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Abstract

Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are 

associated with systemic inflammation. Recent studies have reported stress-induced alterations 

in hematopoiesis that result in monocytosis, neutrophilia and lymphocytopenia and, consequently, 

upregulation of pro-inflammatory processes in immunologically-relevant peripheral tissues. There 

is now evidence that this peripheral inflammation contributes to the development of psychiatric 

symptoms, as well as to common co-morbidities of psychiatric disorders, such as metabolic 

syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and 

the neuronal populations within them, that respond to stress and transmit signals to peripheral 

tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological 

function. We comprehensively summarize studies that have employed retrograde tracing to 

define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. 

Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation, or 

intracerebroventricular administration of peptide hormones, to control somatic immune responses. 

Collectively, this growing body of literature illustrates potential mechanisms through which stress 

signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and 

co-morbid pathophysiology.

Introduction

In the 17th century, Descartes proposed the theory of interactionism — a philosophical belief 

positing that the mind and body were separate and distinct entities that could influence each 

other. Contemporary neuroscientists now have a growing understanding that psychological 

states can indeed impact physiological processes in the periphery, such as metabolism, host 

defense and cardiovascular function1. In turn, somatic states are sensed by the CNS to shape 
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and guide behaviour2. Underlying many of these processes are cells of the immune system, 

which have diverse inflammatory and regulatory roles and are embedded in all tissues 

throughout the body. The emerging field of neuroimmunology investigates how neurons, 

leukocytes and their signaling molecules interact in homeostatic and pathological situations. 

While central control of autonomic functions, such as respiration and digestion, has been 

extensively studied, the specific neuronal populations involved in top-down brain-to-body 

circuits regulating systemic immune responses are less well understood.

Here, we review the current literature to discuss how a negative affective state brought upon 

by psychological stress can control peripheral immunity. Specifically, we highlight stress-

responsive brain regions that innervate immunologically-relevant tissues, such as the bone 

marrow, spleen, gastrointestinal tract, adipose tissue and liver, largely through the autonomic 

nervous system and hypothalamic–pituitary–adrenal (HPA) axis. In addition, we address 

how immune cells in these tissues respond to stress and how these responses contribute to 

physiological and behavioural changes associated with stress-relevant psychiatric disorders, 

such as anxiety and depressive disorders. These studies reveal a feedback loop between 

the nervous and immune systems that becomes hijacked during chronic stress to propagate 

psychiatric illness and inflammatory co-morbidities.

Linking chronic stress and inflammation

According to the latest estimate from the Global Burden of Disease Study, anxiety and 

depressive disorders each affect approximately 300 million people worldwide3. These 

highly prevalent disorders represent some of the most debilitating conditions, accounting 

for 60% of the over 125 million disability-adjusted life years (DALYs) resulting from 

mental disorders3. It is becoming increasingly recognized that individuals with stress-related 

disorders, such as major depressive disorder (MDD), exhibit signs of chronic low-grade 

systemic inflammation. These include elevated pro-inflammatory cytokines in serum, 

dysregulated myelopoiesis and lymphopoiesis, and disruption of body barriers including 

the gut epithelium and blood-brain barrier (BBB)4–8.

Unsurprisingly, people with MDD display high rates of co-morbidity with immune and 

inflammatory conditions, such as rheumatoid arthritis, cardiovascular disease, metabolic 

syndrome and inflammatory bowel disease (IBD)9–12. A pivotal study in 1987 reported 

that a subpopulation of people with viral hepatitis treated with interferon (IFN) α — a 

pro-inflammatory anti-viral cytokine13 — developed depression14, demonstrating that a 

pro-inflammatory molecule in the periphery could directly influence mood. Consistent with 

this finding, individuals with prior hospitalizations for infections or autoimmune diseases 

display greater odds of subsequently developing depression, with multiple infections 

having additive effects15. It is important to note, however, that lifestyle factors (such as 

pain arising from rheumatoid arthritis or social isolation during SARS-CoV-2 infection) 

can contribute to or exacerbate depressive symptoms16,17. Perpetuating this cycle, there 

is evidence that depression compromises the immune system and heightens the risk 

of infection18,19. However, the cellular and molecular mechanisms underlying this bi-

directional relationship between the brain and body that regulates the pathogenesis of both 

psychiatric and inflammatory conditions requires further interrogation. Ongoing questions 

Chan et al. Page 2

Nat Rev Neurosci. Author manuscript; available in PMC 2024 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include whether psychological stress can directly influence systemic inflammation, how 

the brain communicates with peripheral tissues (including the immune system), what 

tissue-specific immune responses are evoked by stress and how peripheral inflammation 

or immune dysregulation is detected by the CNS to elicit behavioural changes.

To address the first of these questions, numerous studies have measured circulating 

cytokine concentrations in individuals with MDD or anxiety, diagnosed using criteria set 

by the Diagnostic and Statistical Manual of Mental Disorders (DSM)20. Circulating pro-

inflammatory cytokines, including interleukin-1α (IL1A), IL1B, IL2, IL6, IL8, IL12, IFNγ 
(also known as IFNG), and tumour necrosis factor α (TNF), as well as chemokines, such 

as C-C motif chemokine 2 (CCL2), CCL3, CCL11, C-X-C motif chemokine 4 (CXCL4), 

CXCL7 and CXCL8, are reportedly increased in individuals with MDD compared to control 

subjects21–25. These cytokine and chemokine concentrations are often sharply increased 

at the time that the individual is exposed to a stressor, then diminish with time from 

the precipitating stressful event(s). For example, plasma IL6 levels increase following 

the Trier social stress test and this increase is greater in subjects with MDD than in 

healthy control subjects26. Interestingly, serum cytokine profiles in people with MDD show 

considerable overlap with those seen in people with common co-morbid inflammatory 

disorders, including IBD, metabolic syndrome and coronary artery disease, although often 

the concentrations are lower in magnitude (Table 1).

While these findings support an association between MDD and anxiety with peripheral 

inflammation, analyses of human populations are largely correlative and cannot conclusively 

define causal directionality. Therefore, animal models of stress, including chronic variable 

stress (CVS) and chronic social defeat stress (CSDS), which recapitulate biological and 

behavioural phenotypes associated with anxiety and depression, are invaluable tools to 

uncover how the stressed brain communicates with the peripheral immune system (Box 

1). Similar to people with MDD, a subset of rodents exposed to CVS or CSDS also have 

higher levels of pro-inflammatory cytokines and chemokines, such as IL1A, IL1B, IL6, 

IL12, TNF, CCL2, and CCL5, in the bloodstream compared to unstressed control mice 

and stress-resilient mice (mice that do not develop social avoidance behaviour or deficits 

in reward-related behaviours despite being exposed to similar levels of stress)25,27–30. 

This suggests that peripheral inflammation is a direct consequence of psychosocial stress 

in a subset of vulnerable mice. Moreover, animals that are exposed to chronic stress 

are predisposed to the development of inflammatory conditions, such as experimental 

autoimmune encephalitis, colitis, atherosclerosis and diabetes31–34. Thus, the experience 

of psychological stress — independent from any prior or concurrent immune challenge — 

exerts whole-body immunomodulatory activity, provoking inflammation and vulnerability to 

inflammatory disease. Using these animal models of stress, several studies have begun to 

unravel how peripheral immunity could be centrally regulated.

Brain-to-bone marrow neurocircuits

One possible way that psychological states may be linked to somatic symptoms, such 

as inflammation, is through the direct innervation of peripheral tissues by the CNS (via 

the peripheral nerves). Early work identified autonomic innervation of immune organs, 
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including the bone marrow, which contains haematopoietic stem cells that give rise 

to all blood cells including monocytes, neutrophils, and lymphocytes, thereby laying 

the foundation for future investigates of brain-to-body communication35. Polysynaptic 

retrograde viral tracing from immune-relevant organs in animals has become an important 

tool for deciphering these anatomical pathways in greater detail. Most commonly, 

pseudorabies viruses (PRVs) expressing reporter genes have been used for this purpose, 

as they exhibit rapid trans-synaptic propagation (crossing approximately one synapse every 

24 hours after infection)36. Employing this strategy, the authors of one study injected the 

PRV Bartha strain (which only undergoes retrograde synaptic transmission) expressing the 

gene encoding green fluorescent protein (GFP) into the femoral bone marrow of male Wistar 

rats and then collected brain and spinal cord tissue to identify regions that innervate the bone 

marrow37. They found GFP in sympathetic chain ganglia at the lumbar level of the spine and 

in the intermediolateral cell column of the thoracic spinal cord, as well as in the ventrolateral 

medulla, four days after infection37. By five days after infection, PRV was detected in 

all regions of the spinal cord examined, along with the medulla, including the nucleus of 

the solitary tract (NTS), gigantocellular reticular nucleus (Gi), lateral paragigantocellular 

nucleus (LPGi), raphe pallidus nucleus (RPa), as well as in the ventral tegmental area 

(VTA), periaqueductal grey (PAG), locus coeruleus (LC), paraventricular nucleus of the 

hypothalamus (PVH), and lateral nucleus of the hypothalamus (LH)37. Six days after 

PRV infection, the virus had spread to regions including the bed nucleus of the stria 

terminalis (BNST), arcuate nucleus of the hypothalamus (ARH), amygdala, hippocampus, 

insular cortex, septum and motor cortex37. Of note, similar CNS regions were identified 

using PRV tracing from bone marrow in mice38, suggesting that these neurocircuits are 

conserved across species. Regions detected by retrograde tracing from the bone marrow are 

summarized in Fig. 1.

Notably, several of these bone marrow-innervating brain regions have been implicated 

in stress responses, reward processing and the pathogenesis of depression and anxiety 

disorders. For example, dopaminergic projections from the VTA to the nucleus accumbens 

(NAc), prefrontal cortex (PFC), amygdala and hippocampus that regulate responses to 

rewarding or aversive stimuli are reportedly dysregulated in people with MDD as well 

as in rodent models of chronic stress39–42. Moreover, stress activates neurons in the lateral 

septum to blunt social reward in susceptible mice43, whereas it activates LC neurons in 

resilient mice to promote resilience to social avoidance behaviour44–46. Similarly, regions 

of the hypothalamus, including the PVH, LH and ARH, are activated by chronic stress 

in rodents47–51, with the PVH being a key component of the HPA axis that can also 

coordinate stress responses through neuroendocrine mechanisms52. Other stress-sensitive 

brain regions that project to the bone marrow, such as the BNST and central amygdala 

(CeA), also integrate emotional signals and activate the HPA axis to promote anxiety or fear 

responses53–55. However, whether these brain regions can affect immunological function in 

the bone marrow remains a topic for future exploration.

MDD in humans and chronic stress in rodents are associated with monocytosis, neutrophilia 

and lymphocytopenia, which can be attributed to altered proliferation of hematopoietic stem 

cell (HSC) subpopulations or mobilization of leukocytes from the bone marrow33,56–58. 

Specifically, mice exposed to either CVS or CSDS exhibit an expansion of myeloid 
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progenitor cells, along with a downregulation of lymphoid progenitors33,59. It is well 

established that bone marrow receives dense sympathetic innervation, which contributes 

to the mobilization of leukocytes into circulation during stress or under homeostatic 

conditions60,61. Mechanistically, it has been shown that signaling by noradrenaline released 

by these sympathetic fibres within the bone marrow niche suppresses expression of 

CXCL1233, which normally inhibits haematopoiesis and retains neutrophils and monocytes 

within the bone marrow62–64. Furthermore, it has been reported that repeated social defeat 

decreases CXCL12 expression in the bone marrow, thereby increasing monocyte release 

from the bone marrow, in a mechanism blocked by adrenalectomy or by treatment with 

metyrapone, a corticosterone synthesis inhibitor65. As neurons in the PVH and LC project 

to sympathetic centres in the brain stem and spinal cord, it is possible that elevated 

sympathetic tone arising from the activation of these brain regions during chronic stress 

drives these HSC and leukocyte dynamics in the bone marrow66–68. To determine if 

stress-regulated leukocyte mobilization was centrally regulated, one recent study used 

chemogenetics to regulate the activity of specific neuronal populations throughout various 

brain regions and then assessed circulating immune cell numbers69. The authors found 

that stimulating corticotropin-releasing hormone-expressing (CRH+) neurons in the PVH, 

which increases plasma corticosterone concentrations, leads to the retention of T cells, B 

cells and monocytes in the bone marrow, thereby reducing their numbers in circulation; 

conversely ablating CRH expression in the PVH prevented the decrease in T cells, B cells, 

and monocytes in the blood following acute restraint stress, as did inhibiting CXCR4, 

the receptor for CXCL1269. Further, this effect was found to be HPA axis-dependent, as 

adrenalectomy prevented these changes69. Although the effects of PVH neuron stimulation 

on monocyte retention by the bone marrow may seem to contradict those expected from 

studies of chronic stress, it is likely that these differences may arise from differences in 

monocyte mobilization dynamics during acute stress or HPA axis activation, compared to 

chronic stress70. Interestingly, acute restraint stress was also shown to induce neutrophilia 

and this was found to be regulated by different brain regions than those regulating monocyte 

and lymphocyte mobilization. Stimulation of the motor cortex or medulla using optogenetics 

led to skeletal muscle expression of CXCL1, a chemokine for neutrophils71, while 

ablating or inhibiting these regions ameliorated the restraint stress-induced neutrophilia69. 

Additionally, chemogenetic activation of dopaminergic neurons in the VTA, which encode 

reward behaviour, increased circulating B cell numbers72. These effects were found to be 

mediated in part by the sympathetic nervous system, as 6-hydroxydopamine (6-OHDA) 

treatment to ablate sympathetic neurons in the periphery prevented the peripheral immune 

responses72. It is important to note that while chemogenetic and optogenetic tools have 

been impactful in uncovering CNS regulation of peripheral immunity, they do not perfectly 

emulate physiological neuronal activation during stress or the complex signaling that arises 

from multiple distinct populations of neurons. Nevertheless, these studies demonstrate the 

capability of brain activity to regulate leukocyte production, retention and egress from the 

bone marrow under stressful conditions via the HPA axis, autonomic nervous system and 

actions of peripheral chemokines (Fig. 2). Additional studies are needed to further elucidate 

the upstream circuits involved in these processes, as well as to disentangle how myelopoiesis 

and monocytosis are regulated by the CNS.
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There is a growing body of literature implicating monocytosis, neutrophilia and 

dysregulation of hematopoiesis in the manifestation of depression or anxiety-related 

behaviours following stress in rodents, thus providing a possible link between chronic 

stress and mood disorders. When HSCs from the bone marrow of stress-susceptible 

mice are transplanted into naïve mice, for example, the recipient mice become socially 

averse following a subthreshold social defeat that normally does not confer depressive-like 

behaviour25. This altered behaviour is hypothesized to result from increased recruitment 

of inflammatory leukocytes to reward centres in the brain (such as the NAc) in stressed 

individuals or animals and from the greater capacity of their to produce pro-inflammatory 

cytokines, such as IL6 and TNF. Consequently, these cytokines can directly induce 

depressive-like behaviours (including social avoidance, reduced sucrose preference and 

immobility in the forced swim test)25,73. Mechanistically, social defeat stress upregulates 

inflammatory TNF and/or nuclear factor-κB (NFКB) signaling pathways in endothelial 

cells and diminishes expression of the tight junction protein claudin-5 (CLDN5)7,74. 

This allows pro-inflammatory leukocytes, or their secreted factors (such as IL6 or 

matrix metalloproteinase-8), to enter the brain parenchyma where they impact neuronal 

excitability7,75,76 (Fig. 3). For further details about the connections between peripheral 

immunity and depression, including mechanisms affecting leukocyte migration, BBB 

permeability, neurogenesis and synaptic transmission we refer the reader to REF6.

Brain-to-spleen and -gut neurocircuits

Another major lymphoid organ responsible for chronic stress-evoked monocytosis is the 

spleen and many studies have recognized its involvement in inflammatory responses 

to psychological stress. Chronic social stress in mice leads to splenomegaly, attributed 

to granulocyte accumulation and ectopic (or ‘extramedullary’) myelopoiesis, which 

consequently elevates circulating monocyte levels59,77. In addition, the spleen is a major 

site of the germinal centre reaction, in which antigen-specific antibody-producing plasma 

cells undergo clonal expansion78. Recently, the brain–spleen axis has gained attention for its 

role as a direct neural pathway through which cognition and emotion can control peripheral 

immunity during stress79. To identify the brain regions that innervate the spleen, several 

groups have injected PRVs into the spleens of rats and mice80,81. In these experiments, 

PRV was detected in the thoracic spinal nucleus two days after infection and then, after 

three days, in stress-related brain and brain stem regions — including the PVH, LH, NTS 

and the dorsal motor nucleus of the vagus (DMV)80,81. By four days post-infection, PRV 

was found in the CeA, BNST, LC, lateral septum, insular cortex, motor cortex, ARH and 

the dorsomedial nucleus of the hypothalamus (DMH)80,81. These data indicate that there is 

considerable overlap between stress-responsive CNS regions that innervate the spleen and 

bone marrow (Fig. 1), with bifurcating signals from these regions giving rise to distinct 

immunophenotypes in these tissues.

Of the spleen-innervating brain regions, the PVH and CeA are among those with the most 

projections to the splenic nerve. It was shown that optogenetic stimulation of CRH+ neurons 

in both the PVH and CeA is sufficient to increase the firing rate of the splenic nerve, 

indicating that CRH+ neurons are functionally connected to the spleen80. These connections 

were proven to be immunologically relevant as splenic plasma cell formation was promoted 
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by their chemogenetic activation and diminished by their inhibition or ablation80. The 

authors speculated that this CNS control of plasma cell expansion was dependent on direct 

innervation, rather than neuroendocrine mechanisms, because splenic denervation disrupted 

the brain–spleen connection, and glucocorticoids produced by the HPA axis lowered plasma 

cell numbers82. To illustrate the ethological relevance of this circuit, mice were exposed to 

mild acrophobic stress, which activated CRH+ neurons in the PVH and CeA and heightened 

plasma cell production, an effect that was abrogated by splenic denervation80.

Another recent study explored the link between the DMV and spleen, demonstrating that 

optogenetic stimulation of neurons in the DMV triggers action potentials in the splenic 

nerve and inhibits endotoxin-induced production of the pro-inflammatory cytokine TNF83. 

As neurons within the DMV drive parasympathetic functions in peripheral tissues84, this 

suggests that parasympathetic activity has anti-inflammatory roles in the spleen, while 

sympathetic inputs have known inflammatory functions85. Moreover, as both the PVH and 

CeA provide inputs to the DMV86,87, it is possible that the DMV integrates signals from 

stress-responsive brain regions to coordinate peripheral immune responses. Interestingly, 

there are also reported anti-inflammatory effects of stress on the spleen, with restraint 

stress initiating a cholinergic pathway via the sympathetic nervous system that activates 

an anti-inflammatory program in splenocytes that protects against ischemia-reperfusion 

injury in mice88. This mechanism was re-capitulated by optogenetically activating tyrosine 

hydroxylase-expressing (TH+) C1 neurons in the medulla88. In the spleen, there is evidence 

that vagus nerve stimulation triggers neurons in the splenic nerve to release noradrenaline, 

which is detected by the β2-adrenergic receptor on splenic choline acetyltransferase-

expressing (ChAT)+ T cells89. Consequently, these T cells produce acetylcholine, which 

suppresses pro-inflammatory cytokine production by splenic macrophages via the α7 

nicotinic acetylcholine receptor89. Stress-activated brain–spleen circuits involved in splenic 

immune function are summarized in Fig. 2.

With constant exposure to pathogenic and food-related antigens and as the home of many 

lymphoid follicles, the gastrointestinal tract represents another immunologically relevant 

tissue that is sensitive to stress. Substantial research has investigated the communication 

between the central and enteric nervous systems (also known as the gut–brain axis) and its 

impact on local and systemic inflammation. First, a number of groups have employed PRV 

retrograde tracing to identify brain regions innervating different regions of the intestines 

(Fig. 1). In one study, PRV was detected in spinal cord neurons three days following 

injection into the rectum of rats and by four days, it was located in brain stem regions 

(including the NTS, LC, DMV, PAG, RPa, Gi, and parabrachial nucleus (PB))90. In a 

separate report, four days after a PRV expressing red fluorescent protein (RFP) was injected 

into the ileum, RFP-positive cells were also found in the NTS, DMV, RPa, and Gi91. 

Thus, different segments of the gastrointestinal tract may receive inputs from common CNS 

regions. Another recent study collected brain samples five days following infection of the 

duodenum with a PRV expressing GFP, and observed GFP in similar brain stem regions 

(including the NTS, LC, DMV, RPa, PBN, and Gi), but also in brain regions such as 

the LH, PVH, BNST, CeA, insular cortex and motor cortex92. Of note, several of these 

gut-innervating brain stem regions are also active during stress93.
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Growing evidence suggests that chronic stress impairs healthy gastrointestinal function, 

presenting as dysregulated intestinal motility, dysbiosis of the microbiota and initiation of 

low-grade inflammation94,95. These symptoms are common features of IBS, for which stress 

is a major risk factor96. Stress has also been shown to exacerbate symptoms of experimental 

colitis in rodents, with some evidence that this is centrally regulated. For example, one study 

reported that chronic water avoidance and restraint stress amplified histological damage and 

myeloperoxidase (MPO) activity in the colon in response to 2,4,6-trinitrobenzenesulphonic 

acid (TNB), which was used to induce colitis in rodents97. Moreover, intracerebroventricular 

injections of CRH (which is produced by cells in the PVH and CeA and can induce freezing 

behaviour98) was found to aggravate colitis symptoms triggered by TNB and stress, while 

the CRH antagonist astressin reduced these symptoms97. Similarly, intracisternal injection of 

orexin (which is largely produced by cells in the LH) can prevent ethanol-induced gastric 

mucosal damage99. Mechanistically, a recent study reported that chronic restraint stress 

aggravates dextran sulfate sodium (DSS)-induced colitis in a pathway that is dependent 

on the HPA axis. The authors found that enteric glia upregulate colony stimulating 

factor 1 (CSF1) in response to glucocorticoids generated as a result of stress and that 

this consequently promotes colitis by inducing TNF production by colonic monocytes100. 

While these studies demonstrate that gastrointestinal inflammation and homeostasis can be 

modulated by the CNS, they do not directly demonstrate the specific cells within the brain 

that regulate these processes.

Interestingly, a recent study demonstrated a bi-directional gut–brain circuit linking the 

insular cortex to colon inflammation101. Using FosTRAP mice, which allow specific labeling 

of active neurons, the authors identified a population of neurons in the insular cortex 

activated by DSS-induced colitis. After a recovery period, these neurons were then re-

activated using chemogenetics. This recapitulated aspects of the colonic inflammation, 

such as increased intraepithelial and lamina propria leukocytes, greater activation of 

intraepithelial γδT cells, CD4-expressing (CD4+) T cells, and CD8+ T cells, and elevated 

IL6 and TNF expression by CD4+ T cells and monocytes, respectively101. Importantly, 

activation of these neurons in the absence of prior DSS challenge did not exert any 

inflammatory effects in the colon, suggesting that the insular cortex neurons connected 

to the gut can encode an immunological memory of a peripheral inflammatory state101. 

However, broad non-specific chemogenetic inhibition of insular cortex neurons during 

DSS administration prevents colitis, implying that non-specific inhibition of insular cortex 

activity can directly alleviate peripheral inflammation in the gut101. Lastly, the authors 

applied the same strategy to label insular cortex neurons activated by zymosan-induced 

peritonitis and found that re-activation of these neurons could trigger inflammation in the 

peritoneal cavity, but not the colon, demonstrating tissue specificity in the centrally-encoded 

immune memory101. This study exemplifies how one brain region can regulate immunity 

in different peripheral tissues depending on context and prior environmental cues. Within 

the gut, the efferent signals relayed by the CNS are received by the enteric nervous system, 

which is composed of a vast and diverse number of neuronal subpopulations, glia and 

extrinsic ganglia. Growing data suggest that the enteric nervous system influences intestinal 

immunity. For example, activation of type 2 innate lymphoid cells (ILC2) in the gut 

mucosa is regulated by neuronally-derived peptides, with neuromedin U initiating102, and α-
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calcitonin gene-related peptide (αCGRP) antagonizing, type 2 immunity103. Additionally, it 

was reported that serotonin exacerbates, while oxytocin inhibits, proinflammatory cytokine 

expression in a mouse model of necrotizing enterocolitis104. Further in-depth discussion 

of the mechanisms by which the peripheral nervous system regulates inflammation and 

immunity in various tissues, including the gut, are reviewed in REF105. More work is needed 

to identify specific enteric nervous system cells that become activated or dysregulated by 

chronic stress.

There is also evidence indicating that gut inflammation can contribute to stress-relevant 

behaviours. One recent study showed that CSDS in mice promotes differentiation of 

IL17-expressing γδ T cells in the colon, in a process that is dependent on dectin-1 

signaling95. When these cells were neutralized or dectin-1 was genetically knocked out, 

mice were protected against CSDS-induced social avoidance95. Therefore, it is possible 

that stress signals in the CNS are transmitted to the gut where they initiate inflammation 

that consequently influences behaviour (Fig. 2). Mechanistically, inflammatory intestinal 

leukocytes, including IL17+ T cells as well as mast cells, may contribute to the breakdown 

of the intestinal epithelial barrier and the accompanying downregulation of tight junction 

proteins CLDN5, occludin (OCLN) and tight junction protein 2 (ZO-2)106,107. This may 

contribute to the MDD-associated elevations in circulating bacteria-derived compounds 

(such as lipopolysaccharide (LPS)108), which is recognized by toll-like receptor 4 (TLR4) 

on peripheral blood mononuclear cells (PBMCs) that trigger pro-inflammatory cytokine 

production109. Notably, PBMCs isolated from people with MDD exhibit greater TLR4 

expression and responses to TLR4 stimulation110,111; thus, stress-induced endotoxemia 

may contribute to systemic inflammation that impinges on behaviour (Fig. 3). Importantly, 

however, additional studies are required to dissect the precise pathways through which the 

brain communicates with specific gut immune cell subpopulations.

Brain regulation of immunometabolism

Metabolic dysfunction is another common consequence of chronic stress in both 

humans and animals, with significant co-morbidity existing between MDD and 

metabolic syndrome112. Moreover, metabolic inflammation — leukocyte infiltration 

and pro-inflammatory signaling in insulin-responsive tissues — promotes systemic 

hyperglycemia113. Thus, it is conceivable that central responses to stress contribute to 

inflammatory processes implicated in glucose metabolism, in addition to behavioural 

outcomes.

One of the most widely analyzed tissues in the field of metabolic inflammation is the 

visceral adipose tissue. It plays a major role in energy expenditure, glucose handling and 

adipokine production and is considered an immunologically active organ due to the rich 

numbers of immune cells residing in the its stromal vascular fraction (SVF)114. In conditions 

under which metabolic inflammation arises, such as obesity or high fat feeding, there is 

an accumulation of pro-inflammatory macrophages, neutrophils, mast cells, type 1 innate 

lymphoid cells (ILC1s), B cells and Th1 T cells in the adipose tissue, and a concomitant 

decrease in alternatively-activated macrophages, eosinophils, ILC2s and regulatory T cells 

(Tregs)115–124. This is accompanied by expression of pro-inflammatory cytokines and 
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chemokines including CCL2, IL6 and TNF125, conferring whole-body glucose intolerance. 

Notably, chronic stress synergizes with high fat feeding in mice to exacerbate insulin 

insensitivity, as well as adipose tissue inflammation126. As the adipose tissue is densely 

innervated by sympathetic nerves, several studies have reported the involvement of the 

peripheral nervous system in adipose tissue inflammation127; however, comparatively less is 

known about how the CNS regulates leukocyte infiltration and inflammatory polarization in 

metabolically-relevant tissues.

Taking advantage of PRV tracing, a number of groups have identified efferent neural 

circuits from the CNS to adipose tissue (Fig. 1). Three days after PRV injection into 

the retroperitoneal adipose depot in rats, retrograde viral transport is visible in thoracic 

intermediolateral spinal nuclei and sympathetic preganglionic spinal neurons128. At this 

time point, PRV is undetectable in hindbrain and forebrain regions. However, by four days 

post-viral inoculation, PRV is identified in brain stem regions including the LC, rostral 

ventromedial medulla (RVM) and midline raphe, as well as hypothalamic regions, including 

the PVH and LH128. After five days, PRV infection is widespread throughout the brain, 

becoming abundant in the NTS, RPa, PAG, ARH, BNST, amygdala, insular cortex and 

motor cortex, among others128. Consistent with these findings, PRV injected into gonadal fat 

pads of mice could be detected in the PVH and LH within 3–4 days of infection, and then in 

the PAG, Gi, NTS, RPa and LC after four days129. In this study, PRV appeared in the DMV, 

CeA, ventromedial nucleus of the hypothalamus (VMH), ARH and lateral septum after five 

days and then reached the BNST by six days post-infection129. Of note, injecting PRV into 

adipose tissue exclusively on the right side of the abdominal cavity yields bilateral labeling 

of brain stem and brain neurons128. Interestingly, one group found that male rats injected 

with PRV in the retroperitoneal adipose tissue had greater numbers of PRV+ neurons in 

most analyzed regions, including the NTS, RPa, PVH and LH, compared to those in female 

rats128.

Using laser capture microscopy to characterize adipose-projecting neurons, approximately 

30–40% of PRV+ neurons in the ARH were found to express the anorexigenic prohormone 

proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART), 

but not the orexigenic agouti-related peptide (AGRP) or neuropeptide Y (NPY)128. 

Additionally, LH neurons innervating the retroperitoneal adipose tissue were identified to 

express orexin and melanin-concentrating hormone (MCH)128. In separate studies in which 

PRV was injected into epididymal white adipose tissue of mice or Siberian hamsters, the 

authors found that significant numbers of PRV+ neurons in the PVH also contained CRH, 

oxytocin, vasopressin (AVP) or pro-thyrotropin-releasing hormone (TRH)129,130. Further, 

PRV co-localized with NPY+ neurons in the NTS129. These findings highlight specific 

neuronal populations that may regulate adipose tissue physiology, including inflammation.

Few studies have investigated the direct actions of the CNS on adipose tissue inflammation. 

Direct intracerebroventricular injections of AGRP reportedly increases TNF expression in 

epididymal white adipose tissue by suppressing sympathetic nerve activity131. While this 

suggests that a direct neural pathway connects the brain to adipose inflammation, it is 

also possible that central actions of feeding hormones, such as AGRP and POMC, could 

influence peripheral inflammation via effects on food intake behaviour, as hyperphagia also 

Chan et al. Page 10

Nat Rev Neurosci. Author manuscript; available in PMC 2024 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



causes adipose tissue expansion and immune cell infiltration132. One recent study defined 

a brain–adipose circuit that controls ILC2 function in adipose tissue133. First, retrograde 

tracing confirmed innervation of the gonadal adipose tissue by the PVH. The authors then 

introduced electrolytic lesions bilaterally in the PVH to ablate its function, which caused 

a significant reduction in adipose tissue ILC2s133. Importantly, the presence of adipose 

ILC2s and their corresponding type 2 cytokines, such as IL5 and IL13, was associated with 

decreased weight gain after high fat feeding and improved glucose tolerance133. This implies 

that PVH activity may in part normalize systemic glucose homeostasis via a mechanism 

mediated by adipose tissue ILC2s (Fig. 2). However, as this study non-specifically ablated a 

heterogeneous population of PVH neurons, further research is required to determine which 

neuronal subsets can regulate adipose tissue inflammation.

In addition to adipose tissue, the liver plays a critical role in stress-elicited metabolic 

abnormalities, with chronic foot shock and restraint stress inhibiting glycogenesis and 

upregulating hepatic gluconeogenesis134. Both chronic stress and metabolic syndrome have 

also been associated with hepatic steatosis and markers of liver inflammation, such as 

macrophage infiltration and expression of pro-inflammatory cytokines and chemokines 

(including IL6, TNF and CCL2)135–138. Since pro-inflammatory polarization of immune 

cells in the liver directly leads to insulin resistance138, a brain–liver axis may link chronic 

stress to hyperglycemia via hepatic inflammation.

PRV tracing from the liver has revealed brain regions that innervate the liver and therefore 

may be involved in centrally-regulated hepatic inflammation (Fig. 1). The time course of 

one study involved collecting spine and brain tissue 3 – 7 days after PRV injection into the 

liver of mice129. After three days, PRV was only detectable in the spinal cord; however, 

by four days, it was found in the DMV, Gi, and PVH. Five days following PRV injection, 

neurons in the LC, PAG, NTS, VTA and LH, among others, were infected. After six days, 

PRV had migrated to additional stress-relevant brain regions, including the RPa, ARH, 

CeA, VMH and BNST, and then to the cortex after seven days129. A tracing experiment 

performed in rats by a separate group confirmed that the DMV projects to the liver and 

that, interestingly, hepatic sympathetic denervation prevents PRV from traveling from the 

liver to the brain. This suggests that brain–liver innervation is dependent on the sympathetic 

nervous system139; however, the liver also receives parasympathetic innervation via the 

vagus nerve140.

Immunohistochemical analyses have revealed that PVH neurons that innervate the liver 

express CRH and oxytocin, but not AVP or pro-TRH129. Similar to the adipose tissue, 

NPY+ neurons in the NTS, POMC-expressing neurons in the ARH and orexin or MCH-

expressing neurons in the LH send projections to the liver129. Thus, there are specific 

neuronal populations in the NTS and hypothalamus that signal to both the adipose tissue and 

liver, either separately or simultaneously.

Some studies have assessed whether neuroendocrine signaling in the CNS can affect 

hepatic inflammatory state. For example, orexin-deficient mice fed a high fat diet have 

heightened markers of inflammation, including NFКB, JNK and p38 phosphorylation and 

CCL2 and CD11c expression, in the liver, compared with wild-type controls; however 
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intracerebroventricular administration of orexin A was able to alleviate these effects141. 

Moreover, central orexin A infusion inhibits high fat-induced hepatic inflammation and 

hyperphagia-induced systemic insulin resistance141,142. Chemogenetic activation of orexin-

expressing neurons in the LH upregulates mTOR and downstream S6 kinase activity, and 

elevates spliced X-box binding protein 1 (sXBP1) expression in the liver, which is suggested 

to protect against hepatic inflammation and endoplasmic reticulum stress141. Notably, CSDS 

in mice reduces orexin expression, the number of orexin-positive neurons and the activation 

of these neurons in the LH143, while intracerebroventricular orexin infusion or chemogenetic 

activation of LH orexin+ neurons rescues stress-induced anxiety behaviour in the open 

field test, immobility in the forced swim test and social avoidance144,145. This implies 

that chronic psychosocial stress dampens orexin signaling in the brain, leading to hepatic 

inflammation, macrophage infiltration, hyperglycemia and depression- and anxiety-like 

behaviour. From the LH, these effects may be exerted through parasympathetic neurons 

in the DMV, as LH orexin neurons project to the DMV146 and parasympathetic input from 

the vagus nerve dampens hepatic inflammation147. Indeed, chemogenetic activation of DMV 

neurons lowers hepatic lipid accumulation and macrophage numbers in a mouse model 

of non-alcoholic steatohepatitis (NASH)148. Collectively, these studies illustrate a pathway 

through which a psychological state such as stress could impact signals from LH orexin 

neurons to parasympathetic nerves via the DMV to cause hepatic inflammation, which 

contributes to insulin resistance (Fig. 2).

Brain signals and immunosuppression

It is commonly reported that chronic stress compromises immune function, increasing 

susceptibility to infection149. Similar to humans with MDD, stressed mice are also 

more susceptible to infections by pathogens such as Escherichia coli, influenza and 

SARS-CoV-269,150,151. While acute stressors or infections activate the HPA axis, which 

stimulates the immune system to facilitate clearance of pathogens, chronic stress 

has immunosuppressive effects152. This exemplifies how stress is a context-dependent 

adaptation that is necessary for the body to appropriately respond to threats, but becomes 

maladaptive and pathological when left unresolved. Likewise, in behavioural tasks, there is 

a proposed ‘inverted U-shape’ curve describing the relationship between stress levels and 

performance, suggesting that there is an optimal level of stress (which may also shift based 

on prior stress exposure)153. Mechanistically in the immune system, leukocytes express 

glucocorticoid receptors that can respond to cortisol and other glucocorticoids154. It is 

hypothesized that chronic stress leads to persistent activation of the HPA axis, resulting 

in glucocorticoid resistance and subsequent over-production of pro-inflammatory cytokines 

and impairment in adaptive immune responses154. Together, these maladaptations worsen 

outcomes of infectious disease.

Chemogenetic tools have been used to demonstrate that activation of specific neurons 

in the brain, independent of stress exposure, is sufficient to heighten vulnerability to 

infections. For example, excitation of CRH+ neurons in the PVH prevented pulmonary 

clearance of influenza A virus, implicating the HPA axis in this response69. Similarly, high 

pulmonary viral loads were observed in restraint-stressed mice; however, ablating PVH 

CRH+ neurons ameliorated the immunosuppression brought upon by stress69. Exposure to 
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restraint stress, activation of PVH CRH+ neurons and susceptibility to influenza A were 

also associated with diminished B and T cell numbers in lung-draining lymph nodes, which 

supports the idea that HPA axis activity represses adaptive immunity69. In agreement with 

these findings, a separate study found that optogenetic stimulation of CRH+ neurons in 

the PVH shifts circulating leukocytes to an ‘immunosuppressed’ profile, characterized by 

lower frequencies of dendritic cells expressing major histocompatibility complex (MHC) 

class II molecules, natural killer cells, B cells, and CD4+ T cells155. In parallel, anther 

study demonstrated that activating the brain’s reward systems by chemogenetically exciting 

TH+ VTA neurons enhances peripheral bactericidal action against E. coli, while promoting 

social interaction72. Infections can produce ‘sickness behaviour’, which is characterized 

by behaviours such as anhedonia, lethargy and social withdrawal4. Interestingly, sepsis 

results in acute activation of BNST-projecting neurons in the CeA, along with long-term 

anxiety-like behaviours in the open field test and light-dark box156. When a chemogenetic 

approach is used to inactivate BNST-projecting CeA neurons, these mice become protected 

against sepsis-induced sickness behaviours156. These studies demonstrate bi-directional 

communication between the brain and body, whereby chronic stress suppresses host defense 

against pathogens and these infections subsequently activate brain regions that promote 

anxiety- or depression-like behaviour (Fig. 2).

Conclusions

For years, the mechanisms through which a psychological state can influence peripheral 

immunity have been puzzling. Due to recent developments in neurocircuit tracing, 

chemogenetic and optogenetic tools for manipulating specific neuronal circuits and 

immunophenotyping of peripheral tissues, the field is beginning to understand the complex 

ways in which the brain and body communicate in healthy and diseased states. Under 

chronic stress, regions such as the hypothalamus, amygdala and insula are pivotal structures 

that integrate signals in the CNS and then propagate them to the periphery, largely via 

the autonomic nervous system and HPA axis. Additional studies are required to decipher 

how context-specific cues deliver information from the brain to different peripheral tissues 

to shape immunological function, and to further dissect which brain regions can influence 

systemic inflammation upon activation.
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Glossary

Cytokines
Secreted proteins that act as signaling molecules for the immune system
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Lymphopoiesis
The production of lymphocytes from progenitor cells

Myelopoiesis
The production of myeloid cells from progenitor cells

Chemokines
Chemotactic cytokines that stimulate migration of cells

Viral tracing
The use of trans-synaptic self-replicating viruses to identify neural pathways

Granulocyte
Leukocytes containing cytoplasmic secretory granules, such as neutrophils, basophils, and 

eosinophils

Plasma cells
Effector B lymphocytes that produce antibodies

Leukocytes
A type of blood cell made in the bone marrow and found within blood and lymphoid tissue 

as part of the immune system

Monocytosis
An increase in the number of monocytes in the blood

Neutrophilia
An increase in the number of neutrophils in the blood

Lymphocytopenia
A reduction in the number of lymphocytes in the blood

Splenomegaly
An enlargement of the spleen

Chemogenetics
An approach in which specific cellular pathways are activated or inhibited using engineered 

protein receptors that respond to previously unrecognized small molecules

Optogenetics
An approach in which light-sensitive ion channels, pumps or enzymes areused to regulate 

the activity of specific neurons in the brain or periphery

Ventral tegmental area (VTA)
A ventral midbrain site containing dopaminergic neurons that are an essential component of 

the brain’s reward circuitry

Reward
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A positive emotional stimulus. In psychological terms, a reward is reinforcing — it promotes 

repeated responding to obtain the same stimulus

Resilience
The ability to maintain normal physiological and behavioural function in the face of severe 

stress

Susceptible
Having increased vulnerability to succumb to the deleterious effects of stress
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Box 1.

Animal models of chronic stress

The field typically uses three standardized chronic stress paradigms in adult C57BL/6J 

mice — chronic social defeat stress (CSDS), adult social isolation (ASI) and chronic 

variable stress (CVS). In all three paradigms, certain behavioural abnormalities are 

induced that can be reversed by chronic (but not acute) antidepressant treatment189–191. 

Importantly, all three paradigms have been validated in both male and female mice, 

making it possible to study sex differences192–194. In some paradigms, the two sexes 

display similar behavioural responses, but in others, large differences are seen. RNA 

sequencing (RNA-seq) has shown that each model induces many distinct gene expression 

changes within limbic brain regions, with each model replicating a partly distinct subset 

of the changes that have been observed in homologous brain regions of humans with 

depression195.

Chronic social defeat stress (CSDS).

10 days of social stress induced by daily exposure to a dominant, aggressive 

mouse promotes a behavioural syndrome characterized by social avoidance, reduced 

responses to natural rewards, altered exploratory behaviour, systemic inflammation, 

disrupted circadian rhythms, a hyperactive hypothalamic–pituitary–adrenal (HPA) axis 

and metabolic syndrome25,196–198. CSDS offers several major advantages compared 

with other available chronic stress paradigms. First, about one third of C57BL/6J mice 

subjected to CSDS escape most of these symptoms and show deficits in exploratory 

behaviour only197. These mice are referred to as ‘resilient’ and can be compared to the 

majority, which are ‘susceptible’ (SUS). Second, many of the behavioural symptoms 

exhibited by SUS mice are very long-lived (some persist for at least six months after 

CSDS), which makes it possible to study the reversal of stress-induced pathologies by 

traditional antidepressants as opposed to prevention of such pathologies — the norm for 

the other paradigms. Third, only about half of SUS mice show reversal of behavioural 

abnormalities in response to either chronic administration of standard antidepressants 

(such as imipramine (IMI), fluoxetine (FLX) or bupropion) or acute administration of 

novel antidepressants (such ketamine), with the other half being ‘treatment-resistant’. 

CSDS thus enables studies of treatment response versus non-response. We and our 

collaborators have also developed several critical derivations of CSDS, including a 

‘vicarious defeat’ model, in which a mouse witnesses the physical defeat of a conspecific 

C57BL/6J mouse and develops a syndrome very similar to that of the physically 

defeated mice (thus removing the confound of the physical fighting when analyzing 

stress effects)199 and standard and witness models of social defeat for female C57BL/6J 

mice192,200,201

Adult social isolation (ASI).

Adult male or female C57BL/6J mice housed for prolonged periods (>8 weeks) in 

isolation exhibit reduced preference for natural rewards (sucrose consumption and sexual 

behaviour) and social interaction191,194,202,203, with very similar abnormalities seen in 

males and females. The latter symptoms only are prevented by concomitant, chronic 
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exposure to antidepressants. Interestingly, RNA-seq analysis of bulk brain tissue after 

ASI or CSDS has shown that some genes are affected in both paradigms, but that 

the transcriptomic responses are mostly different203; as noted above, we believe that 

the two paradigms model distinct aspects of human stress-related syndromes that are 

characterized by active versus passive stress, although this remains speculative.

Chronic variable stress (CVS).

A variety of CVS (also referred to as chronic mild or unpredictable stress) paradigms 

are used by the field190,204–207. One particular paradigm can cause reduced sucrose 

preference and increased novelty suppressed feeding among other pro-stress phenotypes 

in both male and female C57BL/6J mice, although the model also works in other 

mouse strains208. In this protocol, females are more susceptible: they show behavioural 

symptoms after 6 days of CVS, at which time males appear normal, while both sexes 

show similar behavioural symptoms after 21 days of CVS. This is a major advantage of 

the CVS protocol, given that depression is twice as common in women.
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Fig. 1: CNS innervation of immunologically-relevant peripheral tissues.
Summary of time course studies identifying CNS regions innervating the bone marrow37,38, 

spleen80,81, gut90–92, adipose tissue128,129 and liver129,139 following trans-synaptic 

retrograde tracing using pseudorabies viruses (PRVs). CNS regions where PRV was 

identified are shown on the x-axis, with days after PRV injection indicated on the y-axis. AP, 

area postrema; ARH, arcuate nucleus of the hypothalamus; BNST, bed nucleus of the stria 

terminalis; DMH, dorsomedial nucleus of the hypothalamus; DMN, deep mesencephalic 

nucleus; DMV, dorsal motor nucleus of the vagus; Gi, gigantocellular reticular nucleus; 

Hipp: hippocampus; LC, locus coeruleus; LH, lateral nucleus of the hypothalamus; LPGi, 

lateral paragigantocellular nucleus; NTS, nucleus of the solitary tract; PAG, periaqueductal 

grey; PO, preoptic area; PRN, pontine reticular nucleus; PVH, paraventricular nucleus of the 

hypothalamus; RCH, retrochiasmatic nucleus; RPa, raphe pallidus; SCH, suprachiasmatic 

nucleus; SLC, subcoeruleus nucleus; VMH, ventromedial nucleus of the hypothalamus; 

VTA, ventral tegmental area; ZI, zona incerta.
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Fig. 2: Control of peripheral immunity by central stress centres.
Schematic outlining the regulation of peripheral immune responses by CNS regions 

involved in stress and reward processing. Activation of the paraventricular nucleus of 

the hypothalamus (PVH) decreases bone marrow chemokine (C-X-C motif) ligand 12 

(CXCL12) expression, induces monocytosis and lymphocytopenia, increases splenic plasma 

cell (PC) formation and IgG production, and promotes the accumulation of type 2 

innate lymphoid cells (ILC2) in adipose tissue through activation of the HPA axis, SNS, 

or splenic nerve33,69,80,133. Motor circuit activity, driven by the motor cortex (MO) 

stimulates neutrophilia via skeletal muscle production of cytokines such as CXCL169. 

Monocytosis, neutrophilia and leukocytopenia contribute to depression-like behaviour and 

impair influenza A clearance. Adipose tissue ILC2s are associated with decreased weight 

gain and improved glucose tolerance. Ventral tegmental area (VTA) stimulation increases 

Chan et al. Page 28

Nat Rev Neurosci. Author manuscript; available in PMC 2024 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the numbers of B cells in circulation to improve bacterial clearance72. Central amygdala 

(CeA) CRH neuron stimulation also contributes to PC formation80. Dorsal motor nucleus 

of the vagus (DMV) activation, acting via the vagus nerve, inhibits tumour necrosis factor 

α (TNF) expression in the spleen and macrophage infiltration in the liver83,148. Orexin 

(ORX) expression in the lateral nucleus of the hypothalamus (LH) also upregulates mTOR, 

S6K and sXbp1 in the liver to limit hepatic inflammation141. Insular cortex (INS) neurons 

drive processes that can trigger inflammatory responses in the colon, including activation of 

CD4+, CD8+, and γδT cells, and expression of IL6 and TNF101. HPA axis: hypothalamic-

pituitary-adrenal axis, SNS: sympathetic nervous system, CRH: corticotropin-releasing 

hormone, mTOR: mammalian target of rapamycin, S6K: S6 kinase, sXbp1: spliced X-box 

binding protein 1.
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Fig. 3: Breakdown of body barriers during stress [.
Chronic stress or stress-relevant disorders, such as anxiety and depression, compromise the 

blood-brain barrier (BBB) and gut epithelial barrier. In the nucleus accumbens (NAc), stress 

triggers pro-inflammatory tumour necrosis factor α (TNF) and/or nuclear factor-κB (NFКB) 

signaling pathways in endothelial cells and downregulation of the tight junction protein 

claudin-5 (CLDN5)7,74. Simultaneously, inflammatory monocytes expressing high levels of 

Ly6C (Ly6Chi monocytes) and neutrophils are recruited to the NAc, where these cells (or 

their secreted factors, such as interleukin 6 (IL6) and matrix metalloproteinase 8 (MMP8)) 

can enter the brain parenchyma through the damaged BBB to directly influence neuronal 

excitability7,76. In the intestine, stress increases IL17+ T cell and mast cell accumulation, 

which may contribute to decreases in CLDN5, occludin (OCLN), and tight junction protein 

2 (ZO-2), allowing lipopolysaccharide (LPS) to enter circulation from the gut lumen to 

activate pro-inflammatory signaling pathways via toll-like receptor 4 (TLR4)95,106–108.
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Table 1.

Serum cytokines and chemokines elevated in depression, anxiety and co-morbid disorders

Human disorder Cytokines and chemokines elevated in 
humans

Mouse model Cytokines and chemokines 
elevated in mice

References

Depression and /or 
anxiety

IL1A, IL1B, IL2, IL6, IL8, IL12, IFNγ, 
TNF, CCL2, CCL3, CCL11, CXCL4 and 
CXCL7

Chronic stress IL1A, IL1B, IL6, IL12, TNF, 
CCL2, CCL5, CXCL1 and 
CXCL2

21–25,27–31,157

Inflammatory bowel 
disease

IL1B, IL4, IL5, IL6, IL7, IL8, IL10, IL12, 
IL13, IL15, IL16, IL17, IL23, IFNγ, TNF, 
MIF, CCL2, CCL11, CCL21, CCL23, 
CCL25, CXCL1, CXCL5, CXCL6, 
CXCL10, CXCL11 and CXCL13

Experimental 
colitis

IL1B, IL6, IL12, IL17, IFNγ, 
TNF, CCL2, CCL3 and 
CXCL1

158–164

Metabolic syndrome 
and/or obesity

IL1B, IL4, IL5, IL6, IL8, IL10, IL12, 
IL13, IL18, IFNγ, TNF, CCL2, CCL3, 
CCL5 and CXCL5

Diet- or 
genetically-induced 
obesity

IL1B, IL6, IL12, IL18, IFNγ, 
TNF, CCL2, CXCL1 and 
CXCL5

165–178

Coronary artery 
disease and/or 
atherosclerosis

IL1A, IL1B, IL2, IL6, IL8, IL9, IL10, 
IL17, IFNγ, TNF, CCL2, CCL5, CCL17 
and CCL18

ApoE−/− or Ldlr−/− 

mice
IL1A, IL1B, IL2, IL6, IL10, 
IL12, IFNγ, TNF, CCL2, 
CCL5 and CXCL1

178–188

CCL: chemokine (C-C motif) ligand, CXCL: chemokine (C-X-C motif) ligand, IFN: interferon, IL: interleukin, MIF: macrophage migration 
inhibitor factor, TNF: tumour necrosis factor
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