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Abstract

Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants,
caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia.
SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may
effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion

of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane
to form “platforms”that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt
viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids'role in cell signal
transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mecha-
nisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMASs). In silico molecular
docking analyses of FIASMAs with inhibitors revealed that dilazep (S=—-12.58 kcal/mol), emetine (S=—11.65 kcal/
mol), pimozide (S=-11.29 kcal/mol), carvedilol (S=—11.28 kcal/mol), mebeverine (S=—11.14 kcal/mol), cepharan-
thine (S=—11.06 kcal/mol), hydroxyzin (S=-10.96 kcal/mol), astemizole (S=-10.81 kcal/mol), sertindole (S=-10.55
kcal/mol), and bepridil (S=—-10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone
(S=-10.43 kcal/mol), making them better options for inhibition.
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Introduction

Recently, the world and public health organizations
directed resources to curb the outbreak of coronavi-
rus disease (COVID-19) caused by SARS-CoV-2 and
its mutated strains [1-6]. Symptoms of COVID-19
infection included respiratory system complications
and severe pneumonia, where patients needed inten-
sive medical care and ventilator treatment [5, 7, 8]. The
death rate from COVID-19 is about 0.66%, which rises
sharply to 7.8% in patients over 80 years old [9]. Severe
cases are characterized by a high incidence of cytokine
storms and excessive inflammation with high levels of
interleukin (IL)-6, IL-8, IL-10, IL-2R, and tumor necro-
sis factor (TNF)-alpha. The SARS-CoV-2 infects cells by
attachment to its particular cellular receptor ACE-2 via
a surface unit (S1) of the viral spike glycoprotein [8, 10].
Transmembrane serine protease 2 (TMPRSS2) or cath-
epsin L cleaves the viral spike protein after entry. When
a virus enters host cells, SARS-CoV-2 RNA is released,
translation of viral RNA genome into polyproteins is fol-
lowed by viral release, and then replicate-transcriptase
complex is brought together following protein cleavage to
promote viral transcription and replication [11].

Previous membrane and cellular changes facilitating
SARS-CoV-2 entry may be a promising target to mini-
mize and inhibit viral infection. Lysosomal acid sphingo-
myelinase is one of the significant signalling molecules in
the outer cell membrane and lysosomes [12]. This review
focused on sphingomyelinase (ASMase), which converts
the sphingolipid (sphingomyelin) into ceramide, which
substantially affects the biophysical characteristics of the
plasma membrane [13].

Acid sphingomyelinase and ceramide are essential
in receptor signalling and infection biology. The acid
sphingomyelinase is a glycoprotein lysosomal hydrolase
enzyme that catalyzes the degradation of sphingomy-
elin to phosphorylcholine and ceramide. Although acid
sphingomyelinase is found in lysosomes, it is recycled
to the plasma membrane because these compartments
constantly recycle to the plasma membrane. The activ-
ity of acid sphingomyelinase induces ceramide forma-
tion in the outer leaflet of the cell membrane. Ceramide
molecules generation within the outer leaflet alters the
biophysical properties of the plasma membrane because
the very hydrophobic ceramide molecules spontane-
ously associate with each other to form small ceramide-
enriched membrane domains that fuse and form large,
highly hydrophobic, tightly packed, gel-like ceramide-
enriched membrane domains [14].

The conversion of the sphingomyelin in rafts to cera-
mide can result in raft enlargement, receptor clustering,
membrane invagination, and macropinosome formation,
all of which promote the uptake of particles, including
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viruses, into cells and increase viral infectivity. Further-
more, ceramide-enriched membrane domains can bind
to proteins and promote viral infectivity. SARS-CoV-2
docks onto ACE2, which is a lipid raft protein. After
binding to ACE2, the S protein in the viral envelope
undergoes enzymatic activation by TMPRSS2 or furin,
likely located in lipid rafts. Subsequent endocytosis of
SARS-CoV-2 occurs using a raft-dependent endocytic
pathway.

SARS-CoV-2 induces the activity of ASMase and
releases the ceramide content in lipid rafts, resulting
in the virus’s attachment to its receptors and increas-
ing the concentration of virus attachment in lipid rafts
domains and viral infectivity. Several reports show
that the ASMase/ceramide system controls viral infec-
tion. Viruses including Rhinovirus, Ebola, and measles
encephalitis [15-17], and bacteria like Pseudomonas
aeruginosa, Staphylococcus aureus, Salmonella typhi,
and Neisseria gonorrhoeae [18-23], stimulate the viral
ASMase/ceramide system inducing the development
of platform domains rich in ceramide, which facilitate
viral entry and host cell infection. As with other viruses,
SARS-CoV-2 activates the ASMase/ceramide system,
inducing ceramide-enriched-platform formation and
facilitating viral entry by clustering ACE-2, resulting in
host cell infection [24]. Since 1970, research has shown
that weak bases constrain ASMase activity [25]. Weak
bases are protonated and diffused into lysosomes, where
they are trapped, accumulating intra-lysosomal weakly
basic molecules [26].

FIASMA are weak bases and accumulate in acidic
compartments like the lysosome because they become
protonated at the acidic pH. Due to the positive charge,
they can no longer cross the membrane (acidic trap-
ping). Consequently, lysosomal ASMase is displaced
from the inner lysosomal membrane, and ASMase is
proteolyzed. The ASMase/ceramide system is considered
a treatment option in patients with respiratory COVID-
19 or mutated strains [27]. This review demonstrates the
metabolism and importance of sphingolipids responsible
for viral infection. The function of ASMase in viral entry
and infection is clarified. Accordingly, this review catego-
rizes types of ASMase inhibitors, the functional inhibi-
tors of acid sphingomyelinase (FIASMA) that potentially
block viral entry. Additionally, molecular docking in sil-
ico of ASMase/ceramide system inhibitors is performed
to predict the prospective efficacy of inhibitors as anti-
SARS-CoV-2 medication.

Structure of Sphingomyelinase

Human acid sphingomyelinase is a cellular phosphodies-
terase or phospholipase C (PLC), which causes sphingo-
myelin to hydrolyze into ceramide and phosphocholine
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by cleavage of the phosphodiester bond. The SMPDI
gene encodes human ASMase in the chromosomal
region 11p15.4 with 6 exons, as shown in Fig. 1 (1). The
1890 bp open reading frame of the whole cDNA for
ASMASE codes for 629 amino acids. A monomeric gly-
coprotein with a protein core of 64 kDa makes up the
mature ASMase enzyme. The ASMase enzyme contains
8 disulfide bridges, 5 N-glycosylation sites are occupied,
and one N-glycosylation site is not occupied [28, 29], as
shown in Figs. 1 (2) and (3).

According to the UniProt blast site, mature ASMase
has numerous active domains, including a signal pep-
tide (amino acids 1-46), a Sap-domain (amino acids
89-165), a proline-rich linker domain (amino acids
166-198), the catalytic metallo-phosphatase domain
(amino acids 199-461), and the C-terminal domain
(amino acids 462-629) [30]. Even in the absence of
exogenous sphingolipid activator proteins, the basic
sphingomyelinase cleaving activity of the ASMase pol-
ypeptide is maintained by its N-terminal Sap-domain
[31]. Sphingomyelin attaches to the active site of the
catalytic metallo-phosphatase domain, which has a

(1)

Exon 1 Exon 2

Exon 3 Exon 4 Exon 5
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binuclear zinc core, to activate the hydrolysis process
and cleave the phosphodiester bond. The ASMase activ-
ity depends on the Sap-domain [30, 32, 33].

Human sphingomyelinase is produced in the endoplas-
mic reticulum as a pre-pro-enzyme with a core protein
of 75 kDa, which is quickly cleaved into 72 kDa pro-
ASMase in the endoplasmic reticulum-Golgi complex.
After cleavage, the pro-ASM is transmitted by the secre-
tory pathway to the extracellular space or endolysosomal
compartments. ASMase and numerous other lysosomal
hydrolases are transported from the trans-Golgi net-
work (TGN) to late endosomes and lysosomes by the
mannose-6-phosphate receptor (M6PR). The ASM lipid-
binding proteins, prosaposin, and GM2AP have an alter-
native route depending on sortilin [34—36].

Sphingolipid Metabolism

Sphingoid bases are the basic structure of sphingolip-
ids, including sphingosine, an 18-carbon unsaturated
amino alcohol, the most common among mammals,
amid links fatty acids to sphingosine, resulting in cera-
mide [37]. Sphingomyelin is produced when ceramide is

Exon 6
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Fig. 1 Acid Human Sphingomyelinase (ASMase) exons (1), cDNA (2), and protein structure (3)
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phosphocholine esterified, while glycosylceramides are
produced when ceramide is glycolyzed. Sialic acid resi-
dues result in ganglioside synthesis, as shown in Fig. 2.
These are important cell membrane molecules, and the
pathway intermediates for sphingolipid production and
breakdown modify processes like apoptosis and T-cell
trafficking [37, 38].

Sphingosine, phytosphingosine, and digydrosphin-
gosine represent the first step in creating complex mol-
ecules. Sphingosine 1-phosphate, phytosphingosine
1-phosphate, and dihydrosphingosine-1-phosphate are
three crucial signalling molecules broken down by phos-
phorylation of the C1 hydroxyl group. The glycosphin-
golipids contain a wide range of sphingolipids that differ
by the type and arrangement of sugar residues linked to
their head groups.

The sphingolipid metabolic pathway is a vital cellular
process where ceramide plays an important role in other
molecules’ metabolism, catabolism, and biosynthesis.
Through de novo synthesis, sphingolipids are produced
via serine and palmitoyl CoA condensation. This pro-
cess is catalyzed by serine palmitoyl transferase, which
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results in 3-keto-dihydrosphingosine [39]. Hydrolysis of
sphingomyelin by sphingomyelinase into ceramide keeps
the membranes in homeostasis conditions. Thus, sphin-
golipid metabolism is complicated but involves the de
novo biosynthesis of ceramide in the endoplasmic retic-
ulum. Ceramide is the key product in the breakdown of
sphingomyelin or their de novo synthesis, which is the
process by which sphingolipids are metabolically pro-
cessed. The de novo synthesis could begin with serine
palmitoyl-transferase, serine condensation, and palmi-
toyl-coenzyme A to 3-keto di hydrosphingosine [37].
Then, the reduction of 3-ketodihydrosphingosine into
sphinganine is carried out by 3-ketodihydrosphingosine
reductase.

Ceramide synthase adds acyl fatty acids to sphinganine,
leading to dihydroceramide production. In the endo-
plasmic reticulum, dihydroceramide D4 saturates and
desaturates into ceramide. A ceramide transfer protein
transports ceramide from the endoplasmic reticulum to
the Golgi apparatus. Sphingosine (2 amino-4-trans-octa-
decene-1,3-diol) is produced from ceramide by cerami-
dase enzymes. Ceramide synthase is responsible for the
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Fig. 2 lllustration of sphingolipid metabolism pathway including denovo synthesis and breakdown
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production of ceramide in a way opposite to ceramidase
enzymes. Sphingosine kinase 1 (SPhK1) or sphingosine
kinase 2 (SPhK 2) phosphorylate sphingosine to produce
sphingosine 1-phosphate (S1P). Sphingosine is phos-
phorylated into sphingosine 1-phosphate (S1P) by either
sphingosine kinase 1 (SPhK1) or sphingosine kinase 2
(SPhK 2). The S1P phosphatases transform S1P back to
sphingosine, or the S1P lyase enzyme breaks down S1P
into hexadecanal and phosphoryl ethanolamine [37].
Sphingolipids are generated from ceramides by sphin-
gomyelin synthase, while sphingomyelin is converted to
ceramide via sphingomyelinase. The sphingolipid metab-
olism pathway is illustrated in Fig. 2.

Sphingolipid Transport and Uptake
Bioactive sphingolipids interact with mediators to
produce functional responses. Sphingolipids include
sphingomyelin, ceramides, sphingosine, and S1P [40].
Sphingosine contains one aliphatic chain that usually has
18 carbon atoms along its length, enabling easy passage
between distinct membranes. Sphingosine 1 phosphate is
generated in the inner cell plasma membrane in response
to tumor necrosis factor-cytokine as signalling (TNFa).
Then, it transfers to the outer leaflet of the plasma mem-
brane to bind to its S1PRs receptor [41]. The ABC trans-
porter superfamily has two members proposed to control
S1P trafficking [42]. There are two members to regulate
S1P, either internalization or efflux by cystic fibrosis
transmembrane regulator (CFTR) or ABCCL.
Sphingomyelin contains two aliphatic chains and a
zwitter ionic head group. Thus, it has little aqueous solu-
bility and hardly ever flip-flops across bilayers but moves
laterally [43]. The movement of sphingomyelin may be
hampered by interactions with sterols in cell membranes
and self-aggregation [43]. The ceramide structure has two
aliphatic chains and a neutral head group. Ceramide is
transported from its production site in the endoplasmic
reticulum to the Golgi apparatus under the control of the
Ceramide Transfer Protein (CERT). Studies show neutral
ceramide easily flip-flopping across cell membranes [43].
It is unknown if the organization of ceramide into
microdomains prevents ceramide from flipping from
the outer leaflet to the inner leaflet of the plasma mem-
brane or whether ceramide can flip-flop as effectively in
complex biological membranes [43]. Limiting the flip-
ping of ceramide could impact its signalling functions
significantly.

Role of Sphingolipids in Viral Entry

Lipid rafts are particular regions of the host cell
membrane that are profuse in lipids like choles-
terol, sphingolipids, and gangliosides [44]. These
lipid-rich domains are characterized by containing
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well-organized lipid molecules stacked tightly. Stud-
ies show lipid rafts are key in viral infection cycles,
including HIV, poliovirus, hepatitis C, and coronavi-
ruses [45-47]. The SARS-CoV-2 virus uses lipid rafts
and caveolae-mediated endocytosis for viral entry [48].
Thorp and Gallagher (2004) observed that methyl-f3-
cyclodextrin triggers cholesterol depletion and inhibits
viral entry and infection. This observation supports a
lipid raft’s functional role in viral entry [49]. Coronavir-
idae, including SARS-CoV, use lipid rafts to enter and
host infection. In addition to the minor envelope pro-
tein and membrane protein, the SARS-CoV-2 envelope
contains spike protein (S) [50]. A viral spike (S) com-
prises S protein trimmers, which act in viral fusion with
host cellular membranes and constitute two subunits
(S1 and S2). After viral binding, spike protein is cleaved
by host protease transmembrane serine protease 2 with
furin pre-cleavage to facilitate viral entry [11, 51, 52].
SARS-CoV-2 entry is receptor-mediated endocytosis
through a specific host receptor (ACE-2). Viral S pro-
tein binds with ACE-2, enabling proteolysis of viral S1
protein by host proteases, which may be attached to
caveolae, including TMPRSS2 and Cathepsin L [53].

Moreover, SARS-CoV-2’s ability to enter and cause
host infection depends on its interaction with specific
gln493 residue of the ACE-2 receptor [54]. Viral entrance
may be mediated by the host ACE-2 receptor or by sialic
acids interacting with host cell surface ganglioside bind-
ing domains. This domain (111-158) is a well-conserved
sequence causing viral attachment to lipid rafts, which
makes it easier for SARS-CoV-2 to infect the host’s
ACE-2 receptor [54]. ACE-2 must colocalize with the
raft markers GM1 and caveolin-1. Lipid rafts are a key
platform that can concentrate host ACE-2 receptors
interacting with viral S protein. Viral particles can bind
to the surface of the host cell membrane because ACE-2
clusters in certain positions in the cell membrane. In this
approach, lipid raft microdomains boost the efficacy of
viral infection. These results agree with cholesterol deple-
tion and reduce, but do not prevent, the susceptibility to
viral infection [55].

Lipid rafts are considered targets for inhibiting viral
infection. Drugs such as methyl-B-cyclodextrin cause
disruption of lipid rafts, resulting in viral entry inhibition
[56]. Pathogen-host interactions probably aid the devel-
opment of focal adhesions and lipid raft clustering dur-
ing endocytosis. Table 1 shows other inhibitors of lipid
rafts such as propofol, isoflurane, pentobarbital, aspirin,
naproxen, perifosine cisplatin, azithromycin, daunoru-
bicin, doxorubicin, quercetin, and luteolin. These inhibi-
tors may be used as antiviral drugs against SARS-CoV-2.
Thus, research on lipid rafts should be included in devel-
oping antiviral drugs.
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Table 1 Common inhibitors of lipid rafts with their mechanism
Drug Mechanism References
Propofol The propofol has a role for caveolae (specifically caveolin-1) in propofol-induced bronchodilatation. [57]
Due to its lipid nature, propofol may transiently disrupt caveolar regulation, thus altering ASM [Ca?*]
and decreasing caveolin-1 expression
Isoflurane The isoflurane increases membrane fluidity and the permeability of the blood-brain barrier by distribut-  [58, 59]
ing the highly ordered lipid domains with saturated lipids. It also weakened the sterol-phospholipid
association in cholesterol-rich membranes
Pentobarbital Pentobarbitals modify the physical characteristics of lipid rafts on model membranes and cause lipid [60]
membrane disorder of brain plasma membranes
Lidocaine Lidocaine is observed to distribute the erythrocyte membrane lipid rafts reversibly and abolish flotillin-1 ~ [61, 62]
in lipid rafts together with depleting cholesterol. In addition, the Lidocaine hydrochloride, an amphip-
athic local anaesthetic, is shown to reversibly disrupt rafts in erythrocyte membranes and alter the Gsa
dependent signal transduction pathway. These findings provide evidence of rafts’ presence while main-
taining normal cholesterol content in erythrocyte membranes and confirm a role for raft-associated Gsa
in signal transduction in erythrocytes
Tetracaine Tetracaine induces lipid chain mobility, destabilizes the supported lipid bilayers, and induces lipid raft [63]
distribution and solubilization. Tetracaine causes a curvature change in the bilayer, which leads to the for-
mation of the subsequent formation of up to 20-um-long flexible lipid tubules as well as the formation
of micron-size holes
Dibucaine Dibucaine hydrochloride has a distribution effect on lipid rafts. The inserting Dibucaine molecules [64]
into lipid bilayers induces a reduction in the ternary liposome’s miscibility transition temperature (Tc)
and a reduction in the phase boundary line tension. This suggests that the Dibucaine.HCI molecules may
disturb ion channel functions by affecting the lipid bilayers surrounding the ion channels
Bupivacaine Bupivacaine stereostructure specifically interacts with membranes containing cholesterol, which [65]
is consistent with the clinical features of S (-)-bupivacaine. The bupivacaine interacted with liposomal
membranes to increase membrane fluidity. They also revealed that the interactivity with lipid bilayer
membranes is largely consistent with the local anaesthetic potency
Dexmedetomidine Dexmedetomidine and clonidine acted on lipid bilayers to increase the membrane fluidity with poten- [66]
Levomedetomidine Clonidine cies varying by a compositional difference of membrane lipids. Dexmedetomidine showed greater
interactivity with neuro-mimetic and cardiomyocyte-mimetic membranes than clonidine, consistent
with their comparative lipophilicity and activity. The effects of a,-adrenergic agonists on lipid raft model
membranes were much weaker than those on other membranes, indicating that lipid rafts are not mech-
anistically relevant to them. Higher interactive dexmedetomidine was discriminated from lower interac-
tive levomedetomidine in the presence of chiral cholesterol in membranes. An interactivity difference
between the two enantiomers was largest in the superficial region of lipid bilayers, and the rank order
of their membrane-interacting potency was reversed by replacing cholesterol with epicholesterol, sug-
gesting that cholesterol's 33-hydroxyl groups positioned close to the membrane surface are responsible
for the enantioselective interaction
Morphine Morphine increases the membrane fluidity of membranes [67]
Aspirin Itis observed that aspirin increases membrane fluidity, disrupts the membrane organization, and pre- [64]
vents raft formation
Indomethacin These compounds affected the organization of rat-like ordered lipid and protein membrane nanoclusters  [68]
Naproxen
Ibuprofen
Edelfosine It is observed that Edelfosine increases the fluidity of lipid rafts. Edelfosine is associated with cholesterol [69]
and colocalizes in vivo with rafts, causing the raft's structure modification
Perifosine Itis observed that perifosine causes disrupted membrane raft domains [70]
Edelfosine The edelfosine and miltefosine increase the fluidity of raft model membranes (71
Miltefosine
Erucylphosphocholine Erucylphosphocholine is observed to increase the membrane raft fluidity and weaken the interaction [72]
between cholesterol and sphingomyelin
2-Hydroxyoleic acid 2-Hydroxyoleic acid increases the membrane raft fluidity [73]
Cisplatin Cisplatin increases the membrane fluidity and induces apoptosis, which was inhibited by cholesterol [74,75]
(30 ug/mL) and monosialoganglioside-1 (80 uM)
Azithromycin Azithromycin is observed to increase the fluidity of raft-like membranes [76]
Daunorubicin Daunorubicin is observed to affect lipid rafts by decreasing the fluidity of raft-like membranes [771
Doxorubicin Doxorubicin is an anticancer drug that increases the fluidity of binary membranes but not ternary mem-  [78]
branes
Quercetin Quercetin is observed to suppress the accumulation of lipid rafts to inhibit TNF-a production. In addition,  [79, 80]

itincreases the fluidity of raft model membranes in mouse macrophages
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Table 1 (continued)
Drug Mechanism References
Luteolin Luteolin suppresses the accumulation of lipid rafts to inhibit TNF-a production in mouse macrophages [80]
EGCG Epigallocatechin gallate (EGGG) decreases the fluidity of binary membranes. On the other hand, it [81]
induces lipid raft clustering and apoptotic cell death in human multiple myeloma cells
Dimeric procyanidin Dimeric procyanidin increases the membrane fluidity in human acute T-cell leukemia cells [82]
Hexameric procyanidin Hexameric procyanidin decreases the membrane fluidity and prevents the lipid raft disruption induced [83]
by deoxycholate in human colon cancer cells
Emodin Emodin causes disrupted lipid rafts in human umbilical vein endothelial cells [84]
Ginsenosides Ginsenosides increase the membrane fluidity and reduce the raft-marker protein concentration in lipid [85]

rafts in Hel.a cells

Saikosaponin

Saikosaponin inhibits Lipopolysaccharide-induced cytokine expression and Toll-like receptor localization  [86]

in lipid rafts, and reduces membrane cholesterol levels in mouse macrophages

Methyl-beta-cyclodextrin
(MBCD) treatment

Itis observed that MBCD causes depletion of cholesterol in the rafts by methyl-beta-cyclodextrin (MBCD)  [87]
treatment impaired the expression of the cell surface receptor angiotensin-converting enzyme 2 (ACE2),

resulting in a significant increase in SARS-CoV-2 entry into cells

Statins

Statins reduces cholesterol synthesis by inhibiting the activity of HMG-CoA reductase. Statins could [88]

modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engage-
ment. In addition, statins, by inducing autophagy activation, could regulate virus replication or degrada-

tion, exerting protective effects

The Acid Sphingomyelinase/Ceramide System

in Viruses

Scientific studies showed severe consequences and
harsh symptoms resulting from acute respiratory syn-
drome coronavirus 2 (SARS-COV-2). Virus infectivity
and spread have been extensively studied. Interestingly,
SARS-CoV-2 infectivity occurs by attachment to the host
cell receptor via S proteins. This results in virus priming
by proteases, facilitating viral entry through endocyto-
sis and completing the viral life cycle. The sphingolipid
family is the most common lipid along the cell mem-
brane, including sphingosine and ceramide. Such lipids
can interfere with virus uptake into epithelial cells and in
cultures of human nasal cells. With the different mecha-
nisms of action, sphingosine is blocked, while ceramide
enables viral infection. The well-known acid sphingomy-
elinase (ASMase) is essential to produce ceramide, and
drug inhibition, like amitriptyline, reduces entry into epi-
thelial cells.

Consequently, a key prognostic marker for assessing
the severity of COVID-19 is S1P [89]. ASMase trans-
forms sphingomyelin into ceramide, found either on the
cell membrane surfaces or attaches to the outer surface of
plasma membranes. Acid sphingomyelinase surfaces func-
tion as signalling molecules and produce ceramide in the
outer parts of plasma membranes. The ceramide mole-
cules are hydrophobic and form small membrane domains
that rearrange to form larger platforms. These domains
recognize 1-integrin, CD95, CD40, DR5, and other acti-
vated receptor molecules. Ceramide platforms mediate
bacterial or viral infection and other stress stimuli [24].

When viruses enter cell membranes, sphingolipids
function as bioactive lipids that transmit signals inside
and outside cells. So, limiting viral replication by tar-
geting the host cell’s sphingolipid metabolism may give
a chance for more therapeutic approaches. Host cell
viral infection begins with endocytosis, then un-coat-
ing, exocytosis, and discharge of nucleocapsids into
the cytoplasm. These previous actions are affected by
membrane microdomains. Subsequently, the interac-
tions between viruses and cells promote different signal
cascades affecting cellular uptake, intracellular traffick-
ing, and viral replication [90].

The ASMase activity is implicated in other viruses
like Ebola’s early infection stages. Acid sphingomyeli-
nase activation is crucial for Ebola virus endocytosis,
making Niemann-Pick C protein 1 (NPC1), an endo/
lysosomal cholesterol transporter, virus particle-
accessible. To facilitate the fusing of the Ebola virus
and endosomal membranes, NPC1 is essential for
viral absorption. Thus, NPC1 acts as a receptor for the
proteolytically activated viral envelope protein in an
intracellular compartment rather than at the plasma
membrane.

Acid sphingomyelinase activation is also recognized
after the interaction of dendritic cells with the measles
virus. Viral glycoproteins interact with DC-SIGN on the
cell surface, which induces the activation of sphingo-
myelinase and the release of ceramide molecules. Then,
measles virus receptor CD150 entry is translocated
from an intracellular storage compartment to the cell
surface, favouring viral infection of dendritic cells [90].
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Trafficking Process utilized in viral entry

The trafficking or endocytosis process enables cells to
internalize macromolecules, nutrients, or viruses into
the cell [91]. The endocytosis process is classified into
receptor-mediated endocytosis, caveolae uptake, or
clathrin-independent endocytosis, including the CLIC/
GEEC pathway [92-94]. Internalized macromolecules
are categorized by endosomes, which are a pleiomorphic
series of tubulovesicular compartments [95]. Internalized
macromolecules are processed in various ways, including
back-recycling to the cellular plasma membrane, deg-
radation by delivery to the lysosomal molecules, or to
polarized cells through transcytosis [96]. Several events
accompany the maturation of endosomal compartments,
including luminal pH decrease, significant phosphati-
dylinositol lipid alterations via regulating lipid kinases
and phosphatases, and activation and differential Rab-
family GTPase recruitment. The trafficking or endocy-
tosis process has critical cellular functions. Functions
include cellular communication between cells and the
environment, controlling cellular homeostasis and regu-
lating essential surface proteins, and viral or bacterial
entrance [97]. Moreover, the process regulates cell signal-
ling through G-protein coupled receptors and receptor
tyrosine kinases [98, 99]. This review focuses on clathrin
and dynamin-independent pathways, especially lipid raft
entry, and their role in SARS-CoV-2 entry.

Clathrin and dynamin-independent pathways
utilized in viral entry

Receptor-independent endocytosis (CIE) includes the
CLIC/GEEC pathway responsible for cellular functions.
For instance, cell signalling, adhesion, nutrient recep-
tors, and regulation of the expression of certain mem-
brane transporters. The endocytic vesicles/tubules of
CIE are characterized by having no distinct coat. The CIE
was discovered using inhibitors blocking clathrin-medi-
ated and caveolae-mediated endocytosis [92, 93, 100].
Small GTPases Racl and Cdc42 involved in clathrin-
and dynamin-independent pathways are responsible for
actin formation-dependent clathrin-independent carriers
(CLICs) [101]. The GPI-AP enriched endosomal com-
partments are specific early endosomal compartments
generated by the fusion of CLICs (GEECs) [102, 103].
This process, called the CLIC/GEEC pathway, depends
on specific proteins, including GTPase and Arf6, and is
responsible for taking and recycling the major Histocom-
patibility Antigen I [104].

Small protein Arf6 triggers the activation of phosphati-
dylinositol-4-phosphate 5-kinase, resulting in PI(4,5)
P2, which induces actin assembly and drives endocy-
tosis [105]. Another endocytosis pathway is the flotillin
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pathway, which depends on curvature-generating and
membrane-anchored proteins [106, 107]. In vitro HeLa
cells undergo CLIC/GEEC and a flotillin-dependent
pathway, taking up PI-anchored protein and CD59. The
CLIC/GEEC pathway and the Arf6-pathway are both
involved in the uptake of the transmembrane protein
CD44 [108]. Several types of CLIC/GEEC pathways play
a role in rapidly recycling cell membranes. The CLIC/
GEEC pathway is responsible for nutrient and toxin
uptake and is considered a portal for viral infection [109].

SARS-CoV-2 Entry by Lipid Rafts

Viral entry and infection depend on endocytosis path-
ways, especially sphingolipids and lipid rafts. Many
viruses utilize lipid rafts to enter the host cell and facili-
tate infection, including hepatitis C viruses [47], human
herpes virus 6 [110], poliovirus [46], and simian virus
40. Coronaviruses, including SARS-CoV-2, interact with
lipid rafts to enter host cells and cause infection [111,
112]. Studies by Thorp and Gallagher (2004) supported
the function of sphingolipids and cholesterol in viral
infections, where cholesterol reduction prevents viral
entry [49].

The virus is made up of an envelope that includes
spike protein (S), membrane protein (M), and minor
envelope protein (E). Transmembrane serine protease
2 (TMPRSS2), with the help of furin, triggers cleavage
of the viral spike (S1 and S2) [51]. The Golgi apparatus
contains a predominant amount of furin; the other part
is found on the cell surface [52]. Once the viral spike and
its structural proteins bind to ACE-2, it is activated and
promotes viral entry into the host cell.

The host cell receptor is angiotensin-converting
enzyme-2 that binds to the S proteins in the virus [113],
enabling proteolysis of viral surface S1 subunit by a
plasma-membrane-bound serine protease (TMPRSS2)
and Cathepsin L (CatL), which may be associated with
caveolae [114]. Once SARS-CoV-2 is attached to caveolae
and enters intracellular endosomes, cathepsin L emerges
as the main protease of the virus [115].

Viral gateway into the host cell or ACE-2 receptor
exists on the surface of several types of cells, including
kidney, respiratory, and intestinal epithelial and endothe-
lial cells. Respiratory SARS-CoV-2 attaches to ACE-2 by
gln493 residue, enabling viral entry. Viral S protein not
only attaches to ACE-2 but also binds to host cell surface
gangliosides. A new type of ganglioside-binding domain
(111-158) was identified within the N-terminal domain
of the SARS-CoV-2 S protein, facilitating attachment of
viral spike to lipid rafts and attachment to host cell recep-
tors [54]. The ACE-2 is colocalized with SARS-CoV-2,
entering and infecting host cells by direct membrane
fusion or by host cell ACE-2. Lipid rafts are key in both
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viral entrance methods, enabling the concentration of the
endocytic proteins for endocytosis and fusion, as shown
in Fig. 3. When endocytic proteins concentrate and inter-
act within lipid rafts, the frequency of interprotein col-
lisions by protein partitioning into lipid rafts increases
[116]. As a result, lipid rafts act as plasma membrane
"chambers" that facilitate protein interactions on the
plasma membrane, promote the rate of molecule colli-
sions, and consequently improve the efficacy of mem-
brane reactions.

Lipid rafts play a role in viral infection by providing
appropriate platforms that concentrate host cell recep-
tor ACE-2 on the cell membrane, where they attach
with viral S protein. The receptor binding domain (RBD)
is the vital part of the virus that engages the protease
domain (PD) of ACE-2, resulting in a complex contain-
ing a dimeric ACE-2 with two S protein trimers [117].
Multivalent binding of virus particles to the cell surface
occurs by host cell receptors clustering. Microdomains
of the host cell membrane improve the efficiency of viral
infection and facilitate viral endocytosis. Several stud-
ies confirm that methyl-B-cyclodextrin (MBCD) inhibits
infectious bronchitis virus infection by disrupting lipid
rafts, indicating that lipid rafts play a role in viral entry
[56, 118]. After the viral S protein attaches to ACE-2 and
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the virus and host receptor complex have formed, lipid
raft and focal adhesions are clustered during endocytosis.
Therefore, lipid rafts are hypothesized to be significant
during the early stages of coronavirus infection.

Lipid Raft Distribution Reduces SARS-CoV-2
Infectivity

Some drugs affect lipid rafts and thus play an important
role as antiviral drugs. Lipid raft distribution and choles-
terol depletion by methyl-B-cyclodextrin (MBCD) mini-
mizes the infectivity of the influenza virus [119]. Lipid
raft distribution reduces viral infectivity and holes in
the viral envelope, which disturb the viral structure and
affect viral protein release. Several studies observed that
cholesterol depletion reduces the infectivity of SARS-
CoV-2 [120-122]. Inhibiting of viral biosynthesis and
infection occurs using drugs such as lovastatin or squal-
estatin that promote cholesterol depletion. A significant
viral ASM/ceramide system in SARS-CoV-2 is important
for viral infection. Entry of SARS-CoV-2 and clustering
with host cell receptors are facilitated by stimulation of
the ASM/ceramide system, subsequently forming mem-
brane domains rich in ceramide platforms on the cell
membrane [24].

} RBD of SARS-CoV-2

Glycoprotein

Phosphol|p|d

o
Ty 1
-y ; | Li

Surface
protein Cholesterol
a-helix
protein
(integral)

Fusion and virus
disassembly

Fig. 3 Representation of SARS-CoV-2 Entry mechanism by interacting of spike protein in RBD of the virus with host receptor ACE-2
and consequently internalized into the cell through endocytosis process by helping lipid rafts
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Table 2 Functional inhibitors of acid sphingomyelinase (FIASMs)
with US Food and Drug Administration (FDA) appraisal

No FIASMAs FDA Molecular References
weight g/
mole

1 Alverine Not approved 281.44 [27,125,126]

2 Astemizole Approved 458571 [127]

3 Aprindine Not approved 322487 [27,125]

4 Amlodipine Approved 408.879 [125 1271

5  Ambroxol Approved 378.1028 [125]

6  Amiodarone Approved 645.31 [128,129]

7 Amitriptyline Approved 277403 [128-130]

8  Benztropin Approved 307429 [127,131]

9  Bepridil Approved 366.54 [127 131,132]

10 Biperidene Approved 31146 [27,125]

11 Camylofine Approved 32047 il 27]

12 Carvedilol Approved 406474 [27,125,128,130]

13 Cepharanthine  Not approved 606.7 [27 125,133, 134]

14 Clofazimine Approved 4734 [2 ]

15  Clemastine Approved 343.89 [2 135,
136]

16  Cloperastine Approved 329.86 [12 ,137]

17 Chlorprothixene Not approved 315.86 [12 , 135]

18 Chlorpromazine Approved 318.86 [128, 131,134,
138]

19  Clofazimine Approved 47339 [128, 139, 140]

20 Clomiphene Approved 405.966 [127,141,142]

21 Clomipramine  Approved 3149 [128, 131, 143,
144]

22 Conessine Not approved 356.6 [27,125]

23 Cycloben- Approved 2754 [127,128]

zaprine

24 Cyproheptadine Approved 287.39 [127,128]

25 Desipramine Approved 266.388 [128, 143, 145]

26 Desloratadine Approved 310.82 [27,125,145]

27  Dicycloverine Approved 309.487 [27,125,140]

28 Dilazep Approved 604.7 [132, 146]

29 Dimebon Not approved 319.452 [27,125]

30 Doxepine Approved 279.376 (127,132, 147]

31  Drofenine Approved 31747 (127,128,143,
145]

32 Emetine Not approved 480.639 [125,134,
148-150]

33 Fendeline Approved 3155 [1271

34 Flupenthixol Not approved 434.5219 [136, 143, 151]

35  Fluoxetine Approved 309.33 [127-129, 144,
146]

36  Fluvoxamine Approved 318.335 [125,143,152]

37 Fluphenazine Approved 437.523 [125,128,131,
153]

38  Flupentixol Not approved 434.5219 [136,143,151]

39 Flunarizine Not approved 404.495 [128,135]

40  Hydroxyzin Approved 374.904 [125,129, 144,
154, 155]
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Table 2 (continued)
No FIASMAs FDA Molecular ~ References
weight g/
mole

41 Imipramine Approved 280.407 [12 , 145,
156]

42 Loperamide Approved 477.037 [129 ,157]

43 Loratadine Approved 382.88 [128, 154, 158}

44 Maproteline Approved 277403 [127,128,135,
W45]

45 Melatonine Not approved 232.278 [130, 138,159,
160]

46 Mebhydroline Not approved 276.376 [125]

47  Mebeverine Not approved 429.55 [27,125]

48  Mibefradile Not approved 495.63 [27,125]

49  Norfluoxetine Approved 29530 1271

50 Nortriptyline Approved 263377 [125,127,146]

51 Paroxetine Approved 329.37 [127,129, 144,
160, 161]

52 Perphenazine Approved 403.97 [27,125,128,162]

53 Pimozide Approved 461.56 [27,125]

54 Pimethexene Approved 293434 [1271

55 Profenamine Discontinued 3125 [27,125]

56 Promethazine Approved 2844191 [127,128,131,
155]

57 Promazine Not approved 284.42 [127]

58  Protriptyline Approved 263377 [127,128]

59 Quinacrine Not approved 400.0 [155 163]

60 Sertindole Not approved 440.941 [27,125]

61 Solasodine Not approved 413.64 [27,125]

62 Sertraline Approved 306.229 [127 144, 164]

63 Suloctidil Not approved 337.6 [127]

64 Tamoxifene Approved 371515 [144,155, 164]

65 Thioridazine Approved 370.6 [163 165}

66 Tomatidine Not approved 415.7 [27,125]

67 Terfenadine Not approved 471.673 [2 ]

68 Trifluoperazine  Approved 407.497 [12 ,164]

69 Triflupromazine  Approved 3524 [2 ]

70 Trimipramine Approved 294434 [128, 166]

71 Zolantidine Not approved 381.5 [27 125]

In this context, the ASM/ceramide system is con-
sidered an antiviral target to reduce viral infection.
FIASMAs are antiviral drugs used against the ASM/
ceramide system in SARS-CoV-2 that inhibit the for-
mation of ceramide-enriched membrane domains,
thereby preventing SARS-CoV-2 infection (Table 2).
Ceramide has several functions, including clustering
of ACE-2 in large membrane domains and amplifying
signaling via ACE-2, which is also required for host
cell ACE-2 internalization of the virus into the endo-
some [123]. Cathepsins in the endosome interact with
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ceramide produced inside endosomes or on the cell
membrane’s outer leaflet, promoting spike-protein
priming and membrane fusion [124]. As a result, FIAS-
MAs inhibit the formation of domains enriched with
ceramide and viral entry and infection. In this context,
viral infection is inhibited by the down-regulation of
the genetic expression of ASMase. FIASMAs change
the pH of the endosome, enabling lysosomes to target
the endosome and make the virus more susceptible to
lysosomal degradation. Therefore, our review suggests
FIASMA medications as antiviral therapeutics by tar-
geting lipid raft domains.

Functional Inhibitors of Acid Sphingomyelinase
FIASMAs’ Mechanism of Action

Specific electrostatic forces bind lysosomal acid sphin-
gomyelinase to the intra-lysosomal membranes and
thus remain protected against proteolytic activity.
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Lo
©v~© :

E 0\/\NHZ H 0
E Bepridil

Amlodipine

K

O >
Alverine

Aprindine

? N-glycosylation sites ~ Sap Sap domain

PD Proline-rich domain

Catharanthine

N %\NMN’\

Metallo-phosphatase domain
(Catalytic)

Page 11 of 27

FIASMAs inhibit ASMase by an indirect mechanism
[26] (Figs. 4). The intra-lysosomal space maintains a
low pH by an ATP-driven proton pump, which retains
the attachment of the ASMase to the intra-lysosomal
membranes. The lysosomal membrane is characterized
by low permeability towards the protonated bases com-
pared to uncharged ones (lysomotropism). Therefore,
with the intake of FIASM As and other weak bases (lys-
osomal accumulation), the intra-lysosomal pH raises
and diminishes the electrostatic interactions between
the lysosomal membrane and the ASMase, resulting in
ASMase detachment [127].

Following the detachment, ASMase is cleaved and
degraded within the lysosomes by proteolytic degrada-
tion [27, 167]. Notably, inhibition of ASMase by certain
drugs has long been recognized, but systematic stud-
ies describing FIASMA inhibition are fairly new [127]
(Figs. 5, 6).
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Fig. 4 Representation of targeting FIASMAs on the catalytic domain of ASMase protein
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In Vitro Docking of Potent Antiviral Compounds
Based on Sphingolipid Inhibition

Molecular Operating Environment (MOE) software
was used to perform docking analyses [168] of acid
sphingomyelinase inhibitors to quantify their inhibi-
tory effect on SARS-CoV-2 uptake. Their binding
modes with mammalian acid sphingomyelinase’s bind-
ing site (PDB code: 5FI9) and their interaction with key
amino acids were compared to the candidate drug ami-
odarone [169]. All structure minimizations were per-
formed until an RMSD gradient of 0.05 kcal-mol~! A1
with MMFF94x force field, and partial charges were
automatically calculated. All intervening water mol-
ecules were removed from the structure, and then the
target protein was prepared for docking using Pro-
tonate 3D protocol in MOE with default parameters.
The co-crystalized ligand was used to define the bind-
ing site for docking simulation. The Triangle Matcher
Placement method and London dG scoring function
were employed for docking and scoring. The docking
protocol was first validated by self-docking the co-
crystallized ligand near the protein’s binding site. The
ligand-receptor interactions at the protein binding
site were studied with the validated docking protocol

(RMSD < 2) for the reported inhibitors to predict their
binding mode and binding affinity.

Validation and endorsement of the docking proto-
col were achieved by self-docking of the co-crystallized
(1-azanyl-1-phosphono-decyl) phosphonic acid (APPA)
within the acid sphingomyelinase active site with an
energy score (S) of —28.75 kcal/mol and RMSD of 1.49 A,
and with reproducing all interactions of APPA with the
binding site of the enzyme (Fig. 7A). Reported inhibitors
interacted with the key amino acids in the acid sphingo-
myelinase active site, indicating their inhibition activi-
ties as confirmed by their docking scores (S) and binding
modes compared to that of the candidate drug amiodar-
one (Figures. 7B and Table 3).

The docking simulation studies revealed that dilazep
(S=-12.58 kcal/mol), emetine (S=-11.65 kcal/
mol), pimozide (S=-11.29 kcal/mol), carvedilol
(S=-11.28 kcal/mol), mebeverine (S=-11.14 kcal/
mol), cepharanthine (S=-11.06 kcal/mol), hydroxyzine
(S=-10.96 kcal/mol), astemizole (S=-10.81 kcal/
mol), sertindole (S=-10.55 kcal/mol), and bepridil
(S=-10.47 kcal/mol) had higher inhibition activity than
the candidate drug amiodarone (S=-10.43 kcal/mol)
towards the acid sphingomyelinase. In addition, dilazep
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Fig. 6 Schematic representation of the mode of action of FIASMAs (functional inhibitors of acid sphingomyelinase). A Eukaryotic cell display
cellular organelles. B A magnified version of lysozyme exhibiting FIASMs indirect inhibition of ASM (acid sphingomyelinase)

(S=-12.58 kcal/mol) was the most effective inhibi-
tor. Additionally, we provided a comprehensive Table 4
for publicly available inhibitors of ASMase in vitro and
in vivo in previous studies to give insight into experi-
mental data regarding ASMase inhibitors.

Conclusion and limitations

Nevertheless, dilazep showed the most promising in
silico results against ASMase with (S=-12.58 kcal/
mol); we couldn’t find a correlation with experimental

(See figure on next page.)

data; however, our pre-elementary docking can be vali-
dated through in vitro and in vivo future experimental
data. Interestingly, emetine had (S=-11.65 kcal/mol),
consistent with its in vitro capacity against SARS-CoV-2
virus in Vero E6 cells with the estimated 50% effective
concentration at 0.46 uM [148]. Pimozide pointed out
(S=-11.29 kcal/mol) can be correlated with its ICs,
potency of 42+2 puM and its potent inhibitory infection
by pseudotyped viruses with minimal effects on cell via-
bility [143, 178]. While carvedilol had (S=-11.28 kcal/

Fig. 7 A () Superimposition of the docking pose (green) and the co-crystallized (blue) of (1-azanyl-1-phosphono-decyl) phosphonic acid (APPA)
in the acid sphingomyelinase active site with RMSD of 1.49 A. (ii) 2D interaction diagram showing APPA docking pose interactions with the hot
spots in the enzyme active site. B. 2D diagrams of the candidate drug (amiodarone) and the reported inhibitors. 1. Alverine, 2. Ambroxol, 3.

Amiodarone, 4. Amitriptyline, 5. Amlodipine, 6. Aprindine, 7. Astemizole,8.Benztropine, 9. Bepridil, 10. Biperidene, 11. Camylofine, 12. Carvedilol, 13.
Cepharanthine, 14. Chlorpromazine, 15. Chlorprothixene, 16. Clemastine, 17. Clofazimine, 18. Clomiphene, 19. Clomipramine, 20. Cloperastine, 21.
Conessine, 22. Cyclobenzaprine, 23. Cyproheptadine, 24. Desipramine, 25. Desloratadine, 26. Dicycloverine, 27. Dilazep, 28. Dimebon, 29. Doxepine,
30. Drofenine, 31. Emetine, 32. Fendeline, 33. Flunarizine, 34. Fluoxetine, 35. Flupenthixol, 36. Fluphenazine, 37. Fluvoxamine, 38. Hydroxyzin, 39.
Imipramine, 40. Loperamide, 41. Loratadine, 42. Maproteline, 43. Mebeverine, 44. Mebhydrolin, 45. Melatonin, 46. Mibefradil, 47. Norfluoxetine, 48.
Nortriptyline, 49. Paroxetine, 50. Perphenazine, 51. Pimozide, 52. Profenamine, 53. Promazine, 54. Promethazine, 55. Protriptyline, 56. Quinacrine,

57 Sertindole, 58. Sertraline, 59. Solasodine, 60. Suloctidil, 61. Tamoxifene, 62. Terfenadine, 63. Thioridazine, 64. Tomatidine, 65. Trifluoperazine, 66.
Triflupromazine, 67. Trimipramine, 68. Zolantidine showing their interaction with the key amino acids in the acid sphingomyelinase



Page 14 of 27

(2024) 24:395

Alkafaas et al. BMC Public Health

Fig. 7 (Seelegend on previous page.)



Alkafaas et al. BMC Public Health (2024) 24:395

Table 3 Docking energy scores (S) and hot spots involved in
binding for APPA (the co-crystalized compound), amiodaron
(the drug candidate), and the reported compounds in the acid
sphingomyelinase active site

Compound Docking score (S) Hot spots involved in
(kcal/mol) binding
APPA —2875 Asn316, His280,
(Co-crystalized ligand) and Zn(ll) ions
Amiodarone —-1043 Tyr572
(Drug candidate)
Alverine —-822 lle 487
Astemizole —-10.81 Asn488 and His457
Aprindine —841 Asn488 and Thr456
Amlodipine —-9.14 Zn(ll) ions
Ambroxol —8.54 His455, His457, Glu386,
and Zn(ll) ions
Amitriptyline -794 lle 487
Benztropine -818
Bepridil -1047 Asn488
Biperidene -7.96 Thr456
Camylofine —855 His280 and His455
Carvedilol -11.28 _—
Cepharanthine -11.06 Asn316, His280, 1le487,
and His457
Clofazimine -10.37 lle 487
Clemastine -840
Cloperastine -804 —
Chlorprothixene —7.86 Asn323, His280,
and Phe486
Chlorpromazine -829 lle 487
Clomiphene —895 —
Clomipramine -831 His280
Conessine -833
Cyclobenzaprine —-803 Asn488 and His457
Cyproheptadine —845 _—
Desipramine -838 Asn316 and Glu386
Desloratadine -877 Asn323 and His280
Dicycloverine —753 His280 and His457
Dilazep —12.58 His457
Dimebon -941 Asn488
Doxepine -8.36 Asn488
Drofenine -8.08 Asn316 and His317
Emetine =116
Fendeline —-9.06 lle487
Flupenthixol —10.39 His455, His280, His457,
1le487, and Zn(ll) ions
Fluoxetine —-10.09 His457, 11e487,
and Lys103
Fluvoxamine -937 His455, 1e487, and Zn(ll)
jon
Fluphenazine -9.59 His455, His317,
and Glu386
Flunarizine -9.20 His317
Hydroxyzine —10.96 His455, 11e487, and Zn(ll)

ions
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Table 3 (continued)

Compound Docking score (S) Hot spots involved in
(kcal/mol) binding

Imipramine —7.76 Asn488

Loperamide -10.13 Asn316, His280,
and Lys103

Loratadine -847 —

Maproteline -7.96 His280, Thr456,
and His457

Melatonine -9.23 His280

Mebhydroline -802 Asn488

Mebeverine -11.14 His457

Mibefradil —-10.09 Asn488 and Glu386

Norfluoxetine -10.34 His280 and Zn(ll) ions

Nortriptyline —749 His457

Paroxetine -10.23 Asn488

Perphenazine -978 His455, His317,
and Zn(ll) ions

Pimozide -11.29 His280, His317,
and Asn488

Profenamine -7.72 His317

Promethazine -7.62 lle487

Promazine -8.09 lle487

Protriptyline —848 lle487

Quinacrine -10.19 His280

Sertindole —-10.55 His457

Solasodine -864 His317

Sertraline -777 His317

Suloctidil —8.64 His455

Tamoxifene -8.56 Phe486

Thioridazine —-8.00 His317

Tomatidine —-885 His280

Terfenadine —-10.39 His455 and His457

Trifluoperazine -10.22 lle487

Triflupromazine -872 Asn488

Trimipramine -7.79 His280, Asn323,
and Phe486

Zolantidine -9.13 His457 and lle487

mol), a previous cohort study didn’t confirm its role as
a significant player against SARS-CoV-2 [130]. Mebev-
erine showed (S=-11.14 kcal/mol); however, to our
knowledge, the inhibitor hasn’t been tested experimen-
tally. Furthermore, cepharanthine, which pointed out
(S=-11.06 kcal/mol), had potential antiviral activities
against SARS-CoV-2 [179]. Hydroxyzine (S=-10.96
kcal/mol) had previously shown a significant impact
against SARS-CoV-2 in vitro and in vivo approaches
[154, 193]. Astemizole had (S=-10.81 kcal/mol) given
by its ability to bind to the ACE2 receptor and inhibit
the invasion of SARS-COV-2 Spike pseudoviruses [170].
Sertindole had (S=-10.55 kcal/mol) results, which is
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in agreement with its showed in vitro inhibition of acid
sphingomyelinase [174]. Bepridil (S=-10.47 kcal/mol)
was found to be a significant inhibitor against SARS-
CoV-2 activity in both Vero E6 and A459/ACE2 cells in
a dose-dependent manner with low micromolar effective
concentration, 50% (ECg,) values [178].

Limitations

Our work can be considered pre-elementary screen-
ing for ASMase inhibitors, leading to several candi-
dates that should be tested in vitro and in vivo. Also,
FIASMAs binding to the active site of ASMase wasn't
significantly robust as compared to crystallographic
ligand (S=-28.75 kcal/mol), which can be attributed
to the indirect work of FIASMAs through lysosomal
accumulation and raising intra-lysosomal pH causing
reduced the electrostatic interactions between the lyso-
somal membrane and the ASMase, resulting in ASMase
detachment. Also, our in silico framework depended
only on MOE software, which didn’t reveal the stand-
ard deviations of binding energies, so we recommend
using additional software to validate the results further.
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