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Abstract

Purpose: To determine DWI parameters associated with tumor response and oncologic outcomes 

in head and neck (HNC) patients treated with radiotherapy (RT).

Methods: HNC patients in a prospective study were included. Patients had MRIs pre-, 

mid-, and post-RT completion. We used T2-weighted sequences for tumor segmentation which 

were co-registered to respective DWIs for extraction of apparent diffusion coefficient (ADC) 

measurements. Treatment response was assessed at mid- and post-RT and was defined as: 

complete response (CR) vs. non-complete response (non-CR). The Mann-Whitney U test was used 

to compare ADC between CR and non-CR. Recursive partitioning analysis (RPA) was performed 

to identify ADC threshold associated with relapse. Cox proportional hazards models were done for 

clinical vs. clinical and imaging parameters and internal validation was done using bootstrapping 

technique.

Results: Eighty-one patients were included. Median follow-up was 31 months. For patients with 

post-RT CR, there was a significant increase in mean ADC at mid-RT compared to baseline ((1.8 
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± 0.29)×10−3 mm2/s vs. (1.37 ± 0.22)×10−3 mm2/s, p< 0.0001), while patients with non-CR had 

no significant increase (p>0.05). RPA identified GTV-P delta (Δ)ΔADCmean < 7% at mid-RT as the 

most significant parameter associated with worse LC and RFS (p=0.01). Uni- and multi-variable 

analysis showed that GTV-P ΔADCmean at mid-RT≥7% was significantly associated with better LC 

and RFS. The addition of ΔADCmean significantly improved the c-indices of LC and RFS models 

compared with standard clinical variables (0.85 vs. 0.77 and 0.74 vs. 0.68 for LC and RFS, 

respectively, p<0.0001 for both).

Conclusion: ΔADCmean at mid-RT is a strong predictor of oncologic outcomes in HNC. Patients 

with no significant increase of primary tumor ADC at mid-RT are at high risk of disease relapse.

Introduction

Radiation therapy (RT) is a cornerstone of head and neck cancer (HNC) treatment both 

in the definitive (i.e., organ preserving) and adjuvant post-operative setting. The goal of 

RT is to maximize the dose to cancer cells while minimizing the dose to adjacent normal 

tissues. However, tumors have variable sensitivity to RT leading to different disease response 

rates.[1] Current RT dose and fractionation are largely driven by empirical data rather than 

tumor-specific information regarding potential radiosensitivity or radioresistance.[2–5] The 

ability to predict tumor response before and/or during the RT course can allow for the 

adaptation of RT doses and potentially achieve better treatment outcomes for patients.

Non-invasive imaging such as magnetic resonance imaging (MRI) can provide important 

information related to tumor characteristics and response to RT. The development of MRI 

correlates of RT response would be critical for implementing adaptive RT strategies that 

maximize therapeutic ratios. Specifically, patients with aggressive non-responsive tumors 

may require RT dose escalation [3, 5], while patients with radiosensitive tumors may 

benefit from dose de-escalation to spare normal tissues with equivalent tumor control.[4] 

This represents a significant unmet clinical need since patients with radiosensitive tumors 

are over-treated and patients with radio-resistant tumors are under-treated. A leading-edge 

solution to the anatomic adaptive therapy problem has been to integrate MRI into radiation 

delivery devices (e.g., MR-Linear accelerators).[6] The richer data of MRI compared with 

standard-of-care CT images enables computer-driven identification of tumors and normal 

tissues and allows radiation plans to be adapted on a daily basis with limited human 

intervention. [7, 8] Yet, gross anatomic changes represent only one dimension of patient 

response to RT. Having incorporated high-field MRI into delivery devices, there is now 

the potential to monitor the biologic changes within the patient using quantitative MRI 

sequences without excess radiation, contrast exposure, or excess burden on patients’ time.

The central hypothesis of this study is that quantitative MR diffusion-weighted imaging 

(DWI) can be used as a predictive biomarker of treatment response and oncologic outcomes 

in HNC. Functional changes in a tissue (e.g., a reduction in cellular density through RT-

induced apoptosis) is reflected in an alteration in the detected diffusion measures, using a 

metric known as the apparent diffusion coefficient (ADC). The ADC component of DWI 

has been previously used to detect treatment response in HNC.[9–11] Specifically, DWI 

has been shown to predict response to induction chemotherapy[12, 13], RT[11, 13–20], 
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and tumor recurrence[21]. Preliminary data from a prospective trial at our institution[22], 

supported by other group’s data[13, 15–17, 20, 23, 24], has demonstrated that DWI was able 

to discriminate patients who will have a complete response at mid-RT. Additionally, recent 

data from our group demonstrated that early tumor regression rate ≥25% at fraction 15 (i.e., 

mid-RT) in HNC patients is associated with better local control and overall survival.[25] 

These low-risk patients represent suitable candidates for RT dose de-escalation if dose could 

be coupled to a quantitative marker of tumor response probability (i.e., ADC). However, 

these findings remain to be validated in larger prospective studies with more mature follow-

up data to correlate with oncologic outcomes and overall survival. To this end, we aim to 

determine DWI parameters associated with tumor response and oncologic outcomes in a 

prospective cohort of HNC patients treated with definitive RT.

Methods

Patient selection

HNC patients enrolled in an active prospective imaging study (NCT03145077) from January 

2017 to March 2021 were included after institutional-review board approval and study-

specific informed consent. Patients in this cohort had MRIs at pre-RT, mid-RT, and post-RT. 

Inclusion criteria were adult patients with histologic evidence of malignant head and neck 

neoplasm obtained from the primary tumor or metastatic lymph node; indicated for curative-

intent treatment with radiotherapy with or without chemotherapy (induction or concurrent); 

good performance status (ECOG score 0–2); and with no contraindications to MRI. Patients 

evaluated in this study received RT using standard daily fractionation for a period of 6–7 

weeks. Tumor staging was based on clinical imaging consisting of contrast (CE) CT prior to 

treatment initiation using current AJCC 8th edition staging criteria.

MR Imaging

All patients enrolled in the study had imaging acquired using individualized immobilization 

devices. Head immobilization was performed to decrease motion artifacts during the 

imaging study, according to the methodology presented previously by our group.[26] 

Patients were scanned using a MAGNETOM Aera 1.5T MR scanner (Siemens Healthcare, 

Erlangen, Germany) with two large four-channel flex phased-array coils. After the scout 

scan, an anatomic T2-weighted (T2w) fast spin-echo sequence (TR/TE = 4.8 s/80 ms; echo 

train length = 15, pixel bandwidth = 300 Hz, slice thickness= 2 mm, matrix= 512 × 512) 

was performed. 120 axial slices with a field of view (FOV) of 25.6 cm were selected to 

cover the primary tumor and neck nodes. Acquisition parameters for DWI were multi shot 

radial turbo spin-echo (i.e., BLADE), axial acquisition; TR = 6.5 s; TE = 50 ms; pixel 

bandwidth = 1220 Hz; FOV = 25.6 × 25.6 cm2; echo train length = 15; EPI factor = 7, 

acquisition matrix = 128 × 128; voxel size = 1 × 1 × 2 mm3; 24 contiguous slices; two 

b-values = 0 and 800 (sec/mm2) for each orthogonal diffusion direction; number of averages 

= 2 for b=0 and 8 for b=800. DWI acquisition of patients scanned after 2018 was performed 

with multi-shot spin-echo echo-planar imaging (i.e. readout segmentation of long variable 

echo-trains, RESOLVE), axial acquisition; TR = 3.5 s; TE = 65 ms; pixel bandwidth = 780 

Hz; FOV = 25.6 × 25.6 cm2; acquisition matrix = 128 × 128; slice thickness = 4 mm; 

reconstruction voxel size = 1 × 1 × 2 mm3, 48 contiguous slices; two b-values = 0 and 
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800 (sec/mm2) for each orthogonal diffusion direction; number of averages = 2 for b=0 and 

8 for b=800. ADC maps were subsequently autogenerated using a scanner-specific on-line 

software during image generation. RESOLVE was selected because of shorter scan time 

(3:30 vs. 7:03 minutes for BLADE) and relatively higher signal-to-noise ratio. Our quality 

assurance study using phantom, volunteer, and patient images showed that both methods 

display similar ADC values with no differences in repeatability studies.[27]

Image Segmentation/Registration

The regions of interest (ROIs) for the primary gross tumor volume (GTV-P) and the nodal 

gross tumor volume (GTV-N) were manually segmented by an expert radiation oncologist 

(ASRM) using the pre-RT T2w images. Deformable image registration (DIR) was used 

to register MR sequences at different time points (i.e., baseline and mid-RT) using the 

benchmarked commercially available image registration software (Velocity AI, version 

3.0.1, Atlanta, GA). All baseline GTV-P ROIs were then propagated to the mid-RT T2w 

images (i.e., mid-RT GTV-P) which represent the same three-dimensional (3D) volume of 

the original GTV-P on mid-RT images and include both responding and non-responding 

voxels. This was followed by quality assurance (QA) review and manual editing whenever 

needed to exclude air gaps or non-anatomically relevant parts in case of massive tumor 

shrinkage. Residual GTV-N ROIs, on the other hand, were all manually segmented on 

mid-RT images. Subsequently, DWI images were co-registered with the corresponding 

T2w of each time point and finally all ROIs were propagated to extract corresponding 

ADC values.[28] Additional ROIs were created on mid-RT images for patients with non-

complete GTV-P response at mid-RT to assess DWI differences between responding and 

non-responding sub-volumes within the mid-RT GTV-P based on the radiographic findings 

on the mid-RT T2-weighted images. The first sub-volume was labeled mid-RT GTV-P-RD 

which represents the residual disease and the second sub-volume was labeled mid-RT 

GTV-P-RS which represents the area of response. Figure 1 illustrates the workflow process 

for image registration and segmentation.

Outcome definition

Treatment response was assessed at mid-RT and at 8–12 weeks post-RT using RECIST 1.1 

criteria and was defined as: complete response (CR) vs. non-complete response (non-CR). 

Supplementary Figure 1 visually illustrates examples of the radiographic response at mid-RT 

of a CR and a non-CR patient. All patients had complete physical examination, fiberoptic 

endoscopy, MRI, and CECT or FDG PET-CT performed 8–12 weeks after RT completion to 

assess the final treatment response. Oncologic outcomes included two-year local control 

(LC), regional control (RC), freedom from distant metastasis (FDM), recurrence-free 

survival, and overall survival.

Statistical analysis

Continuous data were presented as mean ± standard deviation (SD), and categorical data 

were presented as proportions. The Kolmogorov–Smirnov test was used to assess the 

difference in baseline ADC in BLADE vs. RESOLVE DWI sequences. The ADC values 

for all voxels included in GTV-P and GTV-N ROIs were assessed by histogram analysis 

and the following parameters were extracted using in-house MATLAB script (MATLAB, 
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MathWorks, MA, USA): ADC mean, 5th, 10th, 20th, 30th, 40th, 50th (i.e. median), 60th, 70th, 

80th, 90th, 95th percentile. Pre-RT ADC parameters were correlated with RT response (CR 

vs. non-CR) at mid- and postRT time points using the non-parametric Mann-Whitney U test 

to compare ADC values between the mid-RT CR and non-CR groups. The non-parametric 

Wilcoxon signed-rank test was used to compare the mid-RT versus baseline ADC. Delta 

ADC (ΔADC) were calculated as the percent change of ADC relative to baseline value 

for each parameter (i.e., midRTADC − preRTADC
preRTADC × 100). Delta volumetric changes for both 

GTV-P and GTV-N at mid-RT were also calculated and the non-parametric Spearman’s 

Rho test was used to determine the relationship between ΔADC and Δ volume changes. 

Recursive partitioning analysis (RPA) was performed to identify ΔADC threshold associated 

with relapse. Oncologic and survival endpoints were calculated using the Kaplan-Meier 

method and the statistical significance was determined using a p-value <0.05. Uni- and 

multi-variable analyses for oncologic and survival endpoints were performed using Cox 

regression. For multivariable analysis, we tested the impact of including the ADC parameter 

of choice (i.e., with most significant correlation with relapse based on RPA) compared 

with baseline models of standard clinical variables. [29] We subsequently compared the 

new model using Bayesian information criteria (BIC).[30] A lower BIC indicates improved 

model performance and parsimony, using the BIC evidence grades presented by Raftery 

[31] with the posterior probability of superiority of a lower BIC model, where a BIC 

decrease of < 2 is considered “Weak” (representing a 50–75% posterior probability of 

being superior model), 2–6 denoted “Positive” (posterior probability of 75–95%), 6–10 as 

“Strong” (posterior probability of > 95%), and > 10, “Very strong” (posterior probability 

> 99%). In addition, Cox proportional hazards models were constructed using the scikit-

survival package in Python version 3.9.7.[32] We initially constructed standard clinical 

models that include T stage, HPV status, and smoking status for LC prediction and AJCC 

stage 8th edition, age at diagnosis, and smoking status for RFS prediction. The selection 

of these clinical variables was based on the findings of our group’s large-scale HNC 

clinical models’ performance for survival endpoints prediction.[29] Subsequently, additive 

models that include the clinical parameters plus the imaging parameter of choice (i.e., 

based on the findings of RPA) were constructed to assess the potential additive value of 

the imaging parameter. Models were only constructed for patients with a GTV-P. Patients 

were split into training (85%) and testing (15%) sets through a bootstrap procedure (1000 

iterations) for the internal validation and evaluation of constructed models. Mean and 

standard deviation of c-index values across all bootstrap iterations were reported for each 

model. Wilcoxon signed-rank tests were applied to compare clinical and additive models 

for each outcome. Finally, we did further confirmatory validation of the robustness of our 

findings by collecting an additional external independent dataset that included patients with 

baseline and mid-RT DWIs acquired at our institution on a standard clinical setting. We 

used an IRB approved retrospective imaging protocol (RCR03–0800) to collect the data (i.e. 

independent retrospective dataset). All other analyses were executed with JMP Pro version 

15 software (SAS Institute, Cary, NC). The analysis and reporting of the results of this study 

adopted the reporting recommendations for tumor marker prognostic studies (REMARK) 

checklist.[33]
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Results

Eighty-six patients were enrolled. Five patients were excluded from this analysis because 

of lack of visible GTVs after induction chemotherapy (n = 3) and loss to follow-up (n 

= 2) leaving a total of 81 patients in the final analysis. At pre-RT, 53 patients had both 

baseline GTV-P and GTV-N, 6 patients had baseline GTV-P without GTV-N, and 22 patients 

had GTV-N with no GTV-P (i.e., total GTV-P=59 and total GTV-N=74). Patients with no 

visible GTV-P at baseline had either carcinoma of neck nodes of unknown primary (CUP; 

n=12), tonsillectomy prior to RT (n=6), or CR to induction chemotherapy (n=4). The mean 

number of RT fractions received before mid-RT images was 17.6 (SD 1.9). The majority 

of patients were men (n=74, 93%) and the median age was 61 years (range 33–78). Most 

patients had human papillomavirus (HPV) positive disease (n= 73, 90%). A summary of 

patient demographic, disease, and treatment criteria is presented in Table 1.

The general treatment outcomes showed that for patients with GTV-P at baseline (n=59), 

18 (31%) had mid-RT CR at the primary site which increased to 53 (90%) post-RT. Only 6 

patients (10%) had persistent local disease as assessed by imaging at post-RT. Among the 

6 patients, all had subsequent pathological confirmation of residual/recurrent disease. For 

patients with GTV-N at baseline (n=75), no patient had CR at the neck at mid-RT while 

65 patients (87%) had CR as assessed by imaging at post-RT. Upon further pathological 

assessment, 6 out of 10 patients with non-CR at the neck had residual/recurrent disease 

while the reminder had necrotic non-active tissue.

The median follow-up time was 31 months (IQR, 18–38). The 2-year LC, RC, and FDM for 

the entire cohort were 91%, 92%, and 91%, respectively. The 2-year RFS and OS were 83% 

and 94%, respectively. The total number of recurrence events was 15 (18%). Two, three, and 

five patients had an isolated local, regional, and distant recurrence events, respectively. One, 

two, and two patients had combined local & distant, locoregional, and locoregional & distant 

recurrences, respectively.

Baseline mean, median, and different histogram percentile ADC values for BLADE vs. 

RESOLVE were not significantly different for both GTV-P and GTV-N ROIs (p >0.05 for 

both, Figure 2). There was no statistically significant correlation between pre-RT ADC 

parameters and CR at mid-RT and post-RT time points for GTV-P. Similarly, there was no 

significant correlation between pre-RT parameters and CR at post-RT for GTV-N (p >0.05 

for all). Univariable analysis also did not show a significant correlation between pre-RT 

ADC parameters and all oncologic and survival endpoints.

There was a statistically significant increase in all mid-RT GTV-P ADC parameters 

compared to baseline values (p <0.0001 for all, Table 2). Additionally, there was a 

statistically significant increase in all mid-RT GTV-N ADC parameters compared to baseline 

values (p <0.0001 for all, Table 2). For patients with CR of the primary tumor at the end of 

RT, there was a significant increase in GTV-P ADCmean at mid-RT compared to baseline ((1.8 

± 0.29) × 10−3 mm2/s versus (1.37 ± 0.22) × 10–3 mm2/s, p < 0.0001). On the other hand, 

patients with non-CR had no statistically significant increase in GTV-P ADCmean (p>0.05). All 

other studied ADC parameters also had a significant increase at mid-RT for patients with CR 
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of the primary tumor at the end of RT compared to non-CR. However, there was a significant 

increase in GTV-N ADC parameters at mid-RT for both patients with CR and non-CR at the 

end of RT.

RPA analysis identified GTV-P ΔADCmean < 7% at mid-RT as the most significant parameter 

associated with worse LC and RFS (p =0.01). The 2-Year LC and RFS for patients with 

ΔADCmean < 7% compared to patients with ≥7% at mid-RT were 48% and 42% versus 96% 

and 87%, respectively (p <0.0001 and 0.001, Figure 3). Δ GTV-N ADC parameters at mid-

RT, however, were not significantly associated with any of the studied endpoints (P>0.05).

Univariable analysis of local control showed that GTV-P ΔADCmean at mid-RT ≥7% was 

associated with improved LC (hazard ratio (HR), 0.06, 95% CI, 0.01–0.3, p =0.001). In a 

multivariable model that also included T-stage, smoking, and HPV status, GTV-P ΔADCmean

at mid-RT remained statistically significant (HR, 0.03, 95% CI, 0.01–0.6, p =0.02) and 

achieved a better model performance as assessed using BIC criteria (BIC decrease =19.8). 

After bootstrapping, the clinical LC model yielded a c-index of 0.77 ± 0.17 while the 

additive LC model (i.e., clinical + ΔADCmean) yielded a c-index of 0.85 ± 0.16 which was 

significantly better than the clinical model (p < 0.0001).

Moreover, univariable analysis of recurrence-free survival showed that GTV-P ΔADCmean at 

mid-RT ≥7% was associated with improved RFS (HR, 0.2, 95% CI, 0.06–0.6, p =0.003). In 

a multivariable model that also included age, AJCC 8th edition stage (i.e., which is based 

on T-stage, N-stage, tumor site and HPV-status data), and smoking status, GTV-P ΔADCmean

at mid-RT remained statistically significant (HR, 0.3, 95% CI, 0.1–0.9, p =0.04) and also 

improved the model performance using BIC criteria (BIC decrease =8). After bootstrapping, 

the clinical RFS model yielded a c-index of 0.68 ± 0.23 while the additive RFS model 

yielded a c-index of 0.74 ± 0.22 which also was significantly better than the clinical models 

(p < 0.0001).

Similarly, a univariable analysis of overall survival showed that GTV-P ΔADCmean at mid-RT 

≥7% was associated with improved OS (HR, 0.2, 95% CI, 0.04–0.9, p =0.037). However, it 

was not statistically significant when added to a multivariable clinical model.

The volumetric analysis showed that there was a significant decrease in mid-RT residual 

tumor volumes for both GTV-P and GTV-N compared to baseline pre-RT volumes (3.5 vs. 

11.1 mm3 for GTV-P and 7.4 vs. 11.8 mm3 for GTV-N, p <0.0001 for both). However, the 

mean Δ volume decrease at mid-RT was significantly higher in GTV-P compared with GTV-

N (69% vs. 30%, p <0.0001). As shown in Figure 4, there was no statistically significant 

correlation of the Δ volume and ΔADCmean for both GTV-P (Spearman’s Rho=−0.06, p =0.6) 

and GTV-N (Spearman’s Rho=−0.2, p =0.1). Δ volume changes were not significantly 

correlated with any endpoints (P>0.05). Only baseline GTV-P volume (i.e., a surrogate of 

T-stage) was significantly correlated with LC on univariable analysis (p =0.03).

For ROI subvolume analysis, patients with mid-RT non-CR at the primary site had no 

statistically significant difference in all ADC parameters between GTV-P-RS and GTV-P-

RD (p >0.05 for all). RPA identified ΔADCmean < 5% and <10% as the strongest predictors of 
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local recurrence for GTV-P-RD and GTV-P-RS, respectively (p =0.02 for both). However, 

for RFS only ΔADCmean < 5% for GTV-P-RD was significantly associated with worse RFS (p 

=0.01).

We retrospectively collected the images of 50 patients as an independent external validation 

dataset. Patients in this dataset were treated between August 2017 and September 2021. 

92% were men and the median age was 64 years (range 46–86). A summary of patient 

demographic, disease, and treatment criteria is presented in Supplementary Table 1. All 

patients had gross GTV-P at baseline. The median follow-up time was 37 months (IQR, 16–

49). The 2-year LC, RFS, and OS were 90%, 79%, and 92%, respectively. The total number 

of recurrence events was 11 (22%). Two, three, and three patients had an isolated local, 

regional, and distant recurrence events, respectively. One and two patients had combined 

local & distant and locoregional recurrences, respectively. The 2-Year LC and RFS for 

patients with ΔADCmean < 7% compared to patients with ≥7% at mid-RT were 74% and 30% 

versus 95% and 95%, respectively (p 0.04 and <0.0001, Supplementary Figure 2). After 

bootstrapping, the clinical LC model yielded a c-index of 0.74 ± 0.20 while the additive LC 

model (i.e., clinical + ΔADCmean) yielded a c-index of 0.78 ± 0.19 which was significantly 

better than the clinical model (p < 0.0001). Furthermore, the clinical RFS model yielded a 

c-index of 0.53 ± 0.24 while the additive RFS model yielded a c-index of 0.70 ± 0.21 which 

also was significantly better than the clinical models (p < 0.0001).

Discussion

Our results show that DWI changes during RT are a significant predictor of oncologic 

outcomes. The significant increase in mid-RT ADC parameters for both tumor and nodal 

ROIs reflects a decrease in cellular density in tumor tissue caused by the radiation effect 

that induces breakdown of cellular membranes which ultimately decrease the restriction of 

diffusion shown in baseline tumor tissue.[34–36] The increased diffusion in mid-RT images 

was successfully measured by the studied ADC parameters that showed a higher increase 

in patients who ultimately developed CR at the end of treatment compared to patients with 

residual disease.

Our study also identified an ADC biomarker of local control and recurrence-free survival 

using a GTV-P ΔADCmean threshold of 7% increase relative to baseline ADCmean. These delta 

ADC changes were volume independent as our analysis methodology, illustrated in Figure 

1, ensured that we use the same 3-D shape and volume of GTV-P propagated from baseline 

DWIs after image co-registration. We also assessed the effect of subvolume analysis within 

the subset of patients with non-CR at mid-RT images. In that subset, both ΔADCmean changes 

in the residual and responding subvolumes were significantly associated with local control 

with a 5% and 10% threshold of ADCmean increase. The threshold is lower in residual volumes 

as expected because of the higher relative tissue density in these subvolumes. This also 

indicates that quantitative DWI parameter maps can detect the mesoscale cellular changes 

that could not be otherwise detected using gross visual assessment. Furthermore, this also 

shows that even within the apparent residual tumors on anatomic imaging at mid-RT, there 

is a subset that expresses higher ADC changes and those tend to have better LC and RFS. 

These changes during treatment can serve as a biomarker to predict outcomes and can also 
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be used as a biological tool to adapt therapy dose according to the predicted response during 

therapy.

An additional significant finding in our study is that pretreatment DWI parameters had 

no significant association with outcomes, indicating that dynamic information obtained 

from RT-induced imaging changes during treatment is likely more informative compared 

to baseline status. Several previous studies matched our findings of no association between 

pretreatment ADC and outcomes [20, 37, 38] while a prior pilot set from our group as well 

as other studies showed a significant correlation.[14, 39–41] We believe that pretreatment 

ADC parameters of a relatively homogenous cohort with a majority of HPV positive 

oropharyngeal cancer would be less predictive of outcomes when compared to a more 

heterogenous group of HNC subsites and/or tumor types. A heterogenous group of tumors 

will likely have a mixture of well and poorly differentiated tumors with different level 

of cellularity and stromal contents which thereby lead to more contrast in the degree of 

diffusion between different tumor types.[36] Therefore, we think that the pretreatment DWI 

parameters may be a more prognostic than predictive biomarker as it reflects the nature of 

the baseline tumor rather than predicting its response to therapy.[42]

According to the criteria set by the Biomarker Qualification Program (BQP) that was 

developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug 

Administration), a qualified biomarker must be within a specified context of use (COU) that 

defines the BEST biomarker category and its intended use.[42–44] Our findings from this 

prospective observational imaging study suggest that the COU for ΔADCmean can be used as 

a response biomarker for defining HNC patients with high-risk of local failure according 

to their response to RT at an actionable mid-therapy time point. These results encourage 

us to apply for further full qualification package from the BQP with a properly defined 

COU. This will also allow a promising imaging biomarker like DWI to cross the second 

translational gap and eventually become a clinical decision-making tool according to the 

framework recommended by the imaging biomarker roadmap for cancer studies.[45]

In-treatment ΔADC were investigated in prior studies with relatively small sample sizes 

consisting of mixtures of HNC subsites, and in concordance with our results, these studies 

showed that ΔADC during RT was a significant correlate of oncologic outcomes.[11, 18, 37] 

To our knowledge, we present the largest prospective imaging study to date supporting that 

primary tumor ΔADC change during treatment is a strong biomarker of important oncologic 

outcomes, particularly for local control and recurrence-free survival. The threshold of 

ΔADC used should be carefully interpreted according to the nature of the primary tumor 

subsite, technique of segmentation/image registration, and DWI acquisition parameters 

(i.e., b values). Notably, ΔADC is a relative rather than an absolute value which could 

represent a more robust biomarker that is less susceptible to inter-patient and inter-scanner 

variability and thereby more clinically generalizable. In patients with mainly HPV positive 

oropharyngeal primary site using 3-D volumetric analysis of GTV-P at mid-RT relative to 

baseline, ΔADCmean < 7% was shown to be a strong correlate of local failure.

However, our study is not without limitations. Importantly, our study utilized a single-

institution cohort. However, we did both internal and external validation of our findings 
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with bootstrapping methods and independent testing of a separate dataset. We aim for 

further validation in the near future using multi-institutional datasets. Another limitation was 

the use of two DWI sequences during the study (i.e., BLADE and RESOLVE); however, 

after analyzing the ADC values extracted from both DWI sequences using the Kolmogorov-

Smirnov test, no significant differences were found between the two sequences. Lastly, we 

failed to show any significant correlation between nodal DWI changes and regional control, 

which could potentially be attributed to the cystic nature of the studied GTV-Ns in our 

sample. As a future step, we plan to analyze these LNs using a morphologic distinction 

between solid and cystic component in each node rather than the standard segmentation 

approach.

In conclusion, our prospective imaging study of HNC patients demonstrated that ΔADC
parameters at mid-RT represent a strong predictor of local recurrence and recurrence-free 

survival. Patients with no significant increase of mid-RT ADC at the primary tumor site 

relative to baseline values are at high-risk of disease relapse. Multi-institutional data are 

needed for validation of our results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Patients with CR had a significant increase in ADCmean at mid-RT.

• Primary tumor ΔADCmean < 7% at mid-RT was associated with worse LC and 

RFS.

• Multivariable analysis showed ΔADCmean at mid-RT≥7% was associated with 

better outcomes.

• The addition of ΔADCmean improved the c-indices of LC and RFS prediction 

models.

• Primary tumor ΔADC at mid-RT is a response biomarker for high-risk local 

failure.
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Figure 1. Image registration and segmentation workflow
Illustration of the workflow process for image registration and segmentation in the study 

using an example of a patient with T4N1 tumor of the base of tongue. Panel (A) shows 

the GTV-P segmentation on baseline T2w MRI followed by rigid co-registration (RIR) 

and contour propagation to baseline DWI (B) and then ROI propagation to corresponding 

ADC map (C). Panel (D) shows mid-RT T2w image with partial response. The image was 

co-registered to baseline T2w using deformable image registration (DIR) and baseline GTV-

P was propagated. Subsequently, the residual and response sub-volumes were segmented 

(E), then contours were propagated to mid-RT DWI after RIR (F), and finally to the 

corresponding mid-RT ADC map (G).
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Figure 2. 
BLADE vs. RESOLVE histograms. Histogram illustration of the distribution of tumor and 

nodal volumes’ ADC mean at baseline using the BLADE vs. RESOLVE DWI acquisition 

methods in the study. The RESOLVE in pink is overlaid on BLADE in light blue. There 

were no statistically significant differences using the Kolmogorov–Smirnov test (p=0.4).
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Figure 3. 
Kaplan–Meier curves calculated for patients with baseline GTV-P (n = 59) show better (A) 

local control (LC) and (B) recurrence-free survival (RFS) for patients with ≥7% ΔADCmean

at mid-RT. Shaded colors represent 95% confidence intervals, short vertical lines represent 

censored data, and asterisks indicate significant log-rank p values.
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Figure 4. 
Relationship between Δ volume and ΔADCmean for both GTV-P (A) and GTV-N (B) at 

mid-RT. Solid lines represent the linear fit and dotted lines represent the 95% confidence 

intervals.
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Table 1.

Patient demographic, disease, and treatment characteristics.

Characteristic Patients No. (%)

Age (years)

median (range) 61 (33–78)

Sex

Male 75 (93)

Female 6 (7)

Smoking status

Never 37 (46)

Former 35 (43)

Current 9 (11)

Smoking pack-year

mean (SD) 15 (26)

Disease subsite

Base of tongue 29 (36)

Tonsil 38 (47)

CUP 12 (15)

Others 2 (2)

T stage

T0 12 (15)

Tx 6 (7)

T1 13 (16)

T2 24 (30)

T3 9 (11)

T4 17 (21)

N stage

N0 6 (7)

N1 42 (52)

N2 31(38)

N3 2 (3)

AJCC 8thed. Stage
I

38 (47)

II 20 (25)

III 17 (21)

IVa 6 (7)

HPV status

Positive 73 (90)

Negative 8 (10)

Radiation Dose

Mean in Gy (SD) 69.6 (1.3)

Radiation Fractions
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Characteristic Patients No. (%)

Mean (SD) 33 (0.9)

Radiation technique

IMRT/VMAT 55 (68)

IMPT 26 (32)

Chemotherapy

None 16 (20)

Induction 1 (1)

Concurrent with RT 54 (67)

Induction + Concurrent 10 (12)

Abbreviations: CUP, carcinoma of unknown primary; SD, standard deviation; Gy, Gray; IMRT, intensity-modulated radiotherapy; VMAT, 
Volumetric Modulated Arc Therapy; IMPT, intensity modulated proton therapy.
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Table 2.

ADC parameter changes at mid-RT versus baseline values.

ADC parameter 
(x10−3 

mm2/s)

End-RT 
response

Baseline 
GTV-P

Mid-RT GTV-
P P value Baseline 

GTV-N
Mid-RT GTV-
N P value

ADC Mean
CR 1.37±0.2 1.8±0.3 <0.0001 1.27±0.3 1.6±0.4 <0.0001

Non-CR 1.3±0.2 1.6±0.4 0.07 1.28±0.3 1.54±0.3 0.01

ADC 5th percentile
CR 0.87±0.3 1.2±0.3 <0.0001 0.76±0.2 1.04±0.3 <0.0001

Non-CR 1.1±0.6 1.3±0.5 0.4 1.02±0.4 1.19±0.3 0.2

ADC 10th percentile
CR 0.97±0.3 1.32±0.3 <0.0001 0.86±0.2 1.16±0.3 <0.0001

Non-CR 1.2±0.5 1.42±0.4 0.3 1.06±0.3 1.26±0.2 0.02

ADC 20th percentile
CR 1.1±0.3 1.47±0.3 <0.0001 0.97±0.3 1.3±0.4 <0.0001

Non-CR 1.2±0.4 1.47±0.3 0.4 1.11±0.3 1.34±0.2 0.01

ADC 30th percentile
CR 1.17±0.3 1.58±0.3 <0.0001 1.06±0.3 1.4±0.4 <0.0001

Non-CR 1.2±0.3 1.5±0.3 0.3 1.16±0.2 1.4±0.1 0.009

ADC 40th percentile
CR 1.25±0.3 1.68±0.3 <0.0001 1.14±0.3 1.5±0.4 <0.0001

Non-CR 1.22±0.3 1.56±0.3 0. 1.21±0.2 1.45±0.2 0.01

ADC Median
CR 1.35±0.2 1.8±0.3 <0.0001 1.22±0.3 1.58±0.4 <0.0001

Non-CR 1.25±0.2 1.6±0.2 0.07 1.25±0.3 1.51±0.2 0.009

ADC 60th percentile
CR 1.42±0.3 1.9±0.4 <0.0001 1.32±0.4 1.67±0.4 <0.0001

Non-CR 1.3±0.2 1.68±0.5 0.1 1.3±0.3 1.57±0.3 0.009

ADC 70th percentile
CR 1.52±0.3 1.95±0.4 <0.0001 1.43±0.4 1.78±0.5 <0.0001

Non-CR 1.36±0.3 1.7±0.6 0.1 1.36±0.4 1.64±0.4 0.009

ADC 80th percentile CR 1.6±0.3 2.1±0.4 <0.0001 1.57±0.4 1.91±0.5 <0.0001

Non-CR 1.4±0.3 1.8±0.7 0.07 1.45±0.4 1.72±0.5 0.01

ADC 90th percentile
CR 1.79±0.4 2.22±0.4 <0.0001 1.76±0.4 2.07±0.5 <0.0001

Non-CR 1.52±0.4 1.99±0.8 0.03 1.57±0.5 1.84±0.6 0.1

ADC 95th percentile
CR 1.9±0.4 2.36±0.5 <0.0001 1.93±0.4 2.2±0.5 <0.0001

Non-CR 1.61±0.6 2.09±0.9 0.03 1.65±0.7 1.97±0.8 0.1
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