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Abstract 

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton’s tyrosine kinase 
inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. 
To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell 
RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-
depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resist‑
ance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver 
of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R 
samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting 
of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study 
revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.
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Background
Mantle cell lymphoma (MCL) is an aggressive subtype 
of non-Hodgkin B-cell lymphoma [1]. FDA-approved 
Bruton’s tyrosine kinase inhibitors (BTKi, e.g., ibru-
tinib, acalabrutinib, and zanubrutinib) [2–4] and the 
CD19-targeting chimeric antigen receptor (CAR) T-cell 
therapy brexucabtagene autoleucel [5] represent major 
therapeutic milestones that have transformed MCL 
treatment. However, relapse frequently occurs with 
poor patient survival, especially for the patients with 
sequential resistance to BTKi and CAR-T [6, 7].

The mechanisms of ibrutinib resistance have been 
studied in chronic lymphocytic leukemia (CLL) [8] and 
MCL [9, 10], which employ distinct mechanisms to 
develop ibrutinib resistance. Genetic alterations occur 
frequently in ibrutinib-relapsed CLL patients [8], but 
rarely in ibrutinib-relapsed MCL patients. Instead, 
transcriptomic reprogramming towards OXPHOS and 
MYC targets appears to act as the major non-genetic 
driving force for ibrutinib resistance in MCL [11]. 
Our single-cell RNA sequencing (scRNA-seq) of MCL 
patient samples confirmed this and further revealed 
resistance-associated transcriptional heterogene-
ity and evolution [12]. However, the precise mecha-
nisms underlying BTKi resistance, as well as resistance 
to CAR-T have not been fully understood. Given that 
cases with BTKi-CAR-T sequential failure have worse 
survival after CAR-T relapse [7], it is essential to under-
stand the mechanisms of sequential resistance to BTKi 
and CAR-T therapies (BTKi-CAR-T sequential resist-
ance) and develop alternative therapies.

Therefore, we applied single-cell RNA sequencing 
(scRNA-seq) to primary samples from MCL patients 
who developed BTKi-CAR-T sequential resistance 
to understand the transcriptomic evolution driv-
ing sequential resistance. We integrated two cohorts 
for this study: a BTKi cohort (n = 10) and a CAR-T 
cohort (n = 15); all patients in the CAR-T cohort had 
prior failure to BTKi therapy. Together with additional 
healthy controls, the samples collected from patients 
treated with these two therapies were investigated 
to understand the transcriptomic evolution driving 
BTKi-CAR-T sequential resistance at the cellular and 
molecular levels. Our analysis revealed outcome-asso-
ciated tumor-intrinsic gene signatures, cancer hall-
marks, and early-stage drivers that together indicated 
that the HSP90-MYC-CDK9 network drives tumor 
evolution and sequential resistance. Targeting this net-
work by simultaneous inhibition of HSP90 and CDK9 
showed synergistic effects in downregulation of MYC 
activity, thus representing a promising therapy in MCL.

Methods
Patient sample collection
The patient samples were collected from peripheral 
blood (PB), bone marrow (BM), biopsy, or apheresis 
(Additional file  1: Table  S1). The samples were purified 
by Ficoll–Hypaque density gradient centrifugation and 
cryopreserved before processing for scRNA-seq. Most 
samples were collected from PB; additionally, there were 
6 samples from BM (B0, D2, D4, V0, K0, and L3), 1 from 
lymph node (A3), and one from spleen (I2).

Single‑cell data processing and integration
The 10 × Genomics CellRanger pipeline (v6.0) [13] was 
used to process the raw scRNA-seq data. Reads were 
aligned to the UCSC human genome GRCh38 and CAR-
specific sequence contigs FMC63-scFV (https://​www.​
ncbi.​nlm.​nih.​gov/​nucco​re/​30569​0546). After generating 
the raw count matrix, the R package Seurat (v4.0.3) [14] 
was used for downstream analysis.

The samples from BTKi cohort were sequenced 
with single-cell 3′ gene expression kits (10 × Genom-
ics). The samples from CAR-T cohort were subjected to 
simultaneous single-cell gene expression and immune 
profiling, thus were sequenced with single-cell 5′ kits 
(10 × Genomics). To enhance the statistical power and 
robustness of our analyses, we integrated these two 
cohorts to study the sequential resistance to BTKi and/
or CAR-T therapy. Unsupervised dimension reduction 
of in silico bulk samples revealed that cell clustering was 
primarily dependent on the cohort, indicating a strong 
batch effect between two cohorts due to chemical dif-
ferences in the kits (Additional file 5: Figure S1A-C). To 
remove the batch effect and integrate both cohorts, we 
applied Seurat Canonical Correlation Analysis (CCA) 
[15]. To enable the evaluation of batch effect correction, 
one sample A3 was sequenced using both 5′ and 3′-kits. 
The datasets from each cohort were first processed inde-
pendently, and highly variable genes were identified 
(nfeatures = 2000). The “anchors” between two cohorts 
were found by the FindIntegrationAnchors() function in 
Seurat (v4.0.3). A corrected matrix was returned after 
removing batch effects, which became the input for the 
downstream dimension reduction analysis.

After CCA integration, A3 cells from the BTKi and 
CAR-T cohorts clustered together, demonstrating success-
ful integration (Additional file  5: Figure S1D). Moreover, 
well-known cell type marker genes such as CD8B (CD8+ T 
cell marker) and IL7R (CD4+ T cell marker) showed con-
cordant expression after integration, indicating that the inte-
grated embedding removed batch effects and represented a 
map of bona fide cell types (Additional file 5: Figure S1E).

https://www.ncbi.nlm.nih.gov/nuccore/305690546
https://www.ncbi.nlm.nih.gov/nuccore/305690546
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Copy number variation (CNV) analysis
The inferCNV tool was utilized to infer CNVs for each 
individual cell [16]. To mitigate any bias caused by an 
unequal number of cells per sample, we downsam-
pled cells to the same number of cells per sample. The 
copy number status in each cell was predicted by the 
inferCNV built-in six-state Hidden Markov Model 
(i6-HMM), including complete loss, loss of one copy, 
neutral, addition of two copies, and addition of more 
than two copies. The i6-HMM model generated a pos-
terior probability for each chromosome region. Those 
with low p-values were considered as putative aberrant 
regions. A relatively stringent cutoff was set to include 
only aberrations with high confidence (BayesMaxPNor-
mal = 0.2, default: 0.5).

Genome instability score
The genome instability score was quantified using the 
CNV profiles. The matrix of inferred CNVs was sub-
jected to principal component analysis (PCA). Next, the 
first 50 principal components were subjected to UMAP 
dimension reduction. The Euclidean distance calculated 
on the UMAP embedding between the normal cells and 
each individual cell was calculated to quantify genome 
instability.

Differential expression analysis and gene set enrichment 
analysis
Before modeling, the raw count matrix from both 
cohorts was log normalized and scaled. Cell cycle 
scores were calculated using the CellCycleScoring() 
function in the Seurat R package (v4.0.3). The differ-
ential gene expression analysis was conducted using 
a linear mixed model accounting for the patient as 
a random effect and cell cycle scores as a fixed effect. 
We applied two independent regressions. For the first 
regression, we restricted the analysis to samples in the 
BTKi cohort alone. Since this cohort contained samples 
from all clinical outcomes, it was used to identify genes 
associated with each clinical outcome. The linear mixed 
model with random effect was expressed as follows:

where Yij denotes the gene expression of sample j for 
patient i, and S and G2M are quantitative scores for the S 

(1)

Yij = β0 + β1 ∗ S + β2 ∗ G2M + β3 ∗ Outcomej

+ αi + εij

αi N
(

0, σ 2
patient

)

εij N
(

0, σ 2
)

and G2M phases. Outcomej is a categorical variable rep-
resenting the clinical outcome of sample j. The possible 
values include normal, BTKi-Fast, BTKi-Slow, BTKi-R, 
and Dual-R. The term β3 represents the fixed effect of the 
clinical outcome, which is of the greatest interest in our 
analysis. The term αi denotes patient random effect and 
εij denotes random error.

For the second regression, we combined data from both 
cohorts but restricted the analysis to Dual-R and BTKi-
R samples to identify genes that were robustly altered 
across both cohorts. The model was expressed as follows:

where Outcomej is a binary variable, with 0 represent-
ing BTKi-R samples and 1 representing Dual-R samples. 
Cohortj is an indicator that equals 0 for BTKi cohort and 
1 for CAR-T cohort. The p-values were adjusted using the 
Benjamini–Hochberg method [17]. Genes with adjusted 
p-values less than 0.1 were considered significant.

WebGestalt (version 0.4.4) [18] was used to run gene 
set enrichment analysis including multiple test correc-
tion. The cancer hallmark gene set was downloaded from 
the Molecular Signatures Database (MSigDB, v7.0) and 
contained 50 gene sets. The minimum number of genes 
in the pathways was set to 5 and the maximum was set 
to 500. The Benjamini–Hochberg method was used to 
adjust the p-values [17]. Those pathways with adjusted 
p-values less than 0.05 were considered statistically 
significant.

Reanalysis of published RNA‑seq data
We reanalyzed our published bulk RNA-seq dataset as 
described previously [11]. The R package DESeq2 (ver-
sion 1.30.1) was used to perform differential expression 
analysis [19]. Genes with adjusted p-value less than 0.05 
and absolute value of log2 fold change greater than 1 
were considered as significant differentially expressed 
genes (DEGs). To systematically evaluate the consistency 
between scRNA-seq DEGs and the bulk RNA-seq DEGs, 
we conducted Fisher’s exact test using fisher.test() func-
tion in the R package stats (version 3.6.2).

Trajectory analysis
Supervised embedding was calculated using outcome-
specific genes generated by formula 1. Trajectory analysis 

(2)
Yij =β0 + β1 ∗ S + β2 ∗ G2M + β3

∗ Outcomej + β4 ∗ Cohortj + αi + εij

αi N
(
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patient

)

εij N
(
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)
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was conducted using Monocle 3 [20] with default param-
eters, where the root of the trajectory was a random cell 
picked from the normal samples. The trajectory differ-
ential expression analysis was implemented using trade-
Seq (version 1.8.0) [21], which fits a generalized additive 
model for every lineage using the negative binomial dis-
tribution. To identify early driver genes between trajecto-
ries, we conducted the statistical test in a specified region 
of the trajectories. The earlyDETest() function was used 
to test for differential expression near bifurcation points 
and the first two knots were selected to restrict to the 
region near the bifurcation point. Multiple testing cor-
rection was performed using the Benjamini–Hochberg 
method [17]. Genes with a false discovery rate (FDR) less 
than 0.05 were considered significant.

DepMap analysis
To assess the functional relationship between HSP90 
and MYC, we analyzed cell viability data from the pub-
licly available Dependency Map (DepMap) resource. The 
data was downloaded from the DepMap Data portal in 
January 2021 (https://​depmap.​org/​portal). Pearson cor-
relation was used to assess the association between two 
genes across a selected set of cell lines. For the pan-can-
cer analysis, Pearson correlation was calculated across 
all 1,054 cell lines. For the lymphoma analysis, Pearson 
correlation was calculated across 35 cell lines annotated 
as “lymphoma” for the “lineage” variable. Lymphoma 
cell lines were divided into three groups based on MYC 
dependency tertiles. Next, we compared the HSP90 
dependency between the lowest and highest two MYC 
dependency tertiles using a t-test.

TCGA data analysis
We downloaded the TCGA-DLBCL RNA-seq expres-
sion matrix using the TCGAbiolinks R package [22]. 
Pearson correlation between the expression of MYC and 
HSP90AB1 was calculated.

Cell viability assay, cell apoptosis assay, and Western 
blotting
These assays were performed as described previously 
[12]. In the cell viability assay, cells were seeded at 10,000 
cells per well in 96-well plates and exposed to AZD4573, 
zelavespib, and tanespimycin for 72 h. Subsequently, cell 
lysis was conducted using the CellTiter-Glo Lumines-
cent Cell Viability Assay Reagent, and luminescence was 
quantified employing the BioTek Synergy HTX Multi-
mode microplate reader. For the apoptosis assay, Annexin 
V-binding was employed. MCL cells were treated sepa-
rately with the vehicle, AZD4573, zelavespib, and tane-
spimycin, stained with Annexin-V and propidium iodide, 
and then subjected to flow cytometric analysis using the 

Novocyte Flow Cytometer to determine the percentages 
of Annexin-V positive cells. Data analysis was carried out 
using NovoExpress or FlowJo10, and each experiment 
was meticulously repeated at least three times to ensure 
the reliability of the results, consistent with the proce-
dures outlined in the reference.

Bulk RNA sequencing of treatment
The Z138 cells treated with CDK9 inhibitor AZD4573 
alone or in combination with HSP90 inhibitors 
(zelavespib and tanespimycin) at the indicated concentra-
tion for 24 h were harvested and subjected to bulk RNA 
sequencing. The raw files were mapped to human refer-
ence genome GRCh38 using HISAT2 [23] and quantified 
by StringTie [24]. We then used the R package DESeq2 
(version 1.30.1) to perform differential expression analy-
sis [19].

Statistical analysis
All statistical analyses were conducted using R soft-
ware (version 4.0.3) and GraphPad Prism (version 9). 
Two-sided two-sample t-test was used to compare dif-
ferences between two groups. Results were considered 
statistically significant for p < 0.01 (**); p < 0.001 (***); and 
p < 0.0001(****).

Results
MCL patients had sequential failures to BTKi and CAR‑T 
therapy in the clinic
To explore the underlying mechanisms of sequential 
resistance to BTKi and CAR-T therapy in patients with 
MCL, we collected two patient cohorts in this study, des-
ignated BTKi and CAR-T (Fig. 1A). In total, we profiled 
66 patient samples using scRNA-seq. Two peripheral 
blood mononuclear cell (PBMC) samples from healthy 
donors were included as normal controls. To the best of 
our knowledge, this dataset represents the most exten-
sive collection of scRNA-seq data from MCL patients 
to date. The BTKi cohort contained 28 samples from 12 
patients, designated AA, B-E, and V-Z (Additional file 1: 
Table S1). The CAR-T cohort contained 39 samples from 
15 patients designated A and F-S. Notably, one sample, 
A3, was shared between both cohorts and underwent 
sequencing with two different kits to aid in the subse-
quent assessment of batch effects. Based on the clinical 
response and relapse stages, all samples were grouped 
into five clinical outcomes (Fig.  1A): (1) Normal (n = 2), 
(2) BTKi-Fast (collected from fast responders to BTKi 
therapies within 3 months post treatment; 4 patients [B 
(B0 and B1), C, D, and V], (3) BTKi-Slow (collected from 
slow responders to BTKi therapies beyond 3 months post 
treatment; 3 patients [X, Z, and AA]), (4) BTKi-R (col-
lected at relapse or refractory stage from patients with 

https://depmap.org/portal
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Fig. 1  scRNA-seq reveals transcriptomic heterogeneity in MCL patients with diverse clinical outcomes. A Experimental design summarizing patient 
sample information. Patient samples were categorized into five clinical outcomes according to their sensitivity to BTKi or CAR-T therapy. The number 
of patients (n) were denoted in the plot. B UMAP visualization represents cells colored by cell type. C Dot plot illustrates marker gene expression 
across cell types. Colors indicate low (purple) to high (yellow) expression. The circle size is proportional to the percentage of cells in which the gene 
was expressed. D UMAP visualization represents cells colored by clinical outcomes. E Bar plot shows cell type frequencies (x-axis) of each sample 
(y-axis) in the BTKi (left) or CAR-T (right) cohorts. Dot in front of each sample indicate clinical outcomes
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failure to BTKi; 17 patients [B (B4), E, F (F1-F2), G (G1), 
H, I, J, K, L (L3), M (M0), N, O, P, Q, S, W, and Y]), and 
(5) Dual-R (collected at relapse or refractory stage from 
patients with sequential failure to BTKi and CAR-T ther-
apies; 6 patients [A, F (F3), G (G2), L (L4-L5), M (M4), 
and R]). Part of these data have been published in a dif-
ferent context [12, 25]. The clinicopathological informa-
tion and demographic characteristics are summarized in 
Additional file 2: Table S2.

scRNA‑seq captures cellular and transcriptomic 
heterogeneity in MCL patients
We integrated scRNA-seq data from two patient cohorts 
using Seurat Canonical Correlation Analysis [15] (see 
Methods, Additional file 5: Figure S1). In total, 78,740 sin-
gle cell transcriptomes passed quality filtering (Fig.  1B). 
Based on canonical marker expression, seven major cell 
types were identified: B cells (286 normal cells, 0.36%; 
33,027 tumor cells, 41.94%) and six immune cell types 
forming the tumor microenvironment (TME): CD4+ 
T cells (9,745 cells, 12.38%), CD8+ T cells (10,538 cells, 
13.38%), NK cells (10,630 cells, 13.50%), CD14+ mono-
cytes (12,565 cells, 15.96%), CD16+ monocytes (1,811 
cells, 2.30%), and plasmacytoid dendritic cells (pDCs,138 
cells, 0.17%) (Fig. 1C–E).

The immune cells in the TME (e.g. CD4+ T cells, CD8+ 
T cells, NK cells, CD14+ monocytes, CD16+ monocytes 
and pDCs) were clustered according to cell types (Addi-
tional file  5: Figure S2A-B, left two panels). In contrast, 
normal and tumor B cells were grouped into multiple dis-
tinct sub-clusters (Fig. 1D, Additional file 5: Figure S2A-B 
right panels), indicating high transcriptomic heterogene-
ity across patients even within the same clinical outcome 
(Additional file 5: Figure S2C). Therefore, it is important 
to dissect the tumor-intrinsic transcriptomic changes 
and molecular determinants that are responsible for the 
development of BTKi-CAR-T sequential resistance while 
accounting for the inter-patient heterogeneity.

Increased copy number variations and proliferation reflect 
progression of therapeutic resistance
To understand the transcriptomic heterogeneity in tumor 
cells, we first isolated cells with same cell types (e.g. B 
cells and CD8+ T cells) and investigated their transcrip-
tomic changes at genomic level by scRNA-seq-inferred 
copy number variation (CNV) profiling. We applied 
inferCNV [16] to identify CNVs events using cells from 
healthy donors as reference (see Methods, Fig.  2A). As 
expected, no apparent CNVs were identified for non-
tumor CD8+ T cells across all patient samples (Additional 
file 5: Figure S3A-B). In contrast, MCL tumor cells from 
patients showed much higher levels of CNVs compared 
to normal B cells from healthy donors, and the CNV 

profiles were distinct from each other across patients, 
even within the same outcome groups (Fig.  2B, top 
panel). CCND1 chromosomal translocation t(11:14) is a 
hallmark event of MCL. Consistent with this, chromo-
some 11q gain was identified in the majority of tumor B 
cells, which is consistent with staining results (Additional 
file 2: Table S2). More CNVs were found in samples with 
resistance to BTKi and/or CAR-T compared to those 
sensitive to BTKi (Fig. 2B, C). For example, K0 and I2 in 
the BTKi-R group showed chromosome 14q gain, while 
B4 showed chromosome 12p and 17q gains (Fig.  2B, 
bottom panel); these CNVs were reported in our previ-
ous analysis and validated by whole-genome sequencing 
and patient-derived xenograft (PDX) models [12]. For the 
Dual-R group, sample R1 (CAR-T-refractory) exhibited 
gains in chromosomes 6p, 11q, 12p, 14q, and 22p, while 
M4 (CAR-T-relapsed) had losses in chromosomes 6q and 
8p but gains in chromosomes 11q, 15q, 17p, and 22p. 
Of note, chromosome 17p and 22p gains were detected 
exclusively in Dual-R samples (5/6 and 4/6, respectively) 
(Fig. 2B, bottom panel).

To quantify the extent of CNVs for tumor cells in each 
sample, we calculated genome instability scores. As 
expected, sample A3, which was profiled in both BTKi 
and CAR-T cohorts for quality control purpose, pre-
sented comparable genome instability scores, demon-
strating the robustness of this metric (Additional file  5: 
Figure S4). We observed a significant positive associa-
tion between the genome instability score of each out-
come group and tumor aggressiveness (ANOVA test, 
p < 2 × 10–16), with Dual-R samples having the highest 
scores, followed sequentially by BTKi-R, BTKi-Slow, and 
BTKi-Fast (Fig. 2D, and Additional file 5: Figure S4).

Complex karyotype has been identified as an important 
predictor of poor outcomes in patients with MCL [26]. 
Therefore, we assessed clinical karyotyping information 
available for a subset of the patients. Indeed, we found 
that four of six Dual-R (66.7%) and seven of twelve BTKi-
R (58.3%) patients showed complex karyotypes (Fig. 2E). 
In contrast, only one patient (Patient V, BTKi-fast) of six 
BTKi-sensitive patients had a complex karyotype (16.7%). 
Together, these data validated our scRNA-seq-derived 
findings and demonstrated that accumulation of large-
scale CNVs is associated with MCL tumor progression 
and therapeutic resistance.

Consistent with this, we observed that the proportion 
of proliferating cells was highly associated with thera-
peutic resistance (BTKi-R or Dual-R) (Fig.  3A). Most 
tumor B cells from resistant samples were in S or G2/M 
phase, while most in the sensitive samples were in G1 
phase (Fig.  3B). In patients with available pathological 
data from Ki-67-stained tumor biopsies, the percentages 
of Ki-67 positive cells were higher in resistant compared 
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Fig. 2  Tumor B-cell copy number variation (CNV) promotes the evolution of therapeutic resistance. A Left: UMAP visualization of all cells with B 
cells highlighted in blue. Right: UMAP visualizations of B cells colored by clinical outcomes, patient, and sample. B Heatmap displays cellular CNV 
profiles (row) of each cell across chromosomes (columns) for all samples (top) and restricted to longitudinal samples (bottom). Colors reflect copy 
number gains (red) and losses (blue). Sample names and clinical outcomes are annotated on the left. Samples are ordered by aggressiveness 
from the top (normal) to the bottom (Dual-R). C Plot shows the inferred copy number estimates (y-axis) for samples across chromosome 12 
(x-axis). Horizontal dashed line represents expected normal copy number. D Boxplot shows the Euclidean distance (y-axis) derived from the CNV 
profile-based low dimensional space across different clinical outcomes (x-axis). E Percentages of complex karyotype in each clinical outcome group
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Fig. 3  Resistant tumor cells acquire elevated proliferation rates. A Left: UMAP visualization of B cells colored by inferred cell cycle stages (G1, S, 
G2/M). Right: UMAP visualizations of B cells divided by clinical outcome: sensitive (BTKi-Fast and BTKi-Slow) and resistant (BTKi-R and Dual-R). Each 
dot represents one cell. Gray, orange, and red represent G1, S, and G2M cell cycle stages, respectively. B Boxplot shows inferred proliferation rates 
(y-axis) across clinical outcomes (x-axis) in single-cell RNA-seq dataset. Each dot represents one sample and is colored by clinical outcome. P-value 
was calculated using a generalized binomial model. C Boxplot shows proliferation rates as indicated by Ki-67-positive immunohistochemical 
staining across clinical outcomes from clinical pathologic data. Each dot represents one patient and is colored by clinical outcome. D Representative 
bone marrow images stained with hematoxylin and eosin (upper panels) or immunohistochemically stained for cyclin D1 (middle panels) or Ki-67 
(bottom panels) on samples from representative patients D (BTKi-Fast), AA (BTKi-Slow), Q (BTKi-R), and A (Dual-R)
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to sensitive patients (Fig. 3C, p < 2.2e-16). As representa-
tive examples, patients D (BTKi-Fast), X (BTKi-Slow), 
Q (BTKi-R), and A (Dual-R) all showed positive cyc-
lin D1 staining; however, only resistant patients Q and 
A showed high fractions of Ki-67 staining (Fig.  3D, 
p = 0.005). Together, these data demonstrate that the 
tumor B cells in the BTKi-R or Dual-R groups acquired 
large-scale CNV and elevated proliferation rates that pro-
moted disease progression.

BTKi‑CAR‑T sequential resistance is reflected by specific 
gene expression fingerprints
We next performed differential expression analysis to 
detect outcome-specific gene expression signatures. Due 
to high tumor heterogeneity across patients, we applied a 
mixed model with random effect accounting for patient 
heterogeneity, which outperformed alternative differ-
ential expression analysis approaches (Additional file  5: 
Figure S5). Because therapeutic-resistant cells are highly 
proliferating (Fig. 3), cell proliferation rate was included 
in the model as covariate to account for this effect. We 
first examined the BTKi cohort alone and identified dis-
tinct gene expression signatures associated with each 
BTKi-CAR-T clinical outcome (Fig. 4A, Additional file 3: 
Table S3). For example, expression of MYLIP, FAM177B, 
and DDX11 was upregulated in BTKi-Fast, BTKi-Slow, 
and BTKi-R samples, respectively (Fig. 4B). Despite high 
levels of patient heterogeneity our analysis identified sev-
eral genes that were significantly upregulated across most 
patients for each outcome even after correcting for mul-
tiple testing. Visualization of the distribution of p-values 
derived from our regression models revealed strong 
enrichment of low p-values, demonstrating the presence 
of statistical signal that goes beyond spurious associa-
tions (Additional file 5: Figure S6).

To validate our outcome-specific gene signatures, we 
reanalyzed publicly available bulk RNA-seq data from 
an independent cohort containing 6 ibrutinib-resistant 
(BTKi-R) and 15 ibrutinib-sensitive (BTKi-S) samples 
[11]. The bulk RNA-seq data was obtained from MCL 

primary patient samples while our regression models 
were restricted to tumor B cells. Despite these differ-
ences in cellular composition, we observed a significant 
correlation of fold changes between our scRNA-seq and 
bulk RNA-seq data (Additional file  5: Figure S7, Pear-
son correlation Rho: 0.15, p = 9.20 × 10–30). For example, 
GSAP and PRMT1 were down- and up-regulated, respec-
tively, in BTKi-R compared to BTKi-S samples in both 
the scRNA-seq and bulk RNA-seq data (Additional file 5: 
Figure S7).

Next, we combined the BTKi and CAR-T cohorts 
to examine genes with robust differential expression 
between BTKi-R and Dual-R samples in both BTKi 
and CAR-T cohorts. We identified 37 genes that were 
robustly upregulated in Dual-R samples compared to 
BTKi-R samples across both cohorts passing multiple 
testing correction (Fig. 4C, linear mixed model, adjusted 
p-value < 0.1). Among them, genes involved in transcrip-
tion machinery (e.g., POLR2C), transcription regula-
tors (e.g., CDK9 and PRMT2), and transcription factors 
(e.g., CHCHD3, DLX4, and PLAGL2) were upregulated 
in Dual-R compared to BTKi-R samples (linear mixed 
model, adjusted p-value < 0.1), suggesting a reprogram-
ming towards increased transcription associated with 
Dual-R (Fig. 4D). Importantly, all of the above genes are 
targets of the master regulator MYC [27]. For example, 
CDK9 is critical for the continuous expression of genes 
producing short-lived mRNAs or proteins, such as MYC 
and MCL-1 that promote cancer cell survival [28].

We then performed gene set enrichment analysis 
(GSEA) to assess the functions of outcome-associated 
gene signatures. Compared to BTKi responders (BTKi-
Fast and BTKi-Slow), the BTKi-R patients were enriched 
for MYC_TARGETS_v1, OXPHOS, DNA repair, and 
fatty acid metabolism (FDRs < 0.05), which were fur-
ther enriched in Dual-R samples compared to BTKi-R 
samples (Fig. 4E, Additional file 4: Table S4). Our analy-
sis identified progressive enrichment of MYC targets 
and OXPHOS pathway across clinical outcomes, which 
were associated with BTKi-CAR-T sequential resistance 

(See figure on next page.)
Fig. 4  Sequential resistance to BTKi and CAR-T therapies is reflected by specific gene expression fingerprints. A Heatmap shows the expression 
profile of outcome-specific genes (rows) across samples. Columns represent averaged expression profile of random 10 cells for each sample. 
Bars on the top denote clinical outcomes (five groups). Bars on the left highlight the outcome specific genes (four groups). B Boxplots show 
the expression of three outcome-specific gene expression across samples for representative genes MYLIP, FAM177B, and DDX11. Each dot represents 
averaged expression profile of random 10 cells for each sample. C Heatmap shows the expression profile of genes (rows) with significant changes 
between the Dual-R and BTKi-R samples across both cohorts. Columns represent averaged expression profile of random 10 cells for each sample. 
Representative genes (CDK9 and POLR2C) are highlighted in red. D Boxplots show differential expression of CDK9 and POLR2C in Dual-R and BTKi-R 
samples of both cohorts. Each dot represents averaged expression profile of random 10 cells for each sample. E Bar plots summarize the enriched 
pathways in different contrasts. Top: BTKi-R vs BTKi-sensitive (BTKi-Fast/Slow). Bottom: Dual-R vs BTKi-R. F Boxplots show average pathway scores 
(y-axis) of MYC_TARGETS_v1, MYC_TARGETS_v2, and OXPHOS gene sets across clinical outcomes (x-axis). There is a progressive enrichment of MYC 
targets and the OXPHOS pathway across the clinical outcomes
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(Fig.  4F, Additional file  4: Table  S4). Altogether, these 
data highlighted the role of MYC targets in contribut-
ing to sequential resistance, which may represent a novel 
therapeutic entry-point for overcoming resistance to 
BTKi and/or CAR-T therapy.

Pseudotemporal expression analysis reveals early drivers 
of therapeutic resistance
To understand the early-stage transcriptomic changes 
leading to the emergence of therapeutic resistance, we 
performed pseudotemporal trajectory analysis [20, 29]. 
The analysis revealed eight trajectories with distinct 
patient outcomes at the termini (Fig.  5A). The major 
trajectory stemmed from normal to BTKi-Fast samples, 
then branched into BTKi-Slow and BTKi-R/Dual-R sam-
ples, with the latter further branching into BTKi-R and 
Dual-R samples. As expected, Dual-R samples had the 
largest pseudotime values, indicating that Dual-R cells 
showed the largest transcriptomic differences from nor-
mal B cells (Fig. 5B).

To find early drivers of BTKi-CAR-T sequential resist-
ance, we performed pseudotemporal gene expression 
analysis. Distinct from the gene expression analysis 
(Fig.  4), pseudotemporal gene expression analysis iden-
tified genes altered near trajectory branch points, which 
reveal early drivers of distinct trajectories [21]. We first 
focused on cells near the bifurcation point separating 
BTKi-Slow (trajectory 6/7/8) from BTKi-R (trajectory 
1/2/4) samples (Fig. 5C). In total, 335 genes were upregu-
lated and 20 genes were downregulated in BTKi-R com-
pared to BTKi-Slow cells (adjusted p < 1 × 10–6) (Fig. 5D, 
Additional file  4: Table  S4). Among the upregulated 
genes, we discovered several heterogeneous nuclear ribo-
nucleoprotein (hnRNP) genes: HNRNPH3, HNRNPDL, 
HNRNPR, HNRNPC, and HNRNPA2B1 (Fig. 5C). Inter-
estingly, all these genes are MYC targets that regulate 
RNA metabolism, including alternative splicing, mRNA 
stabilization, transcription, and translation pathways 
[30]. GSEA revealed strong enrichment of TNFα sign-
aling via NF-κB, MYC_TARGETS_v1, multiple RNA 

metabolism processes including RNA splicing, and regu-
lation of mRNA stability (Fig. 5E).

Next, we focused on early drivers of CAR-T resist-
ance. A comparison of cells near the bifurcation point 
separating Dual-R (trajectory 1/2) and BTKi-R (tra-
jectory 4) samples yielded 354 differentially expressed 
genes (adjusted p < 1 × 10–6, Fig.  5G). The majority of 
these genes were upregulated in Dual-R versus BTKi-R 
samples, including heat shock protein genes HSP90AB1 
(Fig. 5F) and HSP90AA1 (not shown), which are involved 
in protein folding and have been shown to promote 
cancer cell proliferation and migration [17, 18]. GSEA 
also revealed upregulation of MYC_TARGETS_v1, 
G2M_checkpoint, and regulation of mRNA stability 
(FDRs < 0.05, Fig. 5H) as early signaling pathways driving 
the development of CAR-T resistance.

Coordination between HSP90, MYC, and CDK9 drives 
therapeutic resistance
The above differential gene expression analysis suggested 
a progressive increase of expression of MYC targets with 
sequential resistance (Fig.  4F). In addition, our trajec-
tory analysis revealed two HSP90 genes (HSP90AB1 and 
HSP90AA1) that are both MYC targets as the top early-
stage driver genes linked to the development of CAR-T 
resistance beyond BTKi resistance (Fig. 5F). Considering 
the known function of HSP90 in mediating MYC stabil-
ity [31] and work that postulated HSP90 as a drug target 
in MYC-driven B-cell lymphoma [32], we hypothesized 
that a coordinated regulation between HSP90 and MYC 
(and its targets) drives the development of CAR-T resist-
ance. To test this hypothesis, we inferred MYC activity by 
quantifying the aggregate expression levels of MYC tar-
gets and found they were significantly higher in Dual-R 
compared to BTKi-R cells (Fig. 6A).

Next, we found that the correlation between 
HSP90AB1 expression and MYC activity levels across 
individual cells was higher in the Dual-R samples 
(p < 2.2 × 10–16) (Fig.  6B). Our longitudinal sampling 
allowed us to assess the changes in the correlation 
before and after relapse within the same patient. For 

Fig. 5  Pseudotemporal analysis reveals early-stage drivers acting on therapeutic resistance. A UMAP visualization illustrates inferred trajectories. 
Starting and end points are labeled with gray circles. Branch points are shown in black circles. Each dot represents one cell and is colored according 
to clinical outcome. B UMAP visualization colored by inferred pseudotime. (C) Left: UMAP visualization of cells used for comparison of BTKi-R/Dual-R 
(1/2/4) and BTKi-Slow (6/7/8) trajectories. Right: Scatter plot with fitted smooth curves shows the expression of top hit HNRNPH3 across pseudotime 
in the BTKi-R/Dual-R (1/2/4, purple) and BTKi-Slow (6/7/8, yellow) trajectories. A vertical dashed blue line marks the pseudotime at the branch 
point. D Heatmap shows the expression pattern of differentially expressed genes (rows) at the bifurcation point between the BTKi-R/Dual-R (1/2/4) 
and BTKi-Slow (6/7/8) trajectories (columns). Columns are ordered by trajectory with increasing pseudotime. Blue and yellow colors represent low 
and high expression, respectively. Bars on top illustrate clinical outcome, pseudotime, and inferred trajectories. E Gene set enrichment analysis 
summarizes the top enriched pathways. x-axis: normalized enrichment score. (F–H) Similar visualization as in C–E, focusing on the comparison 
of the Dual-R (1/2) and BTKi-R (4) trajectories

(See figure on next page.)
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example, we observed a strong increase in the cor-
relation between HSP90AB1 expression with MYC 
activities in patient M, who transitioned from CAR-T 
sensitive (M0) to resistant (M4) (Fig.  6C). These 
results linked increased coordination between HSP90 

expression and MYC activity to BTKi-CAR-T sequen-
tial resistance.

To assess the functional relationship between HSP90 
and MYC, we analyzed CRISPR-Cas9-based cell viability 
screen data from the publicly available Dependency Map 

Fig. 6  Coordination of HSP90, MYC, and CDK9 drives therapeutic resistance. A Violin plots show inferred cellular pathway activity of MYC_TARGETS_
v1 and MYC_TARGETS_v2 across the BTKi-R and Dual-R groups. HSP90AB1 is a part of the MYC_TARGETS_v1 gene set. To avoid bias, we removed it 
from the MYC_TARGETS_v1 gene set. B Boxplots show intra-sample correlation coefficients between HSP90AB1 expression and MYC_TARGETS_v1 
activity in the BTKi-R and Dual-R groups. Each dot represents the correlation between HSP90AB1 expression and MYC_TARGETS_v1 activity 
across the individual cells within a single sample. C Barplots show increased correlation between HSP90AB1 and MYC activities in longitudinal 
samples. D Plots show the correlation between HSP90AB1 and MYC dependencies (y-axis) for all genes in DepMap (y-axis) across all cancer cell lines 
(top) and restricted to lymphoma cell lines (bottom). Red vertical line marks the position of HSP90AB1 in genome-wide ranking of genes based 
on correlation with MYC. E Violin plots show increased HSP90AB1 dependency (y-axis) across lymphoma cell lines divided into MYC-dependent 
and -independent groups (x-axis). Low values indicate greater dependency. F Barplot shows HSP90AB1 dependency (y-axis) across select 
lymphoma cell lines (x-axis). Colors indicate MYC dependency. G Scatter plot shows the correlation of MYC and HSP90AB1 RNA-seq expression 
across tumors in the TCGA DLBCL cohort. H Scatter plot shows the correlation of CDK9 expression and MYC activities at pseudobulk level
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(DepMap, https://​depmap.​org/​portal). We downloaded 
cell viability measurements following genome-wide 
CRISPR-Cas9 loss-of-function screens across 17,386 
genes and 1,054 cell lines of various cancer types. Those 
genes whose perturbation caused a decrease in cell viabil-
ity received negative dependency scores, which may sug-
gest their roles in potential cancer-specific dependencies.

To discover potential relationships [33], we calculated 
the correlation between MYC dependency and all other 
genes on a pan-cancer level. We observed no signifi-
cant association between the dependencies of MYC and 
HSP90AB1 (Fig. 6D, left panel). However, when restrict-
ing the analysis to lymphoma cell lines only, we observed 
a significant correlation between MYC and HSP90AB1 
dependencies that was among the strongest MYC cor-
relations on a transcriptome-wide level (Pearson cor-
relation, Rho = 0.44, p = 0.0091, Fig. 6D, right panel, and 
Additional file  5: Figure S8). Indeed, when separating 
lymphomas into MYC-dependent and -independent cell 
lines, we observed that HSP90AB1 dependency scores 
were significantly lower in MYC-dependent compared to 
MYC-independent cell lines, indicating a potential rela-
tionship between HSP90AB1 and MYC (t-test, p = 0.021, 
Fig.  6E). For example, cell lines C8166, HDMYZ and 
OCIULY19, which are among the most MYC depend-
ent lymphoma lines showed increased dependency 
compared to A3KAW, SMZ1 and RAJI (Fig.  6F). Con-
sistent with this, HSP90AB1-MYC correlation was also 
confirmed using DLBCL patient samples (n = 47) from 
TCGA database (p = 0.00011, Fig. 6G). Likewise, we also 
observed high correlation between CDK9 expression and 
MYC activity levels across samples at pseudobulk levels 
in MCL cells (Fig. 6H).

Targeting the HSP90‑MYC‑CDK9 signaling network 
to overcome therapeutic resistance
To validate our hypothesis, we first assessed HSP90 
and CDK9 protein expression in MCL primary patient 
cells and cell lines using western blotting. Although 
these proteins can be detected in most primary patient 
cells and cell lines, their expression was much higher in 
Dual-R compared to CAR-T-naïve samples (Additional 
file  5: Figure S9A). AZD4573, a CDK9 inhibitor cur-
rently under clinical investigation (NCT03263637), was 
highly potent against all MCL cell lines tested, with an 
IC50 value of only 4.0–16.6 nM (Additional file 5: Figure 
S9B). AZD4573 treatment markedly suppressed expres-
sion of short-lived proteins, especially MYC and MCL-1 
and MCL cell viability in dose- and time-dependent man-
ner while apoptosis markers PARP cleavage and caspase 
3 cleavage were greatly induced (Additional file 5: Figure 
S9C-D). Similar to CDK9 inhibition, both HSP90 inhibi-
tors zelavespib and tanespimycin could effectively induce 

anti-MCL activity in dose-dependent manner (Addi-
tional file 5: Figure S9E). Upon HSP90 inhibition, protein 
expression of MYC and CDK9 was markedly reduced 
(Additional file 5: Figure S9F). As expected [34], HSP90 
expression was upregulated upon HSP90 inhibition.

To understand the mechanisms of anti-MCL action 
of CDK9 inhibition and HSP90 inhibition, we per-
formed bulk RNA sequencing for Z138 cells treated with 
AZD4573 (2.5 and 5 nM), zelavespib (0.2 and 0.4 µM) and 
tanespimycin at (0.5 and 1.0  µM) at low doses. The top 
signaling pathway downregulated by AZD4573 at both 
low doses was TNFα signaling via NF-κB (Additional 
file 5: Figure S10). In contrast, the top signaling pathways 
downregulated by HSP90 inhibitors at both low doses 
were E2F targets and G2M checkpoint. Unexpectedly, 
TNFα signaling via NF-κB was the top signaling path-
ways upregulated by both HSP90 inhibitors at either dose 
(enrichment ratio = 3.82, FDR = 1.3e-13, Additional file 5: 
Figure S10). This suggested that the upregulated TNFα 
signaling via NF-κB, as a compensatory survival signal, 
likely play a critical to promote MCL cell survival upon 
treatment HSP90 inhibition and therefore compromise 
the efficacy of anti-MCL activity of HSP90 inhibitors. 
Therefore, one would expect much stronger anti-MCL 
activity when both CDK9 and HSP90 are inhibited even 
at the low doses.

Indeed, when Z138 cells were treated with AZD4573 
(5  nM) in combination with either zelavespib (0.2  µM) 
or tanespimycin (0.5 µM), we observed strong synergy in 
inhibiting cell viability (CI = 0.67 and 0.11, respectively) 
and in inducing cell apoptosis (CI = 0.60 and 0.22, respec-
tively) (Fig.  7A-B). Five additional MCL cell lines were 
used to assess the combination effect, consistently dem-
onstrating similar results (Additional file  5: Figure S11). 
The combined treatment reduced protein expression of 
MYC and CDK9 and induced PARP cleavage and Caspase 
3 cleavage beyond each single agent (Fig. 7C). Additional 
bulk RNA sequencing of combined treated Z138 cells 
(AZD4573 at 5 nM plus zelavespib at 0.2 µM, AZD4573 
at 5  nM plus tanespimycin at 0.5  µM) showed that the 
top signaling pathway downregulated by dual target-
ing of CDK9 and HSP90 is E2F targets. Interestingly, the 
combinations markedly altered expression of MYC tar-
gets beyond single agents (Fig. 7D-F). More interestingly, 
TNFα signaling via NF-κB, the top signaling pathway 
upregulated by both HSP90 inhibitors, are reduced by the 
combinations to a non-significant level (FDR > 0.05) or a 
less enriched level (enrichment ratio = 1.98, FDR = 0.015) 
(Fig. 7F). For example, BIRC3, a MYC target and a mem-
ber of the inhibitor of apoptosis family, was strongly 
downregulated by the combination treatments, but 
this effect was weak when treated with any single agent 
(Fig. 7G, left panel). In contrast, expression of caspase 7 

https://depmap.org/portal
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(CASP7), a MYC target and an apoptosis executioner, is 
highly induced by the combination treatments, but only 
weakly by single agents (Fig. 7G, middle panel). Expres-
sion of CCL4, a target of NF-κB signaling, was downregu-
lated upon CDK9 inhibition and highly upregulated upon 
HSP90 inhibition, compared to DMSO-treated controls; 
however, its expression was downregulated upon dual 
inhibition of CDK9 and HSP90, compared to DMSO-
treated controls (Fig.  7G, right panel). Together, these 
data suggested that combined inhibition of CDK9 and 
HSP90 demonstrated synergistic effects on transcrip-
tional changes leading to anti-MCL activity.

Discussion
In this study, we conducted scRNA-seq analysis to inves-
tigate the underlying mechanisms of sequential resist-
ance to BTK inhibitors (BTKi) and CAR-T therapy in 
MCL. We identified robust gene expression signatures 
associated with both BTKi and CAR-T resistance. Nota-
bly, we detected a list of differentially expressed genes, 
including CDK9, which plays a critical role in gene tran-
scription. Gene set enrichment analysis revealed a pro-
gressive enrichment of MYC targets, suggesting that 
MYC has a central role in driving sequential resistance. 
Our pseudotemporal trajectory analysis indicated that 
HSP90 genes are early-stage drivers that distinguish 
Dual-R and BTKi-R samples. These findings were sup-
ported by experimental data, collectively highlighting the 
potential importance of the HSP90-MYC-CDK9 network 
in driving tumor evolution and sequential resistance.

MYC emerged as a key player in our investigation. It 
is a proto-oncogene known to regulate a multitude of 
genes involved in crucial cellular functions, including 
cell survival, growth, proliferation, metabolism, and bio-
genesis, in various cancer types [35]. For instance, MYC 
translocations are characteristic of aggressive lymphoma 
subtypes like Burkitt lymphoma, diffused large B-cell 
lymphoma, and follicular lymphoma [36, 37]. Although 

MYC translocation does not occur frequently in MCL, 
the overexpression and upregulation of MYC targets are 
associated with aggressiveness and therapeutic resist-
ance, including BTKi-resistance [11, 12] and CAR-T 
resistance (this study).

While MYC has traditionally been considered an 
"undruggable" oncogene, there has been substantial pro-
gress in developing indirect MYC-targeting strategies, 
both in preclinical research and clinical investigations. 
This development has been spurred by the recogni-
tion that MYC mRNA and protein both have very short 
half-lives, approximately 10 min and 20–30 min, respec-
tively [38, 39]. Therefore, the acute and effective suppres-
sion of MYC expression and its downstream targets can 
be achieved by targeting the hyperactive transcription 
machinery in tumor cells. Inhibitors of key transcrip-
tion regulators like BRD4, CDK7, and CDK9 have shown 
significant potential [40]. CDK9, in particular, plays a 
critical role as the gatekeeper of transcription produc-
tivity [28] and has direct links to the regulation of MYC. 
Targeting CDK9 induces acute loss of MYC expression 
and potent cell apoptosis in many cancer models, and 
it has been reported to induce vulnerability in ibruti-
nib-resistant MCL cells [41]. Clinical trials are under-
way to assess the safety and efficacy of targeting CDK9 
with AZD4573 or VIP-152 in hematological malignan-
cies (e.g., NCT04978779 and NCT03263637) and other 
advanced cancer types.

In this work, we also identified HSP90AB1 and 
HSP90AA1 as the top early-stage drivers of CAR-T resist-
ance following BTKi resistance. Both genes are mem-
bers of the HSP90 family and are functionally involved 
in protein folding and degradation. Importantly, MYC 
is a binding partner of HSP90 [32]. Inhibition of HSP90 
suppresses MYC expression in MYC-driven Burkitt lym-
phoma [42] and BTKi-resistant MCL [32]. Moreover, our 
analysis of CRISPR-Cas9-based loss-of-function screens 
demonstrated potential relationship between HSP90 and 

Fig. 7  Combined treatment of CDK9 and HSP90 inhibitors shows synergistic potent anti-MCL activity. A-B AZD4573 in combination with zelavespib 
or tanespimycin synergistically suppressed cell viability (A) and induced apoptosis (B) in Z138 cells upon treatment for 72 h. CI = (Id1 + Id2)/I(d1+d2). CI, 
combination index; Id1, the percentage of viability inhibition or apoptosis induction by drug #1 treatment; Id2, the percentage of viability inhibition 
or apoptosis induction by drug #2 treatment; I(d1+d2), the percentage of viability inhibition or apoptosis induction by combination treatment 
of drug #1 and #2. The combination effect is considered synergistic if CI < 0.9. C Western blot shows HSP90 inhibitors zelavespib and tanespimycin 
in combination with CDK9 inhibitor AZD4573 induced marked reduction of MYC expression and cleavage of PARP and caspase 3. D Volcano plot 
shows the log2 fold change (x-axis) and -log10 adjusted p-value (y-axis) of enriched pathways in different treatments. Left: at 5 nM plus zelavespib 
at 0.2 µM. Right: AZD4573 at 5 nM plus tanespimycin at 0.5 µM. Each dot represents an enriched pathway and is colored by significance (up: yellow, 
down: blue, not significant: grey). E Dot plot shows significantly enriched hallmark pathways (y-axis) for each group (x-axis) compared to control 
(DMSO). Dot shape represent regulation direction (circle: down, triangle: up). F Heatmaps display expression of genes from relevant pathways (rows) 
across conditions (columns). Data was normalized to the vehicle (DMSO) condition. Blue and yellow reflect low and high expression, respectively. 
Dual targeting of HSP90 and CDK9 markedly suppressed MYC_TARGETS_v1 (left), MYC_TARGETS_v2 (middle), and NF-κB targets (right). G Boxplots 
show representative genes altered upon treatment with CDK9 inhibitor AZD4573 and HSP90 inhibitors, alone or in combination. **, p < 0.01; ***, 
p < 0.001; ****, p < 0.0001

(See figure on next page.)
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MYC, which is specific to lymphoma and not observable 
at the pan-cancer level. Consistent with this, we showed 
that HSP90 expression significantly correlates with MYC 
activity in MCL. These data uncovered an important role 
of HSP90-MYC coordination in driving lymphoma.

HSP90 has long been considered as a promising anti-
tumor target. Multiple inhibitors (> 18) with desir-
able preclinical efficacy and pharmacological properties 
(e.g. zelavespib, tanespimycin and AUY922) have been 
developed and evaluated clinically in solid cancer and 
even in lymphoma (e.g. NCT02572453 with AUY922 

Fig. 7  (See legend on previous page.)
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in lymphoma) [43]. However, as a single agent, none of 
them showed exciting clinical efficacy in treating cancer 
patients. These demonstrated that targeting HSP90 alone 
is not an ideal therapeutic strategy to treat cancer. Con-
sistent with prior research [44], our study also reveals the 
upregulation of HSP90 expression upon HSP90 inhibi-
tion. This is likely attributed to the compensatory upreg-
ulation of survival signaling, such as HSF1-mediated heat 
shock response (HSR), triggered by HSP90 inhibition. 
Interestingly, CDK9 inhibition has been to be potent 
inhibitors of HSF1-mediated HSR. Therefore, CDK9 
inhibition in combination with HSP90 inhibition will 
prevent protective HSF1-mediated HSR and cell survival 
in cancer cells. However, this is not the case in MCL cells.

Based on the data above, we propose the following 
model. In BTKi-R MCL cells, overexpressed HSP90 func-
tions to ensure the folding of MYC protein, which leads 
to MYC protein overexpression and consequentially 
aberrant expression of MYC targets, including HSP90 
genes and transcriptomic reprogramming. In Dual-R 
cells, overexpressed CDK9 further facilitates productive 
transcription triggered by HSP90-MYC signaling path-
ways, leading to extended expression of MYC and its tar-
gets, and transcriptomic reprogramming.

Conclusion
In conclusion, our study provides novel insights into the 
mechanisms of BTKi-CAR-T sequential resistance in 
MCL. We have established that MYC and the HSP90-
MYC-CDK9 network play pivotal roles in driving thera-
peutic resistance and transcriptomic reprogramming in 
MCL. While MYC has traditionally been challenging to 
target directly, indirect approaches like CDK9 inhibition 
show promise and are currently undergoing clinical eval-
uation. Additionally, HSP90 emerges as an early-stage 
driver of CAR-T resistance, and its inhibition may hold 
therapeutic potential. Our findings suggest a dual inhibi-
tion strategy targeting both HSP90 and CDK9 as a novel 
therapeutic approach to overcome sequential resistance 
in MCL. This strategy has the potential to improve anti-
MCL activity beyond the effectiveness of single agents. 
Moreover, the insights gained from this study may have 
broader implications for addressing resistance in other 
MYC-driven cancer types. Overall, our research under-
scores the importance of understanding the complex 
molecular networks that underlie resistance mechanisms 
and the potential for innovative therapeutic strategies to 
combat them.
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