. Sci. 2019, 9 (9), 1774. 10.3390/app9091774. [DOI] [Google Scholar]
  147. Neplokh V.; Kochetkov F. M.; Deriabin K. V.; Fedorov V. V.; Bolshakov A. D.; Eliseev I. E.; Mikhailovskii V. Y.; Ilatovskii D. A.; Krasnikov D. V.; Tchernycheva M.; Cirlin G. E.; Nasibulin A. G.; Mukhin I. S.; Islamova R. M. Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-gap nanowires with a single-walled carbon nanotube transparent contact. J. Mater. Chem. C 2020, 8 (11), 3764–3772. 10.1039/C9TC06239D. [DOI] [Google Scholar]
  148. Jiang M.-J.; Dang Z.-M.; Xu H.-P. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Eur. Polym. J. 2007, 43 (12), 4924–4930. 10.1016/j.eurpolymj.2007.09.022. [DOI] [Google Scholar]
  149. Jung H.; Moon J.; Baek D.; Lee J.; Choi Y.; Hong J.; Lee S. CNT/PDMS composite flexible dry electrodesfor long-term ecg monitoring. IEEE Trans. Biomed. Eng. 2012, 59 (5), 1472–1479. 10.1109/TBME.2012.2190288. [DOI] [PubMed] [Google Scholar]
  150. Barshutina M. N.; Kirichenko S. O.; Wodolajski V. A.; Musienko P. E. Mechanisms of electrical conductivity in CNT/silicone composites designed for neural interfacing. Mater. Lett. 2019, 236, 183–186. 10.1016/j.matlet.2018.10.090. [DOI] [Google Scholar]
  151. Jing L.; Lumpp J. K.. Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. 2006 IEEE Aerospace Conference, 4–11 March 2006, IEEE, 2006; p 6.
  152. Bokobza L. Multiwall carbon nanotube elastomeric composites: A review. Polymer 2007, 48 (17), 4907–4920. 10.1016/j.polymer.2007.06.046. [DOI] [Google Scholar]
  153. Pegel S.; Pötschke P.; Petzold G.; Alig I.; Dudkin S. M.; Lellinger D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49 (4), 974–984. 10.1016/j.polymer.2007.12.024. [DOI] [Google Scholar]
  154. Dai H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35 (12), 1035–1044. 10.1021/ar0101640. [DOI] [PubMed] [Google Scholar]
  155. Ramesh S.; Ericson L. M.; Davis V. A.; Saini R. K.; Kittrell C.; Pasquali M.; Billups W. E.; Adams W. W.; Hauge R. H.; Smalley R. E. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 2004, 108 (26), 8794–8798. 10.1021/jp036971t. [DOI] [Google Scholar]
  156. Skákalová V.; Kaiser A. B.; Dettlaff-Weglikowska U.; Hrnčariková K.; Roth S. Effect of chemical treatment on electrical conductivity, infrared absorption, and raman spectra of single-walled carbon nanotubes. J. Phys. Chem. B 2005, 109 (15), 7174–7181. 10.1021/jp044741o. [DOI] [PubMed] [Google Scholar]
  157. Fujigaya T.; Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 2015, 16 (2), 024802. 10.1088/1468-6996/16/2/024802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Tunckol M.; Fantini S.; Malbosc F.; Durand J.; Serp P. Effect of the synthetic strategy on the non-covalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon 2013, 57, 209–216. 10.1016/j.carbon.2013.01.065. [DOI] [Google Scholar]
  159. Bilalis P.; Katsigiannopoulos D.; Avgeropoulos A.; Sakellariou G. Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 2014, 4 (6), 2911–2934. 10.1039/C3RA44906H. [DOI] [Google Scholar]
  160. Ji Y.; Huang Y. Y.; Tajbakhsh A. R.; Terentjev E. M. Polysiloxane surfactants for the dispersion of carbon nanotubes in nonpolar organic solvents. Langmuir 2009, 25 (20), 12325–12331. 10.1021/la901622c. [DOI] [PubMed] [Google Scholar]
  161. Bai L.; Bai Y.; Zheng J. Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane. J. Mater. Sci. 2017, 52 (12), 7516–7529. 10.1007/s10853-017-0984-y. [DOI] [Google Scholar]
  162. Krause B.; Mende M.; Pötschke P.; Petzold G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 2010, 48 (10), 2746–2754. 10.1016/j.carbon.2010.04.002. [DOI] [Google Scholar]
  163. Vaisman L.; Wagner H. D.; Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006, 128–130, 37–46. 10.1016/j.cis.2006.11.007. [DOI] [PubMed] [Google Scholar]
  164. Sonnier R.; Bokobza L.; Concha-Lozano N. Influence of multiwall carbon nanotube (MWCNT) dispersion on ignition of poly(dimethylsiloxane)–MWCNT composites. Polym. Adv. Technol. 2015, 26 (3), 277–286. 10.1002/pat.3454. [DOI] [Google Scholar]
  165. Yang H.; Ji S.; Chaturvedi I.; Xia H.; Wang T.; Chen G.; Pan L.; Wan C.; Qi D.; Ong Y.-S.; Chen X. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring. ACS Mater. Lett. 2020, 2 (5), 478–484. 10.1021/acsmaterialslett.0c00085. [DOI] [Google Scholar]
  166. Marmo A. C.; Lott L. R.; Pickett J. H.; Koller H. E.; Nitschke B. M.; Grunlan M. A. Amphiphilic silicones for the facile dispersion of carbon nanotubes and formation of soft skin electrodes. ACS Appl. Polym. Mater. 2023, 5 (1), 775–783. 10.1021/acsapm.2c01757. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from ACS Macro Letters are provided here courtesy of American Chemical Society

RESOURCES