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Abstract

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are highly
heritable neurodevelopmental conditions with a considerable overlap in their genetic etiology.

We dissected their shared and distinct genetic etiology by cross-disorder analyses of large
datasets. We identified seven loci shared by the disorders and five loci differentiating them. All
five differentiating loci showed opposite allelic directions in the two disorders and significant
associations with other traits, e.g., educational attainment, neuroticism and regional brain volume.
Integration with brain transcriptome data identified and prioritized several significantly associated
genes. The shared genomic fraction contributing to both disorders was strongly correlated with
other psychiatric phenotypes, while the differentiating portion correlated most strongly with
cognitive traits. Additional analyses revealed that individuals diagnosed with both ASD and
ADHD are double-loaded with genetic predisposition for both disorders and show distinctive
patterns of genetic association with other traits when compared to the ASD-only and ADHD-only
subgroups. The results provide novel insights into the biological foundation for developing just
one or both conditions and for driving the psychopathology discriminatively towards either ADHD
or ASD.

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are
among the most common neurodevelopmental disorders in children and often persist
throughout adulthood!. ADHD and ASD are both highly heritable (60-93%)%4 and the
mode of their inheritance is complex and polygenic. Despite high family-based heritability
estimates, genome-wide association studies (GWAS) have only recently identified common
variants robustly associated with each disorder>~’. Although differing from one another
with regard to core clinical symptoms, genetic studies have demonstrated significant overlap
between the two disorders, with a genetic correlation (r5) from common variation of 0.36°8
and substantial sharing of rare genetic risk variants such as large copy number variants® and
protein-truncating variants19. These findings are consistent with clinical and epidemiological
evidence showing overlap in phenotypic features!!, high comorbidity rates between ASD
and ADHD213 jn both females and males!4, and familial co-aggregation of the disorders
with increased risk of ADHD among relatives of ASD probands (odds ratios monozygotic
twins: 17.8; dizygotic twins: 4.3; full-siblings: 4.6; full cousins: 1.6)1°. Identification of the
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genetic components that are shared or distinct for the disorders may provide insights into the
underlying biology and potentially inform on sub-classification, course and treatment.

Here we utilize large collections of genotyped samples of ADHD and ASD from the
Psychiatric Genomics Consortium (PGC) and the Lundbeck Foundation Initiative for
Integrative Psychiatric Research (iPSYCH) to address two questions: (1) What specific
variants and genes are shared by, or differentiate, ASD and ADHD? (2) Are there distinct
genetic signatures in terms of polygenic burden for subgroups within these disorders such as
cases diagnosed with both disorders (comorbid cases) or with just one of them (ASD-only,
ADHD-only cases)?

Shared genetic liability to ADHD and ASD.

We performed a GWAS of diagnosed ADHD and/or ASD combined into a single phenotype
(‘combined GWAS”), totaling 34,462 cases and 41,201 controls on 8.9 million SNP allele
dosages imputed from 1000 Genomes phase 316. Using LD score regression (LDSC)7, we
found evidence for a strong polygenic signal with an intercept of 1.0134 (ratio = 0.0558)
and calculated the liability scale SNP-heritability to be 0.128 (for an assumed population
prevalence of 0.055). We identified 263 genome-wide significant SNPs in seven distinct loci
(Table 1, Fig. 1, and Supplementary Fig. 1). All these loci showed associations with both

of the disorders separately at P-values below 1 x 10~ except one, which is genome-wide
significant in ADHD and has a P-value of 0.009 in ASD. Overall, the findings corroborate
previous results818, but two loci have not been identified before as shared between ADHD
and ASD. The novel shared associations are located in a highly pleiotropic multigene locus
on chromosome 1 (rs7538463) and on chromosome 4 (rs227293) in the gene encoding
mannosidase beta (MANBA). Mutations in MANBA are associated with beta-mannosidosis,
a lysosomal storage disease that has a wide spectrum of neurological phenotypes, including
intellectual disability, hearing loss and speech impairment!®. More details on the seven loci
can be found in Table 1, and results from lookups in the open GWAS project database
(https://gwas.mrcieu.ac.uk/about/) and comparisons with previous cross-disorder studies are
available in the Supplementary Note, Supplementary Data 1 and 2, and as PheWAS plots in
Supplementary Fig. 2.

To identify and prioritize putative causal shared genes, we performed a transcriptome-
wide association study (TWAS), imputing the genetically regulated gene expression using
EpiXcan?C and expression data from the PsychENCODE Consortium?® for genes as well as
isoforms detected in 924 samples from the dorsolateral prefrontal cortex (DLPFC). Applying
a conservative significance threshold (P< 1.44 x 107%; corresponding to Bonferroni
correction of all 34,646 genes and isoforms tested), we identified five genes/isoforms
showing significant differential expression between the combined case group and controls,
and 177 genes/isoforms significant at a false discovery rate (FDR) < 0.05 (Fig. 1 and
Supplementary Data 4). One of the five Bonferroni significant transcripts, KRT8P46-201,
is located in the identified chromosome 4 GWAS locus in an intron of MANBA, which is
among the genes with an FDR < 0.05 (Supplementary Fig. 3a). The four other top findings
are the two genes MOCS2and CCDCY71 or their isoforms, which are not located in any
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of the identified GWAS loci and thus represent additional novel candidate genes for shared
ADHD and ASD risk.

Gene-based analysis using MAGMA v1.0822:23 |argely corroborated the results from the
GWAS and TWAS, highlighting, e.g., MANBA (Supplementary Fig. 4a and Supplementary
Data 5). Furthermore, two of the significant genes—sortilin related VPS10 domain
containing receptor 3 (SORCS?3) and dual specificity phosphatase 6 (DUSP6)—are located
in regions that were not identified in the GWAS, suggesting these as additional shared loci.

Differentiating genetic liability to ADHD and ASD.

To identify loci with divergent effects on ADHD and ASD, we performed an association
analysis comparing 11,964 ADHD-only cases with 9,315 ASD-only cases from the iPSYCH
cohort, excluding all 2,304 comorbid cases (‘ADHDvSASD GWAS’). Using LDSCY?,

we found an intercept of 0.9863 and a SNP-heritability of 0.4468 on the observed

scale, the latter indicating that a substantial part of the variance in the phenotypic
representation differentiating the two case groups can be explained by common variants (see
Supplementary Note for more details). Five genome-wide significant loci were identified,
three of which have not previously been identified in GWAS of either of the two disorders
separately (although one has been reported as an ADHD-ASD differentiating locus?4). All
loci have been reported in related disorders and, remarkably, all but one are associated

with cognitive abilities and/or neuroticism or neuroticism sub-items (Table 2, Fig. 1, and
Supplementary Data 2 and 7). The lead variants all show opposite directions of effects in the
two disorders.

Two of the five lead SNPs have previously been found associated with educational
attainment2®. For the first SNP (rs3791033 on chromosome 1; 2= 4.65 x 10723), the C
allele confers an increased risk for ASD and increased cognitive performance while the
ADHD risk allele (T) is associated with decreased performance. Similarly, for the second
SNP (rs9379833 on chromosome 6; = 2.26 x 1078), the A allele confers an increased
risk for ASD and increased cognitive performance while the ADHD risk allele (C) is
associated with decreased performance. Notably, this SNP (rs9379833) is located in the
large histone gene cluster HIST126 and has also been associated with regional brain volume,
specifically of the left globus pallidus?’ (P= 2.95 x 1078; the C allele confers an increased
risk for ADHD and a decreased volume while the ASD risk allele (A) is associated with
an increased volume). It is also of note that the lead SNP on chromosome 8 (rs7821914)

is associated with neuroticism?8 (P=9.46 x 10721). For this SNP, the effect allele (C)

in the neuroticism GWAS leads to an increased risk for ASD and a decreased risk for
ADHD. Two additional lead SNPs are in LD (/2 > 0.6) with SNPs that have previously
been identified in neuroticism or one of its subdimensions (rs147420422 and rs9379833;
see Table 2). Results from additional lookups in the open GWAS project database (https://
gwas.mrcieu.ac.uk/about/) are available in Supplementary Data 7 and as PheWAS plots in
Supplementary Fig. 6.

TWAS using EpiXcan identified 11 Bonferroni significant genes/isoforms and 96 significant
transcripts at FDR < 0.05 with different imputed expression in DLPFC between ADHD and
ASD cases (Fig. 1 and Supplementary Data 4). The HIST1H2BD-201 isoform located in the
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chromosome 6 (HIST1) GWAS locus showed the strongest association (P= 2.08 x 1079)
with higher expression in ADHD compared to ASD cases (Supplementary Fig. 3b). The
other genes/isoforms showed orders of magnitude less significant association, appointing
HIST1H2BD-201 as the top-ranking causal candidate in the locus. The remaining 10
Bonferroni significant genes/isoforms were located in the chromosome 8 GWAS locus or

in two loci on chromosome 3 (Supplementary Fig. 3c,d, respectively), where all except the
gene encoding the TRAF interacting protein ( 7RA/P) were also genome-wide significant in
gene-based analysis using MAGMA (Supplementary Fig. 4b and Supplementary Data 5).

Genetic correlations with other traits.

To examine the polygenic architecture of the identified shared and differentiating genetic
risk for the disorders, we investigated the genetic correlations with 258 traits from a
manually curated list of previously published GWAS and 597 traits from the UK Biobank,
making use of LD Hub?® and LDSC30, Among the 258 previously reported GWAS, 30
(combined GWAS) and 32 (ADHDvVSASD) traits showed significant correlations after
Bonferroni correction for multiple testing (Supplementary Data 6 and Supplementary Fig.
7). The strongest correlations for the liability differentiating ADHDvVSASD GWAS were
observed for cognitive traits such as years of schooling (75 = —0.669, Py = 3.68 x 10789)
and childhood 1Q (75 = —-0.609, Py = 2.78 x 10710, while the strongest correlations for the
combined GWAS were with traits such as depressive symptoms (rg = 0.506, Pyorr = 2.08 %
10719) and the PGC cross-disorder GWAS (7 = 0.433, Pyorr = 5.30 x 10729),

Tissue and cell-type enrichment analyses.

We next tested whether genetic associations of shared and differentiating liabilities were
enriched with respect to the transcriptomic profiles of human tissues. We found significant
enrichment for the shared liability in several brain tissues, most significantly for the basal
ganglia (Supplementary Fig. 8). Cell-type enrichment analyses revealed experiment-wide
significant association (across all data sets tested) of the red nucleus (Supplementary Fig.
9c). Associations that were significant within one of the three tested data sets individually,
but not overall, were observed for several cell types, including, e.g., dopaminergic and
GABAergic neurons. For the disorder-differentiating analysis (ADHDvsSASD), we observed
no significant association with tissues or specific cell-types after correction for multiple
testing (Supplementary Figs. 9 and 10). We also intersected our genetic associations

with a recent multi-omics single-cell epigenetic catalog of the human brain31. Here

both the combined and differentiating GWAS results showed significant enrichment for
several neuronal cell populations (Supplementary Fig. 11 and Supplementary Data 8),
including excitatory and inhibitory neurons. Interestingly, the only difference in terms of
significant associations between the combined and differentiating GWAS was seen for
oligodendrocytes (which were not significant in the combined GWAS but were significant
in the ADHDvsSASD GWAS). While aberrant myelination by oligodendrocytes resulting
in disruption of white matter development has previously been reported in both ASD and
ADHD?32:33  the degree of severity of this alteration might be a distinct pathophysiological
factor34,
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Polygenic characterization of case subgroups.

We used two complementary polygenic risk score (PRS) approaches to investigate
differences in polygenic load for ADHD, ASD and related phenotypes in the iPSYCH data
across the three phenotypic subgroups: ASD-only, ADHD-only and comorbid cases. The
multivariate PRS framework showed, as expected, a significant association of the ASD-only
subgroup with PRS for ASD (P= 6.89 x 10~26) and the ADHD-only subgroup with PRS
for ADHD (P=3.29 x 10723; Fig. 2). Both scores were trained with PGC-only GWAS
results®3°. Strikingly, the ASD-PRS load on comorbid ASD+ADHD cases was similar to
that on ASD-only cases (P=0.77), and likewise the ADHD-PRS load on the comorbid
subgroup was similar to that on ADHD-only cases (P = 0.44; Fig. 2), demonstrating that
the comorbid cases carry a load of both ADHD and ASD polygenic scores that are similar
to the load carried by the single-disorder cases of their respective disorder PRS. In other
words, comorbid cases are double-burdened with both ASD and ADHD PRS. In contrast,
the ASD-PRS load on ADHD-only cases was not different from controls (= 0.79) and the
ADHD-PRS was only slightly increased in ASD-only cases compared to controls (P= 3.26
x 1073; Fig. 2).

Results from our leave-one-out framework analysis (including only the iPSYCH data in
the training GWAS) showed similar results (Table 3). We note that, in this analysis, the
ASD-PRS load on ADHD-only cases as well as the ADHD-PRS load on ASD-only cases
were increased compared to controls. Furthermore, secondary analysis in the leave-one-out
framework suggested that ADHD cases with (7= 625) and without mild intellectual
disability (ID) (7= 11,339) did not differ in terms of PRS for either ADHD or ASD. On
the other hand, ASD cases with ID (n7=634) had lower PRSasp (OR =0.89 (0.81-0.97),
P=0.0072) compared to those without mild ID (7= 8,681) but did not differ in terms of
PRSADHD (Table 3).

To further dissect the genetic architecture across the ASD and ADHD subgroups, we
examined the relative burden of PRS for phenotypes and traits that have shown significant
genetic correlation with ADHD and ASD>6:36, While PRS for schizophrenia and depression
(and genetically related phenotypes) did not show substantially different loads across the
subgroups, other traits showed compelling differences (Fig. 2). For instance, years of
education, 1Q, age at first birth, tiredness, and smoking showed differences between ADHD-
only and ASD-only cases, with the comorbid cases at an intermediate level. An item-level
analysis of neuroticism also revealed specific patterns of associations across the subgroups
(Supplementary Fig. 12). On average, ADHD-only cases showed much stronger association
than ASD-only cases with items belonging to the depressed affect cluster (e.g., the MOOD
item) compared to the worry cluster. For comorbid cases, a distinct pattern was observed
with PRS loads either ranking between the ADHD- and ASD-only cases (e.g., for the
MOOD item) or even exceeding the two single-disorder groups (e.g., for the GU/LT item).

Summarizing, we observe a genetic architecture of comorbid cases that presents itself

in clear distinction from the ADHD and ASD single-disorder cases. Showing burden of
both ASD and ADHD genetic risk, the comorbid cases also carry polygenic load profiles
across other phenotypes that distinguishes them from their single-disorder cases, typically
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by carrying an intermediate load level but in some cases a load similar to just one of the
single-disorder groups.

Genetic correlation and heritability across case subgroups.

We recently reported an LDSC genetic correlation of 0.36 between ASD and ADHD

using the largest GWAS meta-analyses of the two disorders, including multiple cohorts

and comorbid cases®. Here we investigated the correlations across diagnostic subgroups of
the disorders in the iPSYCH sample using GCTA3’. For ASD and ADHD overall, we found
rg=0.497 (s.e. = 0.054, P=7.8 x 10719). Excluding the comorbid cases reduced the
correlation to 75 = 0.397 (s.e. = 0.056, P= 6.3 x 10712). After excluding cases with 1D, the
correlations between ASD and ADHD were even stronger: 7= 0.523 (s.e. =0.054, P=6.5
x 10721) and r5 = 0.425 (s.e. = 0.056, = 1.7 x 10713) with and without comorbid cases,
respectively (Supplementary Data 9 and Supplementary Fig. 13).

Correlations between ADHD and ICD-10 diagnostic subcategories of childhood autism
(F84.0), atypical autism (F84.1), Asperger’s syndrome (F84.5), and other/unspecified
pervasive developmental disorders (other PDDs, F84.8-9) were similar to those for the ASD
group overall, albeit with generally higher estimates for the groups with other PDDs and
Asperger’s syndrome (Supplementary Data 9 and Supplementary Fig. 14).

Genetic liability in comorbid cases.

Guided by our results from the previously described analyses, we also performed a GWAS
of the comorbid cases. Despite the small sample size (2,304 cases), we identified a genome-
wide significant locus on chromosome 6 (rs1321614, = 3.54 x 1079, OR = 0.8190, MAF

= 0.47 for the T allele). The lead SNP showed no association in the overall combined
(ADHD+ASD) GWAS (P=0.0261), the differentiating GWAS (P = 0.2883) or in GWASs of
the ADHD-only and ASD-only cases (P=0.7721 and P = 0.0086, respectively). The liability
scale SNP-heritability for the GWAS using GCTA was 0.0557 (s.e. = 0.0088). Please see
Supplementary Note for more information.

Discussion

This study dissects the genetic architecture for shared and differentiating genetic
underpinnings of ADHD and ASD as well as across case subgroups. At the single
variant level, we identified novel shared loci for the two disorders and five genome-wide
significant loci differentiating the disorders, four of which are novel. Integration with
DLPFC transcriptomic data identified and prioritized several possibly causal genes (see
Supplementary Note). At the polygenic level, we revealed compelling differences across
comorbid and single-disorder case groups.

The identified shared loci are generally highly pleiotropic and have previously been
identified in GWAS of related disorders or cross-disorder studies including ADHD and/or
ASD. However, considering only the eight major psychiatric disorders included in the most
recent PGC cross-disorder study®, three of the loci (rs4916723, rs2391769, and rs227293)
appear to be shared only between ADHD and ASD (Table 1 and Supplementary Data 2).
For the other SNPs, only one (rs325506) shows support for involvement in more than one
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additional disorder. This is consistent with evidence from structural equation modeling of
eight major psychiatric disorders, showing that ASD and ADHD cluster together in a group
of early-onset neurodevelopmental disorders along with Tourette syndrome8.

In the ADHDvSASD GWAS, we identified five genome-wide significant loci, all showing
opposite allelic directions in the separate GWAS of the two disorders, providing specific
genetic clues to understanding the biology that drives the pathophysiology towards
developing one or the other disorder. While one of the identified loci (rs3791033) supported
the single ADHD-ASD differentiating locus reported previously?4 (using CC-GWAS
analysis on available summary statistics), the four novel loci all showed supportive (but
not statistically significant) results in the CC-GWAS study, except the histone 1 locus at
the MHC region, which was not included in the CC-GWAS (Supplementary Data 2). The
yield of more significant loci in our study compared to the CC-GWAS could (in addition
to methodological differences) be because we were able to remove comorbid ADHD+ASD
cases, which were included in the GWAS results used in the CC-GWAS study, resulting in
relatively stronger analytical power in our study.

The top-ranking differentiating TWAS gene/isoform was HIST1H2BD-201, which was two
orders of magnitude more significant than the second-ranking (CAMKYV-210) and the only
Bonferroni significant transcript in the identified HIST1 GWAS locus. Deleterious de novo
mutations in several histone modifying or interacting genes38-40 as well as in core histone
genes3941 have been associated with autism and developmental delay with autistic features.
The haploinsufficiency resulting from these de novo mutations is consistent with our
TWAS result showing reduced expression of HISTIH2BD-201 in ASD (relative to ADHD).
Intriguingly, the ASD risk allele of the lead SNP in the locus is also associated with both
increased educational performance?® and increased volume of the left globus pallidus??,
while the opposite is the case for the ADHD risk allele. As part of the basal ganglia,

globus pallidus is involved in several functions relating to phenotypic domains affected in
ASD and/or ADHD such as cognition, social interactions, speech, repetitive behaviors and
tics*2. Taken together, our results suggest that the identified ADHD-ASD differentiating
locus on chromosome 6 has downstream effects involving differential expression of the
histone isoform HIST1H2BD-201 and volumetric changes of the left globus pallidus, which
may contribute—as one weak-acting factor among many—to driving the pathophysiology
towards either ASD or ADHD and impacting key phenotypic domains such as educational
performance, social interaction, and motor impairments.

Previous studies found ASD and ADHD to display opposite genetic correlations with
cognitive traits like educational attainment when assessing common variants genome-
wide>6:43 Corroborating these reports, we found that the ADHDvSASD GWAS showed

the strongest correlations for cognitive traits (Supplementary Data 6 and Supplementary Fig.
7). Moreover, two of the identified differentiating loci (on chromosome 1 and 6) have lead
SNPs that are genome-wide significant in educational attainment and show opposite allelic
effects with increasing and decreasing educational performance for the ASD and ADHD risk
alleles, respectively.
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We note that the chromosome 1 locus (at position 44 Mb) was identified, counterintuitively,
in both the shared and differentiating GWAS albeit with different lead SNPs (Tables 1 and
2). The locus covers a gene-rich 250-kb region of generally strong linkage disequilibrium
(LD) but it also harbors variants with limited LD to the main haploblock (Supplementary
Figs. 1a and 5d). The two lead SNPs are located 62 kb apart and show low pairwise LD
(2= 0.1687; Table 2), indicating that the two SNPs are largely independent markers for
association. This LD difference is also reflected in the different lists of other traits with
previously reported associations for the lead SNPs or their LD proxies (Tables 1 and 2).
Furthermore, this locus was the only locus showing significant heterogeneity across cohorts
in the recent ADHD GWASS, where the 23andMe sample provided no support for the
otherwise consistently supported locus and, also in contrast to the other cohorts, exhibited
limited genetic correlation with educational attainment.

Our analyses revealed enrichment of brain-expressed genes for the combined GWAS,
implicating particularly the basal ganglia and cerebellum. Both structures have been found
altered in both ASD#244 and ADHD*>-47, with evidence for reductions in basal ganglia
volume the most robustly observed finding in the neuroimaging literature for both ASD

and ADHD. The cell-type enrichment result implicating the red nucleus in midbrain is also
consistent with our knowledge of phenotypic sharing between ASD and ADHD, as it relates
to skilled movements and motor control in the limbs and jaw: both motor coordination and
speech problems are frequent in both ASD and ADHD#*849, The red nucleus is strongly
connected with many brain structures involved in ASD and ADHD, including the basal
ganglia and the cerebellum?®.

Dissecting the polygenic architecture using PRS approaches, we observed remarkable
differences across comorbid and single-disorder (ADHD-only and ASD-only) case groups.
The comorbid cases carry a double burden of ASD- and ADHD-PRS, whereas the single-
disorder cases were largely just (single-) burdened for the respective disorder. Thus,

cases diagnosed with both disorders have on average a similar level of genetic liability

to each disorder as the single-disorder cases, providing strong biological support for

the change in diagnostic guidelines from DSM-IV to DSM-5 allowing for diagnoses of
both disorders in the same person. This is further highlighted by the identification of

a genome-wide significant locus for comorbid cases (chromosome 6). It also supports
pharmacological treatment of comorbid ADHD in individuals with ASD. In a recent
meta-analysis, 25-32% of individuals with ASD also fulfill criteria for ADHD13, yet only
15-16% are treated with ADHD medications®152, despite strong evidence of beneficial
effects on the core symptoms of ADHD and potentially also reduced risk of injuries®3,
depression®*, suicidal behavior® and improved academic performance®®. Moreover, it
indicates that pharmacological treatment of symptoms like hyperactivity, inattention,
impulsivity, aggression and tics in cases diagnosed with either ADHD or ASD may be
guided by the individual symptomatology regardless of the given diagnosis.

We recently reported a significant genetic correlation of 7z = 0.36 between ASD and ADHD,
using LDSC and results from GWASs that included multiple cohorts and comorbid cases®.
This was a considerable increase from the previous estimate of r5=0.08 (s.e. = 0.10,
P=0.40), which was based on much smaller GWAS sample sizes without information
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on comorbid diagnoses®’. Here we analyzed exclusively the iPSYCH cohort, which is
relatively homogeneous and has information on all diagnoses given to each individual. We
found a higher correlation (rg = 0.497), which remained substantial when excluding the
comorbid cases (rg = 0.397), demonstrating that the genetic overlap between the disorders
is not driven by comorbid cases alone. While we cannot exclude that under-diagnosis of
comorbidity might exist, leading to an upwards bias of the correlation estimate between

the single-disorder cases, our result is corroborated by data from Swedish twin studies that
supports the distinction of ASD and ADHD, but also suggests considerable co-occurrence
of symptoms of both disorders in individuals only fulfilling diagnostic criteria for one of the
two disorders®8:59,

In addition, the correlations increased when excluding cases with ID, indicating that cases
with ID are more genetically heterogeneous in common variant risk between the two
disorders than cases without ID. A recent exome sequencing study of ASD and ADHD (also
in the iPSYCH cohort) showed that the disorders have substantial overlap in rare variant risk
and that cases with 1D carry a higher load of (ultra)rare damaging risk variants compared

to cases without ID10, Consistent with this, our PRS analyses found lower ASD-PRS in

the group of ASD cases with comorbid mild ID (1Q = 50-70) compared to those without
mild ID. Taken together, these observations are consistent with the notion that the genetics
differentiating the two disorders may be driven primarily by common variants (because

the rare variant risk load is similar for the two disorders in the data available so far) and
more extensively for cases with 1D than without ID (because the common variant genetic
correlation is lower for cases with ID). However, larger sample sizes for both GWAS and
sequencing studies are needed to clarify this.

In conclusion, we have disentangled the shared and differentiating genetic liability
underlying ASD and ADHD, identifying novel shared as well as disorder-specific risk
variants informing on the pathophysiology. In addition, we have revealed specific patterns of
polygenic architecture that are characteristic for comorbid cases compared to single-disorder
cases. The results advance understanding of the complex etiologic basis and relationship
between ASD and ADHD towards the long-term goals of better diagnosis and treatment of
these disorders.

Ethics and overview.

The study was approved by the Regional Scientific Ethics Committee in Denmark and the
Danish Data Protection Agency. We report results from different analyses all carried out in
large-scale samples from the Psychiatric Genomics Consortium (PGC) and the Lundbeck
initiative of integrative psychiatric research (iPSYCH). We used samples included in the
most recent GWAS of ASD® and ADHDS. For this manuscript, we will refer to individuals
in the study cohort (most importantly in iPSYCH) that at the time of inclusion only had

one of the two diagnoses registered (i.e., ADHD or ASD) as ADHD-only and ASD-only
cases, respectively. We refer to individuals that during their lifetime and up to the time of
inclusion had both an ADHD and ASD diagnosis registered as comorbid cases. Furthermore,
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we refer to these three groups of cases (i.e., ADHD-only, ASD-only, and comorbid) as ASD
and ADHD subgroups.

Sample description and additional quality control.

Details about study specific case and control selection criteria and how individuals were
drawn from the overall iPSYCH case-cohort sampleS9 can be found in the respective
publications®®. Here we focus on differences in selection criteria in the iPSYCH cohort
and additional quality control (QC) procedures.

The majority of inclusion and exclusion criteria for the original studies were also used in
this study. The only difference compared to the original studies was an additional exclusion
criterion that removed individuals with a moderate to severe mental retardation (ICD10:
F71-F79) from both the case and control cohorts. While this criterion was also used in the
original ADHD GWASS, it was not used in the original ASD GWAS®. The rationale for

this decision lies in the interpretability of our results, where we treated ADHD and ASD
consistently. We address the potential impact of this decision through different analyses (see
Table 3, Supplementary Fig. 14b, and Supplementary Data 9).

Wave-wise pre-imputation QC and imputation of the iPSYCH case-cohort sample were
taken from the original ADHD and ASD GWAS, respectively. Details about the respective
steps and filters can be found elsewhere>8, Since our analyses used a combined study
cohort with samples from both the original ADHD and ASD GWAS, we performed some
additional QC on the combined sample. Additional QC steps included the removal of related
individuals across the original ADHD and ASD GWAS and a new principal component
analysis (PCA) on the combined sample after exclusion of these related individuals.
Following the same procedures as in the original studies, pairs of subjects were identified
with pi-hat> 0.2 (using PLINK’s®1 identity-by-state analysis) and one subject of each pair
was excluded at random (with a preference for keeping cases). PCA was carried out using
smartPCA in the EIGENSOFT software package52:63 using the Ricopili pipeline4. The
original PGC datasets for ADHD and ASD did not include overlapping individuals and
therefore the original datasets and summary statistics were used. The final combined dataset
across all samples comprised 34,462 cases (i.e., individuals with an ADHD and/or ASD
diagnosis) and 41,201 controls. We only included samples of European ancestry from the
original ADHD and ASD GWAS. Among the cases in the iPSYCH cohort, 11,964 had

an ADHD-only, 9,315 had an ASD-only, and 2,304 individuals had a comorbid diagnosis,
respectively. Thus, the proportion of ADHD among ASD cases in the iPSYCH cohort was
19.8%, and the proportion of ASD among ADHD cases was 16.1%.

Genome-wide association analyses.

Like the original GWAS in ADHD and ASD, all processing and analyses for the individual
GWAS and meta-analyses (see below) used the Ricopili pipeline®4. More details on
individual modules and steps can be found elsewhere®6:64, We ran two main GWASs for
our analyses. The first aimed to identify shared genetic risk for ADHD and ASD (combined
GWAS) and the second aimed to identify differentiating genetic risk with an opposite
direction of effects for ADHD and ASD (ADHD vs. ASD GWAS). All analyses of the
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iPSYCH sample and meta-analyses with the PGC samples were conducted at the secured
national GenomeDK high-performance computing cluster in Denmark.

Combined GWAS.—We first ran an analysis in the combined dataset, i.e., on all 34,462
cases and 41,201 controls. The GWAS was conducted in each cohort (i.e. in the wave-

wise iPSYCH samples and the individual PGC cohorts) using logistic regression with the
imputed additive genotype dosages. The first 5 principal components (PCs) were included

as covariates to correct for population stratification (Supplementary Note), and variants

with imputation INFO score < 0.8 or minor allele frequency (MAF) < 0.01 were excluded.
The resulting summary statistic files were then meta-analyzed using an inverse-variance
weighted fixed effects model®>. Post-processing of the summary statistics files through the
Ricopili pipeline® created Manhattan plots, individual regional associations plots, and forest
plots. For a QQ-plot of the analysis, see Supplementary Fig. 14a.

ADHD vs. ASD GWAS.—To identify unique genetic risk loci or loci with opposite
direction of effects for ADHD and ASD, we ran a case-only analysis for the ADHD-only
(coded as 1, n=11,964) against ASD-only cases (coded as 2, 7= 9,315) in the iPSYCH
cohort. This approach is in line with our recent study that compared the genetic risk

to develop bipolar disorder and schizophreniab6. We excluded the comorbid cases from
this GWAS, and the GWAS was conducted wave-wise using logistic regression with

the imputed additive genotype dosages. The first 5 PCs were included as covariates to
correct for population stratification, and variants with imputation INFO score < 0.8 or
MAF < 0.01 were excluded. The resulting summary statistic files were then meta-analyzed
using an inverse-variance weighted fixed effects model®® and visualization of results was
achieved through the Ricopili pipeline® (see above). For a QQ-plot of the analysis, see
Supplementary Fig. 14b.

Identification of previously reported associations for top findings.

Different resources were used to identify previously reported associations of our top findings
with other phenotypes and traits within and outside of psychiatry. We assessed associations
reported in the open GWAS project database (https://gwas.mrcieu.ac.uk/about/, accessed
14 October 2020; see Supplementary Data 1 and 7 for results) and used the GWAS
ATLAS website®” to visualize PheWAS analyses (see Supplementary Figs. 2 and 6). We
also used results from the GWAS Catalog®8 (see Table 2). Finally, we also compared our
results with previous cross-disorder studies in the field. This included the recent analyses
of the cross-disorder group in the PGC8, a study that used a new approach to study case-
case associations in psychiatric disorders24, and a study that used conditional analyses to
highlight associations that might be specific for individual psychiatric disorders®®. Results
are available in the Supplementary Note and Supplementary Data 2.

Transcriptomic imputation model construction and transcriptome-wide association study

(TWAS).

Transcriptomic imputation models were constructed as previously described2%° for
dorso-lateral prefrontal cortex (DLPFC) transcript levels’C. The genetic dataset of the
PsychENCODE cohort was uniformly processed for QC steps before genotype imputation.
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We restricted our analysis to samples of European ancestry as previously described?0,
Genotypes were imputed using the University of Michigan server’! with the Haplotype
Reference Consortium (HRC) reference panel’2. Gene expression information (both at the
level of gene and transcript) was derived from RNA-seq counts, which are adjusted for
known and hidden confounds, followed by quantile normalization’®. For the construction
of the transcriptomic imputation models, we used EpiXcan??, an elastic net based method,
which weighs SNPs based on available epigenetic annotation information’3. EpiXcan was
recently shown to increase power to identify genes under a causality model when compared
to TWAS approaches that do not integrate epigenetic information’4. We used this model
(924 samples from DLPFC) due to power considerations2?; in comparison, brain gene
expression imputation models based on GTEx V8'® are trained in 205 or fewer samples.
Using only samples from DLPFC, we acknowledge that ADHD and ASD are both also
associated with other brain regions and would like to highlight this as a potential limitation
of our study. We performed the transcript-trait association analysis for the traits in this study
as previously described20. Briefly, we applied the S-PrediXcan method?? to integrate the
GWAS summary statistics and the transcriptomic imputation models constructed above to
obtain association results at both the level of genes and transcripts.

Cell-type enrichment analysis.

A major portion of cell type specific enrichment is attributed to distal regulatory elements,
as local regulatory events remain highly consistent across various tissues and cell types’S.
Therefore, we examined overlap of common genetic variants of investigated traits (see
Supplementary Fig. 14 and Supplementary Data 8) and open chromatin from scATAC-

seq study (single-cell assay for transposase accessible chromatin)3! using the LD-score
partitioned heritability approach’’. All regions of open chromatin were extended by 500 bp
in either direction. The broad MHC-region (hg19 chr6:25-35Mb) was excluded due to its
extensive and complex LD structure, but otherwise default parameters were used for the
algorithm.

Additional functional characterization and annotation of main findings.

We used different approaches combining in-house scripts and data with those available

via the FUMA v1.3.6a23 website (http://fuma.ctglab.nl) for downstream functional
characterization and annotation of our findings. For FUMA, we uploaded our summary
statistics from the individual analyses. We also used FUMA to perform tissue expression
analyses on data available through their website. Finally, we used FUMA to perform
cell-type specificity analyses’® based on our summary statistics. For all above-mentioned
analyses, default settings were applied. More detailed information about the individual
third-party datasets (available through FUMA\) included in the analyses as well as individual
aspects of the FUMA analyses can be found in the Supplementary Note. Supplementary
Data 10 contains results from standard FUMA-based analyses, such as eQTL and chromatin
interaction mapping.

Gene-based analysis.

We also used FUMA v1.3.6a23 to perform gene-based analysis. Genome-wide significance
was assessed through Bonferroni correction for the number of genes tested. More detailed
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information about the individual third-party datasets (available through FUMA\) included in
the analyses as well as individual aspects of the gene-based analyses can be found in the
Supplementary Note.

Our results in context of other findings.

Since the publication of the original ADHD and ASD results, a few studies have investigated
the shared and unique risk architecture of these disorders. We compared our results with

the findings of the Cross Disorder Working Group of the PGC8 and a recent analysis based
on structural equation modelling of 11 major psychiatric disorders’®. We also compared our
results with recent analyses that aimed at identifying disorder-specific SNPs for psychiatric
disorders?4:69,

Polygenic risk score (PRS) analyses.

To examine potential polygenic heterogeneity across ADHD and ASD subtypes, we
investigated how PRS trained on different phenotypes were distributed across ADHD-only,
ASD-only and comorbid subgroups in the iPSYCH data through two complementary
analysis frameworks: multivariate PRS and leave-one-out PRS. These two approaches
have different strengths and limitations, allowing for robust interrogation of differences in
ADHD and ASD subgroups in terms of polygenic burden for ADHD and ASD, as well as
genetically related phenotypes.

Multivariate PRS analyses.—To examine the relative burden of PRS for phenotypes and
traits that have shown significant genetic correlation with ADHD and ASD in the past®:6:36
across ADHD and ASD subgroups in the iPSYCH data, we ran a multivariate regression of
the scores on these subgroups, adjusting for PCs and batch (for details, see Grove et al.?).

In brief, this is a regression of multiple standardized PRSs variables and can superficially

be viewed as running a linear regression for each score on the ADHD and ASD subgroups
simultaneously. The regression coefficients can be interpreted as the mean value of the

PRS relative to the value in controls. The framework allows us to compare the average

PRS across subgroups for scores from several phenotypes while accounting for the inherent
correlation between scores and adjusting for necessary covariates. This enables testing a
whole array of hypotheses comparing both between subgroups and between PRSs. We can
compare groups that are too small for GWAS and gauge genetic correlation with groups that
are too small for LDSC, as is the case with the comorbid ASD-ADHD group. Polygenic
scores were generated by clumping and thresholding employing standard Ricopili settings as
explained® and using summary statistics from the GWASs>:35.80-89,

Leave-one-out PRS analyses.—As a complementary approach, a leave-one-wave-out
approach within the iPSYCH data was used to maximize power and maintain independent
target and discovery samples for PRS analyses. Meta-analyses were run in METAL (using
inverse-variance weighted fixed effects models with the STDERR scheme), including the
per-wave GWAS summary results from all but one wave of data, for each combination of
waves. Separate meta-analyses were run for GWAS of ADHD-only (excluding comorbid
ASD or severe ID, defined as 1Q < 50) cases vs. controls and ASD-only (excluding
comorbid ADHD or severe ID) cases vs. controls, using independent (split) controls. For
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each set of discovery results, LD-clumping was run in PLINK v.1.9% (with the parameters --
clump-kb 500 --clump-r2 0.3) to obtain a relatively independent set of SNPs, while retaining
the most significant SNP in each LD block. The SNP selection P-value threshold used

was P< 0.5. Asymmetric/ambiguous SNPs (AT, TA, CG, GC), indels, multi-allelic and
duplicate position SNPs were excluded. SNPs with MAF < 0.01, INFO < 0.8 or present in
less than half of the sample were filtered out. PRS for ADHD and ASD were calculated

by scoring the number of effect alleles weighted by the log(odds ratio [OR]) across the set
of independent clumped, meta-analyzed SNPs in PLINK. PRS were derived in best guess
imputed data after filtering out SNPs with MAF < 0.05 and INFO < 0.8. The PRS were
standardized using z-score transformations; ORs can be interpreted as the increase in risk of
the outcome, per standard deviation in PRS. Logistic regression analyses including 5 PCs
were run to test for association of PRS with each of the outcomes within each wave, as
follows: (a) ADHD-only cases vs. controls; (b) ASD-only cases vs. controls; (¢) comorbid
cases vs. controls; (d) ADHD-only cases vs. ASD-only cases; () ADHD-only cases vs.
comorbid cases, and; (f) ASD-only cases vs. comorbid cases. Cases were coded as 1 and
controls as 0, except that comorbid cases were coded as 1 in case-case comparisons and in
analysis (d), the ASD-only cases were coded as 1. Overall meta-analyses of these per-wave
analyses were performed in R using the ‘metafor’ package. As secondary tests, we stratified
the ADHD-only and ASD-only cases by presence of mild ID (defined as 1Q between 50—
70). We also examined differences across several ASD hierarchical subtypes (childhood
autism, atypical autism, Asperger’s, and pervasive developmental disorders mixed; see
Grove et al.5 and Supplementary Data 9). Several sensitivity tests were also run (including
sex as a covariate, excluding cases and controls with mild ID).

Genetic correlations (LD Hub).

The genetic correlations of our different datasets with other phenotypes were evaluated using
LD Score regression (LDSC)30 and the LD Hub?® website (http://Idsc.broadinstitute.org/
Idhub/). In brief, we re-reran analyses of the original GWAS of ADHD and ASD®8 in the
European-only datasets since new phenotypes have been added to LD Hub after publication
of the original analyses. We also uploaded summary statistics for the two analyses described
above, i.e., the combined GWAS and the ADHD vs. ASD GWAS, to assess correlation with
the identified shared and differentiating genetic liability, respectively. We used all available
phenotypes in LD Hub?? but performed analyses for the UKBB traits (7= 597) and the
remaining individual phenotypes (7= 257) separately. For ADHD® and ASDS, the most
recent summary statistics replaced corresponding summary statistics in LD Hub as these had
not been included at the date of analysis. The same was true for the summary statistics of
major depressive disorder8® and bipolar disorder®l. Levels of experiment-wide significance
(Bonferroni correction for number of tests applied) were also established separately within
the two groups, i.e., in the UKBB traits (P < 8.38 x 107°) and the remaining individual
phenotypes (P < 0.00019), respectively.

GCTA-GREML analyses across subgroups.

The additive variance explained by our GWAS dataset (SNP-based heritability; SNP-/7) was
estimated in the iPSYCH sample using the GREML approach of GCTA37 for ADHD versus
ASD and for ADHD versus each of the ASD sub-phenotypes (see below). The genetic
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relationship matrix (GRM) between all pairwise combinations of individuals was estimated
using all case-control samples. The strict best-guess-genotypes (i.e., SNPs with INFO > 0.8,
missing rate < 0.01 and MAF > 0.05, INDELSs removed) were used for GRM estimation.
GCTA-GREML accounts for linkage disequilibrium (LD)%2, and the GRM estimation was
performed on a non-LD-pruned dataset. Estimation of the phenotypic variance explained by
the SNPs was performed for each of the sub-phenotypes listed in Supplementary Data 9,
with PCs 1-20 included as continuous covariates and wave (1-23) as categorical dummy
variables. ADHD prevalence of 0.05 and ASD prevalence of 0.01 was assumed to estimate
the variance explained on the liability scale. Prevalence was estimated for hierarchical ASD
phenotypes based on the estimate for the overall ASD phenotype and the proportion of
each hierarchical phenotype over all ASD cases observed in our sample. Genetic covariance
between pairs of traits (Supplementary Data 9) was estimated using the bivariate approach
implemented in GCTA, by randomly splitting controls into two groups, one for each trait,

in proportions corresponding to the proportion of the cases for each of the two traits in the
total sample. PCs 1-20 and dummy variables for wave 1-23 were included as covariates in
the bivariate analyses. Two-tailed P-values were obtained for g point estimates based on the
standard error estimated by GCTA using the approach by Altman and Bland®3.

GCTA-GREML analyses were conducted for ADHD versus ASD main diagnosis
(Supplementary Fig. 5a), by (1) excluding individuals with both phenotypes (comorbid)
and (2) by randomly splitting comorbid cases into either ADHD or ASD. GCTA analyses
were, in addition, conducted for ADHD versus four ASD sub-phenotypes, by (1) excluding
individuals with both phenotypes (comorbid) and (2) by randomly splitting comorbid
cases into either the ADHD or ASD sub-phenotype. These analyses were conducted both
including and excluding individuals with intellectual disability. See Supplementary Data 9
and Supplementary Fig. 5 for an overview of comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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477467. Note that some datasets have been indirectly accessed at the respective analytical
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(e.g., for FUMA https://fuma.ctglab.nl/links and https://fuma.ctglab.nl/tutorial#datasets) for
availability of datasets used in the respective follow-up analyses / lookups (e.g., GSE76381).
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Figure 1|. Manhattan plotsfor GWAS and TWAS results.
a,b, Results for GWAS (top panels) and TWAS for DLPFC transcripts (bottom panels)

for combined (a) and ADHD vs. ASD (b) analyses. In the top panel, blue line in the
Manhattan plot indicates a P-value of 1 x 1075, and red line a P-value of 5 x 1078 (genome-
wide significance). Each dot represents a tested SNP. In the bottom panel, genes are
represented by both imputed gene expression and isoform expression (features, represented
by the dots); two-tailed P-values are derived from the z-scores (Wald statistic) of the gene-
trait association. Red line indicates Bonferroni-corrected genome-wide significance within
analyses (combined or ADHD vs. ASD; P< 1.44 x 107%; corresponding to Bonferroni
correction of all the 34,646 features). We implement an imputation R2 filter (pred_perf_r2)
of 0.01 in this study, which means that at least 10% of the variance in expression of each
gene can be explained by cis-heritability. Please also refer to the results in Supplementary
Data 4.
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Figure 2 |. Comparison of PRS profiles across ADHD/ASD subtypesfor 15 traits/phenotypes that
have shown significant genetic correlation with ADHD and ASD in the past.

The bars display regression coefficients from a multivariate multivariable regression of the
15 normalized polygenic scores on ASD-ADHD comorbidity classes (n7=23,583) and
controls as reference (7= 22,122, not shown). Green represents ASD-only cases (7=

9,315), orange depicts comorbid samples (7= 2,304), and purple for ADHD-only cases (7
=11,964). Error bars are 95% confidence intervals centered on the point estimate. ADHD,
attention-deficit/hyperactivity disorder (PMID 20732625); ASD, autism spectrum disorder
(PMID 30804558 without the iPSYCH sample); MDD, major depressive disorder (PMID
29700475 without DK or 23andMe); SWB, subjective well-being (PMID 27089181); DS,
depressive symptoms (PMID 27089181); College, college completion (PMID 27046643);
Edu, educational attainment (PMID 30038396); CHIC, childhood 1Q (PMID 23358156); 1Q,
1Q (PMID 29942086); SCZ, schizophrenia (PGC3 without DK); Chrono, chronotype (PMID
30696823); Tired, self-reported tiredness (PMID 28194004); SMKos, smoking initiation
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(PMID 30643251); SMKev, ever smoker (PMID 30643258); AgelstB, age of first birth
(PMID 20418890).
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