
ORIGINAL RESEARCH

Augmentation of Endothelial S1PR1 Attenuates Postviral
Pulmonary Fibrosis
Patricia L. Brazee1, Andreane Cartier3, Andrew Kuo3, Alexis M. Haring1, Trong Nguyen1, Lida P. Hariri2,
Jason W. Griffith1, Timothy Hla3, Benjamin D. Medoff1*, and Rachel S. Knipe1*
1Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care, 2Department of Pathology,
Massachusetts General Hospital, and 3Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard
Medical School, Boston, Massachusetts

Abstract

Respiratory viral infections are frequent causes of acute
respiratory distress syndrome (ARDS), a disabling condition with
a mortality of up to 46%. The pulmonary endothelium plays an
important role in the development of ARDS as well as the
pathogenesis of pulmonary fibrosis; however, the therapeutic
potential to modulate endothelium-dependent signaling to
prevent deleterious consequences has not been well explored.
Here, we used a clinically relevant influenza A virus infection
model, endothelial cell–specific transgenic gain-of-function and
loss-of-function mice as well as pharmacologic approaches and
in vitro modeling, to define the mechanism by which S1PR1
expression is dampened during influenza virus infection and
determine whether therapeutic augmentation of S1PR1 has the

potential to reduce long-term postviral fibrotic complications.
We found that the influenza virus–induced inflammatory milieu
promoted internalization of S1PR1, which was pharmacologically
inhibited with paroxetine, an inhibitor of GRK2. Moreover,
genetic overexpression or administration of paroxetine days after
influenza virus infection was sufficient to reduce postviral
pulmonary fibrosis. Taken together, our data suggest that
endothelial S1PR1 signaling provides critical protection against
long-term fibrotic complications after pulmonary viral infection.
These findings support the development of antifibrotic strategies
that augment S1PR1 expression in virus-induced ARDS to
improve long-term patient outcomes.
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Acute respiratory distress syndrome (ARDS)
is a disabling condition with a mortality of up
to 46%. Pulmonary infections are common
causes of ARDS, with respiratory viral
infections such as influenza and coronaviruses
being some of themore frequent infectious
etiologies (1, 2). Interestingly, data from
patients with ARDS has shown a strong
association between viral infection and the

development of post-ARDS fibrosis (3–5).
Although supportive interventions have
reduced the overall mortality of ARDS, severe
cases requiring prolongedmechanical
ventilation remain common and are often
characterized by excessive fibroproliferation in
the lung, reduced quality of life, and increased
mortality (5–10). Consistent with human
data, influenza A virus (IAV) infection in

mice has been shown to result in long-term
lung fibrosis (9, 11). Thus, with the
predominance of respiratory viral infections,
there is a critical need to understand the
mechanisms behind postviral fibrosis and
develop novel therapeutic strategies to avoid
this morbid complication.

Under homeostatic conditions, the
pulmonary endothelium forms a cellular
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barrier that separates the vascular
compartment from the surrounding lung
parenchyma. The effectiveness of this barrier
is determined by the functionality of
endothelial cells (ECs) and the integrity of
the intercellular junctions between them.
Injury to the epithelial layer that occurs
during respiratory viral infection exposes the
closely associated pulmonary endothelium to
the pathological inflammatory milieu,
resulting in EC injury and activation, a
central component of ARDS
pathophysiology (6–9). Activated ECs
assume a proinflammatory phenotype that
amplifies lung injury and increases vascular
permeability (12, 13). Although increased
barrier permeability facilitates immune-
mediated viral clearance before tissue repair,
persistent EC activation with vascular leak
has pathologic consequences, including the
generation and flux of proinflammatory,
procoagulant, and profibrotic mediators
(5, 14–22). Currently, there are limited
therapies to reduce vascular leak, and, in fact,
supportive mechanical ventilation may
further exacerbate this pathological
endothelial injury (22). A better
understanding of the molecular mechanisms
that promote EC dysfunction in ARDS and
the effects on subsequent fibrosis could lead
to novel therapeutic strategies.

The sphingosine-1-phosphate
(S1P)–S1P receptor 1 (S1PR1) signaling axis
on ECs is a key modulator of vascular
permeability, cell survival, and inflammation

(23, 24). Notably, we have previously defined
a causal link between vascular leak and
pulmonary fibrosis, showing that the
endothelium-specific deletion of S1PR1
results in increased vascular leak and
pulmonary fibrosis in a mouse model of
bleomycin-induced lung injury and fibrosis
(14, 24). Although preventative agonism
of S1PR1 has been shown to reduce acute
IAV-induced inflammation and increase
survival (16), the role of S1PR1 during the
fibroproliferative phase of pulmonary viral
infection–induced ARDS has not been well
explored. Reversing endothelial dysfunction
and restoring pulmonary vascular integrity
via augmentation of endothelial S1PR1 in
virus-induced ARDS could have great
therapeutic value.

Our data demonstrate that both murine
and human IAV infection is associated with
loss of EC S1PR1 that correlates with injury
severity and collagen deposition. Using EC
S1PR1 gain-of-function and loss-of-function
mice in an IAV infection model, we found
that loss of endothelial S1PR1 is deleterious,
with enhanced vascular leak and pulmonary
fibrosis, whereas EC-specific S1PR1
overexpression reduces vascular leak and
postviral fibrosis. Our data suggest that
inflammation-induced elevation of
S1P drives a maladaptive, persistent
internalization of EC S1PR1. Moreover, we
show that genetic and pharmacologic
augmentation of S1PR1 after IAV infection is
sufficient to reduce postviral fibrosis. Taken
together, our findings support the
development of antifibrotic strategies that
augment EC S1PR1, potentially via GRK2
inhibition, to reduce the burden of postviral
fibrosis.

Methods

Mice
Wild-type (WT) C57BL/6 mice were
purchased from Charles River Laboratories.
Mice with the S1pr1 gene flanked by loxP
sites (S1pr1f/f) were provided by Dr. Jerold
Chun (25). S1pr1f/STOP/f mice, provided by
T.H., carry a conditional S1pr1 expression
cassette with a loxP-flanked STOP cassette
that prevents transcription of S1pr1 until
Cre recombinase–mediated excision of the
floxed STOP cassette, which promotes
overexpression of S1pr1 (26). Each line was
crossed with mice that express an inducible
Cre recombinase under an EC-specific
promoter (VECadherinCreERT2), shared by

Dr. Ralf Adams (27). All mice were on a
C57BL/6 background. Littermates with
corresponding loxP sites but lacking the
VECadherinCreERT2 gene were used as
control animals (ECnorm). Mice were treated
with 200mg/kg tamoxifen (Sigma-Aldrich,
catalog no. T5648) by oral gavage for 2weeks
(10 doses, Monday to Friday) beginning at
age 4weeks. For postviral induction of Cre
activity, mice were treated with 200mg/kg
tamoxifen by oral gavage for 1week (five
doses, Monday to Friday) beginning at
7 days postinfection (age 10–12 wk). The
efficiency of tamoxifen induction of Cre
recombinase–mediated deletion in
S1pr1f/fVECadherinCreERT2 mice (see
Figure E3A in the data supplement) and
overexpression before IAV infection (Figure
E4A) and after infection (Figure E4Q) in
S1pr1f/STOP/fVECadherinCreERT2 mice were
monitored by quantification of S1PR1.

All mice were maintained in a specific
pathogen–free environment certified by the
American Association for Accreditation of
Laboratory Animal Care. All protocols
performed were approved by the
Massachusetts General Hospital Institutional
Animal Care and Use Committee. All
experiments used sex-matched male and
female mice at 10 to 12weeks of age.

IAV Infection and Viral Quantification
The influenza A/Puerto Rico/8/34 (PR8)
H1N1 strain was obtained from Charles
River Laboratories (catalog no. 10100374).
Mice were anesthetized with ketamine
(80mg/kg)-xylazine (12mg/kg) and
intranasally infected with a dose of influenza
PR8 that leads to�15% mortality (lethal
dose 15; 100 egg infectious dose /g) at
10–12weeks of age. Uninfected mice
received anesthesia as noted above and are
denoted as “0dpi” (0 d postinfection),
indicative of a state without exposure to
influenza virus. Viral titers were determined
by quantification of viral transcripts using
qRT-PCR as previously described and
outlined below (28–31).

qRT-PCR
RNAwas converted to cDNA (QuantaBio,
catalog no. 95047), and qPCRs in the
presence of SYBR Green (Bio-Rad
Laboratories, catalog no. 1725271) were
performed using the primers listed below.

IAV polymerase (PA), 59-CGGTCCAA
ATTCCTGCTGA-39 (forward) and 59-CAT
TGGGTTCCTTCCATCCA-39(reverse);
IAV nucleoprotein (NP), 59-CAGCCTAAT

Clinical Relevance

Our study provides evidence that
therapeutic augmentation of S1PR1,
a key protective signaling axis for the
lung endothelium, has the potential
to reduce postviral fibrosis. These
findings, which mechanistically
characterize the regulation of
endothelial S1PR1 signaling in
postviral pulmonary fibrosis, address
the urgent need for therapies
targeted at reducing endothelial cell
dysfunction and reducing long-term
postviral fibrotic complications in
acute respiratory distress syndrome
survivors.
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CAGACCAAATG-39 (forward) and 59-TAC
CTGCTTCTCAGTTCAAG-39 (reverse);
IAV hemagglutinin (HA), 59-GAGGAG
CTGAGGGAGCAAT-39 (forward) and
59-GCCGTTACTCCGTTTGTGTT-39
(reverse); mouseGapdh, 59-AGGTCGGTGT
GAACGGATTTG-39 (forward) and 59-TGT
AGACCATGTAGTTGAGGTCA-39; mouse
S1pr1, 59-ATGGTGTCCACTAGCATCCC-
39 (forward) and 59-CGATGTTCAACTTG
CCTGTGTAG-39 (reverse), mouse Sphk1,
59-ACTGATACTCACCGAACGGAA-39
(forward) and 59-CCATCACCGGACA
TGACTGC-39 (reverse); mouseGrk2,
59-GCGCCAGCAAGAAGATCCT-39 (for-
ward) and 59-GCAGAAGTCCCGGAAAA
GCA-39 (reverse); human S1PR1, 59-TCTG
CTGGCAAATTCAAGCGA-39 (forward)
and 59-GTTGTCCCCTTCGTCTTTCTG-39
(reverse); human SPHK1, 59-GGCTGCTG
TCACCCATGAA-39 (forward) and 59-TCA
CTCTCTAGGTCCACATCAG-39 (reverse);
humanGAPDH, 59-ACAACTTTGGTATC
GTGGAAGG-39 (forward) and 59-GCCATC
ACGCCACAGTTTC-39 (reverse); human
EDNRA, 59-TCGGGTTCTATTTCTGTAT
GCCC-39 (forward) and 59-TGTTTTTGCC
ACTTCTCGACG-39 (reverse); human
EDNRB, 59-GTCCCAATATCTTGATCGC
CAG-39 (forward) and 59-AAGGCACC
AGCTTACACATCT-39 (reverse); human
EDN1, 59-AGAGTGTGTCTACTTCTGC
CA-39 (forward) and 59-CTTCCAA
GTCCATACGGAACAA-39 (reverse);
human CTHCR1, 59-CAATGGCATTCCG
GGTACAC-39 (forward) and 59-GTACA
CTCCGCAATTTTC CCAA-39 (reverse).

BAL
BAL fluid (BALF) was collected as previously
described (32). Total protein was quantified
by bicinchoninic acid assay (Thermo
Scientific, catalog no. 23225).

Hydroxyproline Assay
Left lung lobes were extracted and processed
for hydroxyproline quantification as
previously described (14).

Flow Cytometry
At the time of harvest, mice were
administered CD45.2-AF700 (BioLegend,
catalog no. 109822) retroorbitally to stain
circulating cells (IV-CD45). Single-cell
suspensions of lung were stained as follows.
Samples were blocked with purified
CD16/CD32 mAb (BD Biosciences, catalog
no. 553142) and then stained with
fluorescently labeled surface antibodies.

Endothelial cocktail included CD45-FITC
(BioLegend, catalog no. 103018), CD31-PE-
Cy7 (BioLegend, catalog no. 102418),
EpCAM-BV605 (BioLegend, catalog no.
118227), and S1PR1-APC (R&D Systems,
catalog no. FAB7089A). Myeloid cocktail
includedMHCII-BV510 (BioLegend, catalog
no. 107635), F4/80-BV421 (BioLegend,
catalog no. 123137), CD64-BV605
(BioLegend, catalog no. 139323), Ly6G-
AF488 (BioLegend, catalog no. 127626),
CD11c-PE-Cy7 (BioLegend, catalog no.
117318), Siglec F-PE (BDBiosciences, catalog
no. 552126), CD11b-APC (BioLegend,
catalog no. 101212), and Ly6C-PerCP-Cy5.5
(BioLegend, catalog no. 128012). The T cell
panel included TCRb-BV610 (BioLegend,
catalog no. 109241), CD4-BV785
(BioLegend, catalog no. 100453), CD3-
BV421 (BioLegend, catalog no. 100335),
CD44-BV510 (BioLegend, catalog no.
103043), CD8-PE-Cy7 (BioLegend, catalog
no. 100722), and TCRgd-PerCP-Cy5.5
(Invitrogen, catalog no. 46-5711-82).
Viability staining (e780, Invitrogen, 65-0865-
14) was done at room temperature for
15minutes in all panels. Cells were fixed in
4% paraformaldehyde (BioLegend, catalog
no. 420801) for 20minutes at room
temperature. Intracellular staining for
FOXP3-AF488 (Invitrogen, catalog no. 53-
5773-82) was performed using the True-
Nuclear Transcription Factor Buffer Set
(BioLegend, catalog no. 424401) according to
themanufacturer’s instructions. Flow
cytometry was performed on a Beckman
Coulter CytoFLEX 5 flow cytometer and
analyzed using FlowJo (version 10.8.1). After
exclusions of doublets, dead cells, and IV-
CD451 cells, populations were gated and
defined as previously described and as
outlined in Figures E1A–E1C (32).

Western Blot
Tissue and cell lysis was performed as
previously described (14). Primary antibodies
used were as follows: S1PR1 (ABclonal,
catalog no. A12935, 1:1000) and GAPDH
(Cell Signaling Technology, catalog no. 2118,
1:1,000). The fluorescently labeled secondary
antibody used was goat anti-rabbit (LI-COR
Biosciences, catalog no. 926-32211, 1:10,000).
Blots were visualized on a LI-COROdyssey
CLx instrument.

Histopathology
Mice were killed at Day 0, 7, 14, 21, or 42
after infection. Lung lobes were inflated with
4% paraformaldehyde (Fisher, catalog no.

50-980-487) and then placed in cold
paraformaldehyde for 15minutes before
transfer to cold PBS. Paraffin-embedded
5-μm sections were stained with hematoxylin
and eosin or Masson’s trichrome stain.
Bright-field images were obtained using a
Zeiss Axioscan Z1 slide scanner microscope.
Lung severity and Ashcroft scores were
assessed as previously described (32, 33).

Optimal cutting temperature (O.C.T.)-
embedded cryosections were stained for
S1PR1 (Santa Cruz Biotechnology, catalog
no. H60), VECAD (R&D Systems, catalog
no. AF1002), and DAPI (Thermo Fisher
Scientific, catalog no. D1306). Confocal
images were taken using an Olympus
FluoView FV10i or Zeiss LSM 3 800 with
Airyscan microscopes.

Human Tissue
Lung tissue was obtained from human
autopsy under an institutional review board
approval. Specimens were retrospectively
evaluated by a pathologist to identify
“moderate injury” specimens from three
individuals infected with IAV. Paraffin-
embedded 5-μm sections were stained and
imaged as described above. Individual lung
sections were subclassified into mild (score
1–2), moderate (score 2–3), and severe (score
3–4) areas across each tissue slice.

S1P Measurements
S1P was quantified by liquid chromatography
tandemmass spectrometry using an LCMS-
8050 system (triple quadrupole; Shimadzu) as
described (34).

Cell Lines
Human lung microvascular endothelial cells
(HLMVECs) were purchased from Lonza
(catalog no. CC-2527) and cultured
according to the manufacturer’s instructions.
All cells were grown in a humidified
incubator with 5% CO2 at 37�C and
routinely tested for mycoplasma
contamination.

Other Reagents
HLMVECs were treated with the following
pooled siRNA (60pmol) purchased from
Santa Cruz Biotechnology: siS1PR1-h
(SC-37086), siSPHK1-h (SC-44114), and
siControl-A (SC-37007). siRNA was used
complexed with RNAiMAX (Thermo Fisher
Scientific, catalog no. 13778). HLMVECs
were treated for 16hours with the following
recombinant human cytokines purchased
from BioLegend and used at 5 ng/ml: IL-6
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(catalog no. 570802), IFN-a (catalog no.
592702), TNF-a (catalog no. 570102),
and IL-1a (catalog no. 570002). The
inflammatory cocktail (IC) was composed of
equal parts IL-6, IFN-a, TNF-a, and IL-1a,
each at 5ng/ml. For in vitro experiments,
FTY720 (10nM, catalog no. SML0700-5MG)
and paroxetine hydrochloride (Px; 25μM,
catalog no. P9623-10mg) were purchased
from Sigma-Aldrich. For in vivo
experiments, Px (catalog no. 14998) was
purchased from Cayman Chemical and
given by daily intraperitoneal injection
(20mg/kg body weight/d) (35–37). We
observed no toxicity or mortality in
uninfected vehicle or Px-treated mice
(data not shown).

Statistical Analysis
Analyses of significance were performed
using GraphPad Prism (version 9.1.1)
software. A P value less than or equal to 0.05
was considered statistically significant. A
standard two-tailed unpaired Student’s t test
was used for two groups. One-way ANOVA,
followed by analysis-specific posttests, was
performed whenmore than two groups were
compared. Two-way ANOVAwas used with
two or more groups with two variables. Data
are presented as mean6 SD overlaid with

individual data points representing
replicates. Statistical analysis of survival
curves was performed with a two-sided log-
rank (Mantel-Cox) test.

Results

Loss of Endothelial S1PR1 Correlates
to Degree of Post-Viral Fibrosis
Immunofluorescent costaining of lung
specimens from IAV-infected patients for
endothelial specific marker VE-cadherin
(VECad) and S1PR1 suggested colocalization
in areas of mild injury, with loss of S1PR1 in
moderate and severe areas (Figure 1A).
Masson’s trichrome staining revealed more
evident parenchymal deposition of collagen
in more severely injured lung regions (Figure
1B). These observations suggest a putative
inverse relationship between lung injury and
collagen deposition with the expression of
endothelial S1PR1 in human IAV infection.

To define the possible association
between reduced endothelial S1PR1 and
increased deposition of collagen, we used a
low-dose IAV infection model inWTmice
with significant weight loss and lowmortality
(Figures E2A and E2B). Viral titers were
significantly elevated at 7 days postinfection

(dpi) with no significant signal by 14dpi
(Figures E2C–E2E). Total protein in BALF
was used to quantify vascular leak as a proxy
for lung injury in our model (14, 38). BALF
total protein was increased at 7 dpi, peaked at
14 dpi, and remained elevated at 21 dpi,
returning to baseline by 42dpi (Figure E2F).
Consistent with observations in human
specimens, immunofluorescence showed
VECad and S1PR1 costaining at 0 dpi that
was absent at later time points (Figure 2A).
Masson’s trichrome stain revealed an inverse
pattern, where collagen deposition, absent at
0 dpi, becamemore evident at 14 dpi and
persisted through 21dpi (Figure 2B).
Quantification of lung fibrosis by
hydroxyproline (OHP) assay showed
increased OHP by 14dpi that resolved
slightly by 21dpi but remained persistently
elevated to 42dpi (Figure 2C). Quantification
of S1PR1median fluorescence intensity
showed reductions in S1PR1 by 7dpi that
continued to decrease at 14 dpi and remained
below baseline to 42dpi (Figure 2D). These
quantitative measures of fibrosis and S1PR1
show an inverse relationship between lung
fibrosis and endothelial S1PR1 expression
(Figure 2E) and suggest that a loss of EC
S1PR1 associates with increased post-IAV
fibrosis.

Figure 1. Loss of endothelial S1PR1 associated with collagen deposition in sections of human lung tissue obtained at autopsy of patients with
influenza A virus (IAV) infection. (A) Immunofluorescent costaining of DAPI (blue), VE-cadherin (green), and S1PR1 (red) in representative
mild, moderate, and severely affected areas. n=3 patients. Scale bars, 50 mm. (B) Brightfield Masson’s trichrome stain showing collagen
deposition (blue) in representative mild, moderate, and severely affected areas. n=3 patients. Scale bars, 200 mm.
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Endothelium-Specific Modulation of
S1PR1 Determines Degree of
Postviral Fibrosis
To address the causal role of EC S1PR1 in
postviral fibrosis, we used loss-of-function

transgenic mice to 21dpi, where we see
persistent fibrosis in our model. Mice with an
inducible endothelium-specific deletion of
S1PR1 (S1pr1f/f VECadCreERT2, ECko) (14, 26)
displayed persistent loss of EC S1PR1

expression (Figure E3A), with increased
mortality comparedwith ECnorm (S1pr1f/f)
littermates (Figure 3A).We did not observe
differences in viral clearance (Figures
E3B–E3D) between ECko and ECnormmice.
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Flow cytometry of lung single-cell
suspensions revealed elevated numbers of
MHCIIloCD11b1Ly6C1CD641monocytes
(Figure E3E), Ly6G1 neutrophils (Figure
E3F), andMHCIIhiCD11chi dendritic cells
(Figure E3G) in ECko comparedwith ECnorm

mice at 7dpi. By 14dpi, no differences were
observed in these populations. Differences
were not observed in SiglecF1CD11blow

alveolarmacrophages,MHCIIhighCD11b1F4/
801CD641macrophages, TCRgd1 T cells,
TCRb1CD41CD441CD691 T cells,
TCRb1CD41Foxp31CD441CD691 regula-
tory T cells, or TCRb1CD81CD441CD691

T cells between ECko and ECnorm (Figures
E3H–E3M). However, we detected elevated
BALF total protein levels in ECkomice
comparedwith ECnorm littermates at 7, 14,
and 21dpi (Figure 3B). Examination of
hematoxylin and eosin–stained lung sections
showed increased severity of lung injury in
ECko at 21dpi comparedwith ECnorm

littermates (Figure E3N).We observed
elevatedOHP levels at 14 and 21dpi in ECko

mice comparedwith ECnorm littermates
(Figure 3C), consistent with increased
Ashcroft scoring of trichrome-stained lung
sections at 21dpi (Figure E3O). These results

suggest amechanistic link between loss of EC
S1PR1 and postviral fibrosis.

Gain-of-function transgenic mice
(S1pr1f/STOP/f VECadCreERT2, EChigh) (26)
were used to determine if overexpression of
EC S1PR1 was sufficient to protect against
post-IAV fibrosis. Overexpression of S1PR1
was not sufficient to prevent IAV
infection–associated decreases in EC S1PR1,
but levels did remain elevated at all time
points compared with ECnorm littermates
(S1pr1f/STOP/f, ECnorm) (Figure E4A).
Notably, EC S1PR1 expression in EChigh

mice increased from 14 to 21dpi, whereas
ECnorm littermates had persistent loss of EC
surface S1PR1 expression.We observed
improved survival (Figure 4A), with no
differences in viral clearance compared with
ECnorm littermates (Figures E4B–E4D).With
the exception of moderately reduced
neutrophil recruitment in EChigh mice
comparedwith ECnorm littermates (Figure E4E),
we observed no differences in immune cell
recruitment between EChigh and ECnorm

mice (Figures E4F–E4M). BALF total protein
was decreased in EChigh mice compared with
ECnorm littermates at 14dpi and normalized
by 21dpi (Figure 4B). Hematoxylin and

eosin–stained sections showed reduced
severity of lung injury in EChigh at 21 dpi
compared with ECnorm littermates (Figure
E4N). Wemeasured reduced OHP levels in
EChigh mice compared with ECnorm

littermates at 14 and 21dpi (Figure 4C),
consistent with reduced Ashcroft scores of
trichrome staining at 21 dpi (Figure E4O).
These results suggest that enhanced EC
S1PR1 expression is sufficient to attenuate
postviral fibrosis.

To determine whether therapeutic
restoration of EC S1PR1 was sufficient to
improve outcomes after IAV infection, we
took advantage of our inducible system to
promote EC S1PR1 overexpression starting
at 7 dpi (Figure 4D), when we began to
observe clinical symptoms, including weight
loss and lung injury, but before appreciable
fibrosis. This regimen was sufficient to
induce S1PR1 overexpression compared with
ECnorm littermates (Figure E4P). Although
we did not observe a difference in survival
(Figure 4E), therapeutic overexpression of
EC S1PR1 attenuated the development of
fibrosis in EChigh mice compared with
ECnorm littermates (Figure 4F). Taken
together, our results demonstrate that
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rebound of EC surface S1PR1 expression
dampens postviral pulmonary fibrosis.

IAV-induced Inflammation Promotes
EC S1PR1 Internalization
To better understand EC S1PR1 regulation
during IAV infection, we quantified S1PR1
mRNA from sorted CD311 ECs and
observed no changes (Figure 5A). Western
blotting of whole-lung homogenates from
WTmice revealed loss of total S1PR1 (Figure
5B). To recapitulate the in vivo inflammatory
IAV infection milieu and determine whether
a secreted factor upregulated during IAV
infection was sufficient to trigger reduced EC
S1PR1 expression, we exposed HLMVECs to
BALF fromWTmice at 0 and 14dpi in vitro.
Consistent with in vivo findings, we observed
reduced S1PR1 protein expression (Figure 5C)
without mRNA changes (Figure 5D). To

parse whether a specific cytokine was driving
this response or if this was a more general
consequence of inflammation, HLMVECs
were treated with a subset of inflammatory
cytokines upregulated during IAV infection
(TNF-a, IL-1a, IL-6, and IFN-a), as well as
with an IC, composed of each of the tested
cytokines. Interestingly, each was sufficient
to reduce S1PR1 surface expression with no
additive effect from the IC (Figure E5A).
Taken together, these data suggest that IAV-
associated inflammation is sufficient to
trigger post-transcriptional loss of EC S1PR1.

Upon receptor ligation, S1PR1 is
phosphorylated byG protein–coupled
receptor kinase 2 (GRK2) and is then
internalized via ab-arrestin–dependent
mechanism. From there, S1PR1 can be
recycled back to the cell surface or
ubiquitinated byWWP2 and degraded by the

proteasome (23, 39). Studies using the S1PR
functional antagonist FTY720 have shown
that exuberant S1PR1 signaling skews the
system toward internalization with
subsequent degradation (23, 40, 41).
Correspondingly, we detected significantly
elevated levels of the endogenous S1PR1
ligand, S1P, in the serum of IAV-infected
mice at 14dpi (Figure E5B), whenwe first
observed a reduction in total cell levels of
S1PR1 (Figure 5B). It has been documented
that TNF-a and IL-1a can increase the
expression and activity of sphingosine kinase
1 (SPHK1), one of the kinases that
phosphorylates sphingosine to generate S1P
(42). Linking elevated S1P levels to IAV-
induced inflammation, we detected
upregulation of Sphk1 in sorted CD311 ECs
(Figure 5E) and enhanced SPHK1mRNA in
IC-treatedHLMVECs (Figure E5C). To
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determine if SPHK1was necessary to induce
loss of S1PR1, HLMVECs transfected with
either a control siRNA or siRNA targeting
SPHK1were treated with IC or FTY720.With
silencing of SPHK1, surface levels of S1PR1
were resistant to inflammation-mediated
internalization (Figure 5F). However, because
FTY720 directly binds to S1PR1 and does not
require endogenous S1P production, silencing
of SPHK1was not sufficient to rescue
FTY720-mediated S1PR1 internalization
(Figure 5F). Collectively, these results show
that inflammatory activation of SPHK1 is
necessary to drive paracrine and/or autocrine
S1P-mediated internalization of S1PR1.

Given the pleiotropic effects of S1P,
targeting this bioactive lipid directly or via
inhibition of SPHK1 is difficult to translate
for clinical relevance (43). As such, we
probed the internalization pathway
downstream of S1PR1 ligation for
therapeutic targets. In sorted CD311 ECs,
we detected elevated expression of Grk2
(Figure 5G), the kinase that phosphorylates
S1PR1 to trigger its internalization (42).
Using Px, a U.S. Food and Drug
Administration–approved selective
serotonin reuptake inhibitor that has been
shown to inhibit GRK2 and impede the
internalization of S1PR1 (39, 44, 45), we
were able to rescue both IC and FTY720-
induced reductions in surface S1PR1 (Figure
5H). We next tested the efficacy of Px in vivo
to improve outcomes and attenuate postviral
lung fibrosis. Naive and IAV-infected mice
received daily Px starting at 7 dpi. IAV-
infected mice receiving Px had increased
survival compared with vehicle-treated
littermates (Figure 5I). At 21 dpi, both
groups developed measurable fibrosis
compared with uninfected mice; however,
OHP content was attenuated in the
Px-treated group (Figure 5J), and we
observed elevated S1PR1 expression in IAV-
infected Px-treated mice compared with
vehicle (Figure E5D). Taken together, these
data elucidate a mechanism by which IAV-
induced inflammation activates SPHK1 to
elevate S1P and drive maladaptive
internalization of S1PR1 driven by GRK2
that can be inhibited by Px to reduce
postviral lung fibrosis (Figure 5K).

Discussion

A substantial proportion of ARDS survivors
experience reduced quality of life because of
the development of fibrotic changes in the

lung (6–10). The pulmonary endothelium
has largely been excluded in the study of
post-ARDS fibrosis, despite knowledge that
EC injury and activation are central
components of ARDS pathophysiology
(6, 7, 9). Our findings suggest that persistent
EC S1PR1 internalization contributes to
subsequent downstream sequelae such as
lung fibrosis. Because current management
of patients with virus-induced ARDS is
largely limited to mechanical ventilation,
which may further perpetuate pathological
endothelial injury, novel therapeutics are
urgently needed (22). Our data position EC
S1PR1 rebound at the inflection point
between normal repair and fibrosis and
identify a targetable mechanism of regulation
to attenuate post-ARDS fibrosis.

EC S1PR1 is a key regulator of vascular
integrity, cell survival, and inflammatory
processes (14, 16, 42). We have previously
shown that EC-specific deletion of S1PR1
increases susceptibility to bleomycin-induced
pulmonary fibrosis (14). However, it was
unclear whether EC S1PR1 was necessary for
limiting the development of fibrosis across
etiologies. Our model used a low dose of IAV
that resulted in moderate disease with low
mortality, which allowed us to focus on the
long-term fibrotic complications of IAV
infection. Here we were able to achieve
enhanced OHP content comparable with our
previous studies using a single-injection
bleomycin pulmonary fibrosis model (14).
We showed that ECko mice had increased
mortality, modest elevation of immune cell
recruitment at 7 dpi, elevated BALF total
protein, and persistent fibrosis to 21dpi
compared with ECnorm littermates.
Conversely, studies have shown that
preventative agonism of S1PR1 is sufficient
to improve outcomes in a short-termmouse
model of severe IAV infection (16). We
observed similar findings using, for the first
time, to our knowledge, an EC-specific
overexpression of S1PR1 in an IAV-infection
model. EChigh mice have reduced mortality,
slightly reduced neutrophils, and decreased
BALF total protein and fibrosis compared
with ECnorm littermates. In addition, our
inducible system was used to show that
therapeutic induction of S1PR1 is sufficient
to attenuate the degree of post-IAV fibrosis.
However, we did not detect a difference in
survival with therapeutic induction of EC
S1PR1 at 7 dpi. In our model, we observed
that the majority of our mortality events
occurred between Days 10 and 15, a time
during which the mice experience significant

weight loss and had significantly elevated
BALF total protein, indicative of severe lung
injury and alveolar–capillary barrier
permeability, which can lead to respiratory
failure and death in the more severely
affected mice. The improved survival with
reduced fibrosis observed with Cre activation
before IAV infection is likely a dual effect of
the known role for EC S1PR1 in limiting
postviral inflammation and barrier
enhancement. Taken together, these
observations may suggest that our therapeutic
dosing strategy is not sufficient to protect
from the acute inflammatory phase of the
disease, but rather inhibits hyperactivation of
the later fibroproliferative phase of postviral
ARDS.

Early downregulation of EC S1PR1
during IAV infection may represent an
adaptive process to facilitate immune-
mediated viral clearance necessary before
tissue repair can occur. However, the
persistence of EC S1PR1 downregulation has
pathologic consequences (14). One possible
mechanism of protection observed with
S1PR1 augmentation is through the
restoration of the vascular barrier mediated
by S1PR1 signaling, which blunts the influx
of proinflammatory, procoagulant, and
profibrotic mediators (5, 14–22). With the
close proximity of the endothelium to the
epithelial andmesenchymal compartments,
it is likely that parallel, cell-intrinsic, S1PR1-
mediated signaling from the endothelium
may also play a role in the attenuation of
fibrotic outcomes. These findings highlight
the importance of EC S1PR1 in supporting
productive lung repair and identify a
potential therapeutic avenue to attenuate
postviral fibrosis and reduce long-term
respiratory dysfunction in ARDS survivors.

Although EC S1PR1 has previously
been investigated in the context of IAV
infection (16), changes in EC S1PR1
expression have not been reported. We
observed an association between IAV-
induced injury severity, loss of EC S1PR1
expression, and deposition of collagen in
both human and mouse lungs. Here, our
data suggest a maladaptive dysregulation of
endothelial S1PR1 recycling that results in
the persistent loss of S1PR1 and promotes
postviral fibrosis. We found that during IAV
infection, there was an inflammation-
induced upregulation of SPHK1 that was
necessary to promote S1PR1 internalization.
It has previously been noted that
inflammatory mediators are sufficient to
upregulate the expression and activity of
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SPHK1, the enzyme that generates S1P (46).
This upregulation may contribute to the
elevated levels of S1P in the serum of IAV-
infected mice as observed by us and others
(47). Although these data may point toward
SPHK1 as an intriguing target, it has been
shown that loss of endothelial SPHK1 is
deleterious with increased lung injury and
fibrosis after bleomycin challenge (43).
Moreover, the SPHK1-generated S1P
gradient is crucial for lymphocyte
recruitment necessary for viral clearance
during IAV infection. Therefore, we focused
our investigation downstream of the
S1P–S1PR1 interaction to identify more
viable therapeutic targets.

Upon receptor ligation, S1PR1 is
phosphorylated by GRK2, allowing
b-arrestin to bind and internalize S1PR1,
which can either be recycled back to the cell
surface or marked for proteasomal
degradation (23, 42). It is this mechanism
that attributes functional antagonism to
compounds initially thought to have a purely
agonist effect (23, 48), further supporting our
focus downstream of S1PR1 ligation to
identify a viable therapeutic target. In our
IAV infection model, we observed increased
expression of ECGrk2 and found that Px,
which is known to inhibit GRK2, was
sufficient to prevent persistent loss of surface
S1PR1. Mice that received therapeutic dosing

of Px had improved survival and reduced
fibrosis compared with vehicle-treated
counterparts. Px is a U.S. Food and Drug
Administration–approved compound
currently prescribed as a selective serotonin
reuptake inhibitor with potent efficacy on a
range of cellular proteins (49). For example,
off-label use has proved effective in the
treatment of menopausal symptoms and
responsiveness to antiestrogenic cancer
therapy because of the inhibition of the
cytochrome P450 family of enzymes (49). In
addition, multiple studies have pointed to its
efficacy as a selective GRK2 inhibitor in
promoting productive repair pathways in the
heart (44, 45, 50). Notably, it has been shown
to inhibit GRK2 downstream of S1PR1
ligation, preventing S1PR1 phosphorylation
and internalization (39). Interestingly, we
observed a survival benefit with Px treatment
compared with vehicle that was not observed
with therapeutic induction of genetic S1PR1
overexpression, whereas both approaches
were sufficient to reduce postviral fibrosis. As
such, Px treatment may have multiple
beneficial effects beyond GRK2 inhibition
and stabilization of EC S1PR1, which
contribute to the observed attenuation of
postviral fibrosis. However, in support of
our GRK2-centric conclusions, GRK2
inhibition with CAS 24269-96-3 has also
been shown to be effective in protecting

against bleomycin-induced lung fibrosis (51).
The availability and in vivo efficacy and
tolerability of Pxmake it an attractive
translational tool for intervention during viral
infection to improve outcomes, including the
attenuation of postviral fibrosis. Interestingly,
Px use has been found to be associated with
reduced risk of intubation or death in
hospitalized patients with COVID-19 (52),
although further studies are needed to
confirm the link to postviral fibrosis.

Despite the pulmonary endothelium
playing an important role in the development
of ARDS, the therapeutic potential of
modulating EC signaling to prevent
deleterious long-term consequences has not
been well explored. Given the continuous
global burden of respiratory viral infections,
there is a great need for novel therapies
targeted at reducing long-term postviral
fibrotic complications. Currently, limited data
exist regarding the efficacy of traditional
antifibrotics pirfenidone and nintedanib on
the resolution of postviral fibrosis. As such,
new therapeutic avenues must continue to be
explored (53, 54). Augmentation of S1PR1, a
key protective signaling axis for the lung
endothelium, has the potential to reduce the
burden of postviral fibrosis.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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