
Antimicrobial Chemotherapy | Short Form

Improved characterization of aminoglycoside penetration 
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ABSTRACT Aminoglycosides are important treatment options for serious lung 
infections, but modeling analyses to quantify their human lung epithelial lining fluid 
(ELF) penetration are lacking. We estimated the extent and rate of penetration for five 
aminoglycosides via population pharmacokinetics from eight published studies. The area 
under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives 
from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak 
concentrations were blunted, but overall exposures were moderately high.
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A minoglycosides are an important part of our armamentarium to treat serious 
lung infections caused by multidrug-resistant Gram-negative pathogens, such 

as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, and 
often used in combination with β-lactam antibiotics (1–12). Aminoglycosides are polar 
polycations (Table S1) (13), have small volumes of distribution (11, 14, 15), low (<20%) 
protein binding (16–19), and diminished activity in acidic pH (20, 21). A few studies 
report lung epithelial lining fluid (ELF) concentrations to range from 10% to 30% of 
those in plasma or serum, though these values only considered one or two time points 
during the first 2 h after the start of a short-term infusion (22–25). In contrast, ELF-to-
plasma concentration ratios increased over time and reached 100% in all studies that 
determined ELF concentrations over up to 6 to 24 h post dose (Fig. S1) (26–31).

Time-course modeling can estimate the rate and extent of penetration, as employed 
to assess penetration of other antibiotic classes into ELF (32–37), bone (38–41), and 
cerebrospinal fluid (42, 43). Physiologically based modeling has been applied to predict 
the pulmonary pharmacokinetics (PK) of fluoroquinolones (44). Population PK model
ing is highly beneficial to handle data sets with sparse sampling (e.g., only one ELF 
concentration per patient) and has been employed to model ELF concentrations of 
aminoglycosides in mice (45–47). However, we are not aware of published PK modeling 
analyses of the rate and extent of ELF penetration for aminoglycosides in humans. 
Instead, all but one prior study reported ELF-to-plasma concentration ratios at single or 
several time points (22–30) without even applying a non-compartmental analysis (NCA) 
(48). One study used bronchoscopic micro-sampling and NCA to calculate the area under 
the curve (AUC) in ELF and plasma and reported a ratio of 67.6% for arbekacin (31). 
Thus, despite extensive clinical use of aminoglycosides to combat serious lung infections 
for decades, their extent and rate of human ELF penetration have never been character
ized via time-course modeling. Consequently, the impact of system hysteresis with ELF 
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concentrations lagging behind those in plasma has never been quantitatively examined 
(22). Failure to consider the time course of exposures may lead to underestimating drug 
exposures in ELF in patients.

We performed model-based meta-analyses by simultaneously modeling all data from 
each aminoglycoside based on eight published PK studies assessing the ELF penetration 
in humans after intravenous or intramuscular dosing (23, 24, 26–31). We excluded studies 
with inhaled dosing (14, 49), one study on plazomicin reported as a poster (25, 50), 
and one study (51) where tobramycin concentrations in bronchoalveolar lavage fluid 
were expressed as a function of creatinine. Plasma (or serum) and ELF concentration 
values were used as reported (23, 24, 26, 28) or digitized (27, 29–31) (see Table S2 for 
details). For each drug, all plasma (or serum) and ELF concentrations were analyzed by 
population PK modeling in the S-ADAPT (version 1.57; importance sampling algorithm) 
and SADAPT-TRAN software packages (52–54) using previously described approaches 
(41, 55–59). The systemic PK of aminoglycosides was described by linear one or two 
compartment models (Fig. S2), plus an additional ELF compartment with a small, 
non-influential volume of distribution (fixed to 0.1 L) (39, 58). We estimated the ratio 
(FELF) for the AUC in ELF vs plasma or serum and the ELF-to-plasma equilibration half-life 
(t1/2,eq). The FELF characterizes the overall extent and t1/2,eq the rate of penetration.

Population PK estimated the mean ELF-to-plasma AUC ratios (FELF) between 0.502 
and 1.00 for all aminoglycosides with good precision (relative standard errors, RSE ≤12%, 
except for 31% for amikacin, Table 1). The between-patient variability of FELF was large 
for amikacin (84.4% coefficient of variation) and smaller for the other aminoglycosides 
(≤27.6%; Fig. 1; Fig. S3). The individual subject estimates for the ELF-to-plasma AUC ratio 
ranged from 0.138 to 1.60 for amikacin and from 0.468 to 1.94 for gentamicin, netilmicin, 
and tobramycin (Table 1).

The estimated t1/2,eq differed between aminoglycosides with a range of 0.857 to 
5.80 h in patients and 0.613 h in healthy volunteers (Table 1). It is unknown, whether 
these differences arose from the aminoglycoside structures (Table S1) (13), clinical factors 
(e.g., type of infection and inflammation) (60, 61), or both. The longest half-life was 
observed in neonates receiving amikacin (Fig. 1; Fig. S1). Neonates might have had 
an altered expression of pulmonary transporters compared to adults (62–65). Future 
research on such transporters and their impact on lung penetration is warranted (66–
71). Owing to the sparse nature of the data sets, the differences in t1/2,eq between 
aminoglycosides should be interpreted cautiously.

The system hysteresis (Fig. S1) yielded blunted peak concentrations (Cmax) in ELF, 
which were on average 2.3- to 4-fold lower than those in plasma. Despite this, the AUC 
in ELF was 50% to 100% of the plasma AUC. Plazomicin modeling results are shown in 
Fig. S4 (50). Thus, estimating the system hysteresis via time-course modeling is important 
when determining the ELF penetration of aminoglycosides. To support future studies, 
we provided Monte Carlo simulation code to simulate ELF and plasma concentrations, 
as well as D-optimal sampling designs [in the PopED Lite software (72)] for amikacin, 
gentamicin, and tobramycin in the supplementary materials.

In mice, PK analyses estimated average ELF-to-plasma AUC ratios of 0.60 to 0.88 
for amikacin, tobramycin, plazomicin, and apramycin (4, 45–47, 73), consistent with our 
results (Table 1). However, the ELF-to-plasma equilibration half-lives were substantially 
faster in mice [3 to 5 min for tobramycin and plazomicin (45, 46), and 22 to 36 min for 
amikacin (73)] compared to those in patients (0.857 to 5.80 h; Table 1).

This study represents the first time-course modeling to characterize the rate and 
extent of ELF penetration for five aminoglycosides in humans based on eight published 
studies. Our model-based meta-analyses revealed the average AUC in ELF to be 50% to 
100% compared to those in plasma for humans. The individual subject ELF penetration 
ratios displayed considerable variability. Due to extensive system hysteresis, the Cmax 
in ELF were blunted and lower than those in plasma. With both Cmax and AUC being 
correlated to bacterial killing and clinical efficacy of aminoglycosides (2–11), future 
studies are warranted to assess whether or not blunted Cmax in ELF are clinically 
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important. Moreover, future research is warranted to assess the impact of pH and 
different oxygen tensions on aminoglycoside efficacy for lung infections (74, 75). This 
study supports translational research to simulate the time course of ELF concentrations 
in in vitro infection models (76) and future clinical ELF penetration studies in animals and 
humans.

FIG 1 Fitted (lines) and observed (markers) plasma (or serum) and ELF concentrations based on published data of five aminoglycosides from eight human PK 

studies (23, 24, 26–31). The lines represent different subjects if individual subject data were reported (see Table S2 for details on data sets).
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TABLE 1 Population PK parameter estimates for one- or two-compartment models describing plasma and lung ELF concentrations of five aminoglycosides after 
intravenous (or intramuscular) dosinga

Drug Population AUCELF/AUCPlasma t1/2,eq (h) CL (L/h) CLd (L/h) V1 (L) V2 (L)

Mean (RSEc) BSVb (RSEc) Median [range] Mean Mean Mean Mean Mean

Amikacin ICU patients (with VAP) 0.502 (31%) 0.844 (39%) 0.461 [0.138–1.60] 5.80 (58%) 4.88 24.6

Amikacin Ventilated neonates 0.138 1.61

Arbekacin Healthy volunteers 0.535 (12%) 0.10 (fixed) –f 0.613 (24%) 3.56 6.77 3.00 4.77

Gentamicin VABP critically ill patients 0.600 (7%) 0.165 (160%) 0.600 [0.507–0.782] 0.857 (18%) 3.63 14.9 13.5 13.9

Netilmicin ICU patients (ventilated, with pneumonia)e 1.00 (11%) 0.276 (67%) 0.989 [0.627–1.94] 1.68 (13%) 5.61 6.90 9.36 7.87

Tobramycind VABP critically Ill patients and healthy volunteers 0.642 (9%) 0.248 (84%) 0.635 [0.468–0.901] 3.38 (17%) 5.60 20.1

aThe volume of distribution of the ELF compartment was set to a small, non-influential value (0.1 L). The estimated ELF-to-plasma equilibration half-life characterized the 
extent of system hysteresis. AUCELF, area under the ELF concentration time curve from time zero to infinity (for a single aminoglycoside dose); AUCPlasma, area under the 
plasma concentration time curve from time zero to infinity (for a single aminoglycoside dose); ICU, intensive care unit; t1/2,eq, equilibration half-life between the ELF and 
the plasma compartment. This half-life characterizes the extent of system hysteresis and represents the slower rise of ELF concentrations compared to the rapid rise of 
the plasma or serum concentrations. If an aminoglycoside was dosed as a continuous infusion, the t1/2,eq would be the half-life of approaching a constant steady-state 
concentration in ELF; VAP / VABP, ventilator-associated (bacterial) pneumonia.
bBSV, between subject variability reported as coefficient of variation.
cRelative standard errors.
dThe estimated absorption half-life (t1/2,abs) after intramuscular dosing of tobramycin was 13.4 min.
ePatients were intubated and ventilated for a variety of reasons and received antibiotics due to the development of pneumonia.
fNot applicable.
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