Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jan 5;80(Pt 2):106–109. doi: 10.1107/S2056989023011052

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butyl­benzoate: work carried out as part of the AFRAMED project

Patrice Kenfack Tsobnang a,*, Eric Ziki b, Soso Siaka c, Jules Yoda c,d, Seham Kamal e, Adam Bouraima f, Ayi Djifa Hounsi g, Emmanuel Wenger h, El-Eulmi Bendeif h, Claude Lecomte h,*
Editor: W T A Harrisoni
PMCID: PMC10848970  PMID: 38333131

In the title coumarin derivative, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds into [010] double chains.

Keywords: coumarin derivative, Hirshfeld surface, herringbone packing, crystal structure

Abstract

In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking inter­actions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface.

1. AFRAMED and chemical context

The AFRAMED (Supporting research and training in Africa through remote measurements; Abdel-Aal et al., 2023) CNRS project was developed by the Chair of the IUCr Africa Initiative (Professor Claude Lecomte) and his team for Crystallography Education in Africa. The project is based on the remote control by an African laboratory of a diffractometer based in France (in fact now at CRM2) to perform X-ray single-crystal diffraction measurements for research and teaching purposes. Selected crystals are sent to the French partner by African researchers who control the data collection remotely and then receive the intensity data by e-mail. The project was launched in August 2022 and is co-financed by the French Centre National de la Recherche Scientifique (CNRS), the United Nations Educational, Scientific and Cultural Organization (UNESCO), and the Inter­national Union of Crystallography (IUCr). Two main steps define AFRAMED: first, four weeks training of African Partners (young lecturers with permanent positions) on a single-crystal diffractometer, and in the second step, the African researchers’ laboratories are focal points to assist their colleagues for remote measurements. To date, representatives of Algeria, Cameroon; Congo Brazzaville; Cote d’Ivoire, Egypt, Gabon and Senegal have been trained at the CRM2 laboratory of the Université de Lorraine, France.

This paper presents one of the results of this training: the synthesis, crystal structure and Hirshfeld surface analysis of the title coumarin derivative, I, synthesized by colleagues from Burkina Faso. Such coumaruin derivatives have various biological activities such as anti­cancer (Lacy et al., 2004; Kostova, 2005), anti-inflammatory (Todeschini et al., 1998), anti­viral (Borges et al., 2005), anti-malarial (Agarwal et al., 2005), anti-glaucoma (Ziki et al., 2023) and anti­coagulant (Maurer et al., 1998) properties. 1.

2. Structural commentary

As shown in Fig. 1, the C1–C9/O1/O2 2H-chromen-2-one ring system of I is almost planar (r.m.s. deviation = 0.044 Å) and the dihedral angle between this ring system and the C11–C16 phenyl group in the 4-tert-butyl­benzoate moiety is 89.12 (5)°. This near perpendicular orientation has been observed in other coumarin derivatives with the same motif (Ji et al., 2016). The dihedral angles between the linking C10/C11/O3/O4 ester group and the pendant C1–C9/O1/O2 and C11–C16 groupings are 64.38 (5) and 25.05 (6)°, respectively, indicating that the major twist in the mol­ecule occurs about the C8—O3 bond. An inspection of the bond lengths shows that there is a slight asymmetry of electronic distribution around the coumarin ring: the difference between the C2=C3 [1.343 (2) Å] and C1—C2 [1.449 (2) Å] separations confirms the double-bond character of the former as indicated in the chemical scheme. Atom C20 of the tert-butyl group lies close to the plane of its attached ring [deviation = 0.226 (2) Å] whereas C18 and C19 are displaced either side of the ring [deviations = −1.465 (1) and 0.964 (1) Å, respectively].

Figure 1.

Figure 1

The mol­ecular structure of I with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules of I are connected by C—H⋯O hydrogen bonds (Table 1) to build double chains propagating in the [010] direction: this motif results in two adjacent Inline graphic (8)loops between each pair of mol­ecules in one chain formed by the C3, C6 and C9 hydrogen bonds (Fig. 2). The C16 hydrogen bond provides the linkage to the second chain (Fig. 3). The pendant 4-tert-butyl­benzoate moieties are parallel and shifted by translation along the b axis. Aromatic π–π stacking inter­actions between centrosymmetric pairs of C4–C9 rings reinforce the cohesion of the double chains [centroid–centroid separation = 3.6301 (8), slippage = 1.579 Å]. The unit-cell packing of I can be described as a tilted herringbone motif (Fig. 4), as also observed in the crystal structure of 1-(1,2-di­hydro­phthalazin-1-yl­idene)-2-[1-(thio­phen-2-yl)eth­ylidene]hydrazine (Majoumo-Mbe et al., 2019).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.987 (13) 2.584 (13) 3.5682 (14) 174.8 (10)
C6—H6⋯O3ii 0.985 (14) 2.603 (15) 3.5835 (14) 173.9 (12)
C9—H9⋯O1i 0.987 (13) 2.584 (13) 3.5682 (14) 174.8 (10)
C16—H16⋯O2iii 0.968 (14) 2.416 (15) 3.2628 (16) 146.0 (11)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

Fragment of a [010] chain in the structure of I showing the hydrogen bonds involving C3, C6 and C9 as black dashed lines.

Figure 3.

Figure 3

Partial packing diagram for I showing [010] double chains arising from C—H⋯O hydrogen bonds (black dashed lines in one chain, magenta dashed lines in the other and the C16 cross-linking bonds in blue).

Figure 4.

Figure 4

The unit-cell packing for I viewed down [010].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43; update 3, September 2022; Groom et al., 2016) for structures having a coumarin motif similar to that of I returned five hits for to the following mol­ecules: 4-methyl-2-oxo-2H-1-benzo­pyran-6-yl pyridine-2-carboxyl­ate (CSD refcode ATOROT; Ji et al., 2016), 4-methyl-2-oxo-2H-1-benzo­pyran-6-yl pyridine-3-carboxyl­ate (ATORUZ; Ji et al., 2016), 4-methyl-2-oxo-2H-1-benzo­pyran-6-yl pyridine-4-carboxyl­ate (ATOSAG; Ji et al., 2016), 6-acet­oxy­coumarin (GASXON; Murthy et al., 1988) and 4-methyl-2-oxo-2H-chromen-6-yl benzoate (YEFSOU; Ji et al., 2017). ATORUZ only features a C6—H6⋯O3 hydrogen bond because a methyl group is bonded to C9 (according to the numbering scheme of I). This prevents the formation of layers like those found in the packing of I, although similar layers are found in GASXON.

5. Hirshfeld surface and Fingerprint plots

The inter­actions mentioned above are confirmed by the two-dimensional fingerprint plots of I (Fig. 5). The greatest contributions are the H⋯H and H⋯O/O⋯H contacts with 46.7 and 24.2%, respectively. The H⋯C/C⋯H and C⋯C contacts contribute 16.7 and 7.6%, respectively. The contributions of the H⋯H inter­actions in I to Hirshfeld surface are greater than those found in 2-oxo-2H-chromen-3-yl 4-chloro­benzoate (Ziki et al. 2017); this can be related to the packing of the 2H-1-chromen-6-yl moieties of I. The H⋯O/O⋯H contacts are related to the C—H⋯O1 hydrogen bonds shown in Fig. 2. Their contact points are shown in red and are labelled on the Hirshfeld surface (see Fig. 5 a).

Figure 5.

Figure 5

(a) Hirshfeld surface of I mapped over d norm and (b) two-dimensional fingerprint plots of (b) overall and delineated into contributions from different contacts: (c) H—H, (d) H—O/O—H, (e) H—C/C—H and (f) C—C.

6. Synthesis and crystallization

To 30 ml solution of 4-tert-butyl­benzoyl chloride (1.2 g; 6.17 mmol) in dry tetra­hydro­furan, were added dry tri­ethyl­amine (2.6 ml; 3.1 mmol) and 6-hy­droxy­coumarin (1.00 g; 6.17 mmol) in small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 ml of chloro­form. The solution was acidified with diluted hydro­chloric acid until the pH was 2.5. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate was suction filtered, washed with petroleum ether and recrystallized from chloro­form solution to give colorless prismatic crystals of I in a yield of 84%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located in difference maps and their positions and U iso values were freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C20H18O4
M r 322.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 35.908 (4), 6.8473 (6), 13.2661 (11)
β (°) 98.915 (4)
V3) 3222.3 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.731, 0.895
No. of measured, independent and observed [I > 2σ(I)] reflections 60054, 4940, 3518
R int 0.061
(sin θ/λ)max−1) 0.716
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.124, 1.11
No. of reflections 4940
No. of parameters 289
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.27

Computer programs: APEX3 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023011052/hb8087sup1.cif

e-80-00106-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023011052/hb8087Isup2.hkl

e-80-00106-Isup2.hkl (393.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023011052/hb8087Isup2.cml

CCDC reference: 2301781

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the PMD2 XX-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for X-ray diffraction measurements and the AFRAMED project. CCDC is also thanked for providing access to the Cambridge Structural Database through the FAIRE program. The authors are very grateful to UNESCO, CNRS and the IUCr for their support to AFRAMED project.

supplementary crystallographic information

Crystal data

C20H18O4 F(000) = 1360
Mr = 322.34 Dx = 1.329 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4940 reflections
a = 35.908 (4) Å θ = 2.3–30.6°
b = 6.8473 (6) Å µ = 0.09 mm1
c = 13.2661 (11) Å T = 100 K
β = 98.915 (4)° Prism, colourless
V = 3222.3 (5) Å3 0.20 × 0.15 × 0.08 mm
Z = 8

Data collection

Bruker D8 Venture diffractometer 4940 independent reflections
Radiation source: fine-focus sealed tube 3518 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.061
φ and ω scans θmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −51→51
Tmin = 0.731, Tmax = 0.895 k = −9→9
60054 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.124 All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.7544P] where P = (Fo2 + 2Fc2)/3
4940 reflections (Δ/σ)max < 0.001
289 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.01365 (2) 0.14244 (11) 0.13861 (6) 0.02265 (19)
O3 −0.07925 (2) 0.77690 (11) 0.03962 (6) 0.02359 (19)
C9 −0.01929 (3) 0.65096 (16) 0.10952 (8) 0.0204 (2)
O2 0.06636 (3) 0.00843 (12) 0.21536 (7) 0.0293 (2)
O4 −0.11921 (2) 0.70415 (12) 0.15117 (7) 0.0276 (2)
C5 −0.00869 (3) 0.30453 (15) 0.11373 (8) 0.0195 (2)
C2 0.06565 (3) 0.35501 (17) 0.20298 (9) 0.0225 (2)
C6 −0.04569 (3) 0.26950 (17) 0.07004 (9) 0.0219 (2)
C4 0.00547 (3) 0.49326 (15) 0.13275 (8) 0.0192 (2)
C1 0.05017 (3) 0.15982 (17) 0.18837 (9) 0.0227 (2)
C10 −0.11073 (3) 0.80567 (16) 0.08412 (9) 0.0222 (2)
C3 0.04453 (3) 0.51431 (17) 0.17689 (9) 0.0211 (2)
C11 −0.13230 (3) 0.97493 (16) 0.03591 (9) 0.0221 (2)
C7 −0.06982 (3) 0.42622 (17) 0.04737 (9) 0.0221 (2)
C8 −0.05615 (3) 0.61479 (16) 0.06872 (9) 0.0207 (2)
C16 −0.12922 (3) 1.03226 (17) −0.06341 (9) 0.0231 (2)
C14 −0.17523 (3) 1.28898 (17) −0.05714 (9) 0.0235 (2)
C15 −0.15077 (3) 1.18512 (17) −0.10943 (9) 0.0236 (2)
C12 −0.15665 (4) 1.07610 (18) 0.08908 (10) 0.0272 (3)
C13 −0.17742 (4) 1.23237 (18) 0.04322 (10) 0.0280 (3)
C17 −0.19912 (3) 1.45327 (17) −0.11186 (10) 0.0263 (3)
C19 −0.17461 (4) 1.58787 (19) −0.16687 (12) 0.0327 (3)
C20 −0.21829 (5) 1.5761 (2) −0.03849 (13) 0.0402 (4)
C18 −0.22939 (4) 1.3594 (2) −0.19155 (13) 0.0375 (3)
H9 −0.0100 (4) 0.7858 (19) 0.1225 (9) 0.018 (3)*
H3 0.0540 (4) 0.644 (2) 0.1881 (10) 0.022 (3)*
H2 0.0923 (4) 0.3644 (18) 0.2369 (9) 0.019 (3)*
H6 −0.0534 (4) 0.132 (2) 0.0585 (11) 0.031 (4)*
H16 −0.1128 (4) 0.963 (2) −0.1025 (11) 0.028 (4)*
H7 −0.0961 (4) 0.4084 (19) 0.0178 (10) 0.024 (3)*
H15 −0.1483 (4) 1.220 (2) −0.1788 (11) 0.028 (4)*
H12 −0.1584 (4) 1.038 (2) 0.1596 (12) 0.033 (4)*
H13 −0.1935 (4) 1.302 (2) 0.0848 (12) 0.040 (4)*
H19A −0.1646 (5) 1.519 (2) −0.2236 (13) 0.042 (4)*
H18A −0.2457 (5) 1.460 (2) −0.2292 (12) 0.042 (4)*
H19B −0.1528 (5) 1.642 (2) −0.1159 (13) 0.046 (5)*
H20A −0.2378 (4) 1.495 (2) −0.0068 (12) 0.038 (4)*
H18B −0.2453 (5) 1.273 (3) −0.1618 (14) 0.054 (5)*
H20B −0.1987 (4) 1.634 (2) 0.0198 (12) 0.041 (4)*
H20C −0.2317 (5) 1.687 (3) −0.0776 (13) 0.051 (5)*
H19C −0.1898 (5) 1.702 (2) −0.1991 (12) 0.045 (4)*
H18C −0.2170 (5) 1.281 (3) −0.2455 (14) 0.055 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0223 (4) 0.0180 (4) 0.0272 (4) 0.0017 (3) 0.0023 (3) 0.0003 (3)
O3 0.0218 (4) 0.0213 (4) 0.0278 (4) 0.0041 (3) 0.0043 (3) 0.0037 (3)
C9 0.0228 (6) 0.0186 (5) 0.0200 (5) −0.0004 (4) 0.0039 (4) 0.0008 (4)
O2 0.0292 (5) 0.0237 (4) 0.0349 (5) 0.0074 (3) 0.0046 (4) 0.0034 (4)
O4 0.0293 (5) 0.0255 (4) 0.0289 (5) 0.0011 (4) 0.0069 (4) 0.0031 (3)
C5 0.0218 (5) 0.0173 (5) 0.0197 (5) 0.0018 (4) 0.0044 (4) 0.0010 (4)
C2 0.0200 (5) 0.0251 (6) 0.0227 (6) 0.0001 (4) 0.0042 (4) −0.0004 (4)
C6 0.0250 (6) 0.0184 (5) 0.0223 (6) −0.0014 (4) 0.0035 (4) −0.0009 (4)
C4 0.0215 (5) 0.0182 (5) 0.0178 (5) −0.0005 (4) 0.0033 (4) 0.0007 (4)
C1 0.0219 (5) 0.0245 (6) 0.0225 (6) 0.0027 (4) 0.0058 (4) 0.0003 (4)
C10 0.0210 (5) 0.0211 (5) 0.0239 (6) −0.0005 (4) 0.0017 (4) −0.0027 (4)
C3 0.0223 (6) 0.0215 (5) 0.0199 (5) −0.0023 (4) 0.0045 (4) −0.0003 (4)
C11 0.0197 (5) 0.0206 (5) 0.0256 (6) 0.0001 (4) 0.0023 (4) −0.0012 (4)
C7 0.0206 (6) 0.0226 (5) 0.0226 (6) −0.0012 (4) 0.0021 (4) 0.0005 (4)
C8 0.0226 (6) 0.0188 (5) 0.0209 (5) 0.0038 (4) 0.0042 (4) 0.0017 (4)
C16 0.0211 (6) 0.0227 (5) 0.0258 (6) 0.0020 (4) 0.0043 (4) −0.0019 (4)
C14 0.0190 (5) 0.0207 (5) 0.0297 (6) −0.0001 (4) 0.0010 (4) −0.0014 (4)
C15 0.0233 (6) 0.0240 (6) 0.0228 (6) 0.0007 (4) 0.0015 (4) −0.0001 (4)
C12 0.0288 (6) 0.0282 (6) 0.0257 (6) 0.0037 (5) 0.0072 (5) 0.0014 (5)
C13 0.0275 (6) 0.0277 (6) 0.0299 (6) 0.0067 (5) 0.0081 (5) −0.0014 (5)
C17 0.0232 (6) 0.0229 (6) 0.0318 (7) 0.0041 (5) 0.0008 (5) −0.0002 (5)
C19 0.0331 (7) 0.0242 (6) 0.0396 (8) 0.0013 (5) 0.0017 (6) 0.0042 (5)
C20 0.0427 (9) 0.0341 (7) 0.0451 (9) 0.0169 (7) 0.0104 (7) 0.0018 (6)
C18 0.0288 (7) 0.0307 (7) 0.0482 (9) 0.0014 (6) −0.0094 (6) 0.0017 (6)

Geometric parameters (Å, º)

O1—C1 1.3789 (14) C7—H7 0.973 (13)
O1—C5 1.3791 (13) C16—C15 1.3858 (16)
O3—C10 1.3680 (14) C16—H16 0.967 (14)
O3—C8 1.4036 (13) C14—C15 1.3956 (17)
C9—C8 1.3724 (16) C14—C13 1.4005 (18)
C9—C4 1.4023 (15) C14—C17 1.5281 (16)
C9—H9 0.987 (13) C15—H15 0.967 (14)
O2—C1 1.2150 (14) C12—C13 1.3895 (17)
O4—C10 1.2047 (14) C12—H12 0.983 (15)
C5—C6 1.3855 (16) C13—H13 0.983 (16)
C5—C4 1.3972 (15) C17—C20 1.5286 (19)
C2—C3 1.3430 (16) C17—C19 1.5347 (19)
C2—C1 1.4490 (16) C17—C18 1.5348 (18)
C2—H2 0.993 (13) C19—H19A 0.999 (17)
C6—C7 1.3829 (16) C19—H19B 1.021 (17)
C6—H6 0.985 (14) C19—H19C 1.007 (17)
C4—C3 1.4410 (16) C20—H20A 1.034 (16)
C10—C11 1.4829 (16) C20—H20B 1.040 (16)
C3—H3 0.956 (13) C20—H20C 0.999 (18)
C11—C12 1.3903 (17) C18—H18A 0.990 (16)
C11—C16 1.3955 (17) C18—H18B 0.948 (18)
C7—C8 1.3949 (16) C18—H18C 1.047 (18)
C1—O1—C5 121.32 (9) C11—C16—H16 120.8 (8)
C10—O3—C8 119.20 (9) C15—C14—C13 117.63 (11)
C8—C9—C4 119.17 (10) C15—C14—C17 119.29 (11)
C8—C9—H9 121.0 (7) C13—C14—C17 123.04 (11)
C4—C9—H9 119.8 (7) C16—C15—C14 121.16 (11)
O1—C5—C6 116.43 (9) C16—C15—H15 118.5 (8)
O1—C5—C4 121.28 (10) C14—C15—H15 120.3 (8)
C6—C5—C4 122.28 (10) C13—C12—C11 119.91 (12)
C3—C2—C1 121.66 (11) C13—C12—H12 120.9 (8)
C3—C2—H2 122.0 (7) C11—C12—H12 119.2 (8)
C1—C2—H2 116.3 (7) C12—C13—C14 121.60 (11)
C7—C6—C5 118.98 (10) C12—C13—H13 116.8 (9)
C7—C6—H6 123.8 (8) C14—C13—H13 121.6 (9)
C5—C6—H6 117.2 (8) C14—C17—C20 112.19 (11)
C5—C4—C9 118.16 (10) C14—C17—C19 110.30 (10)
C5—C4—C3 118.03 (10) C20—C17—C19 108.67 (11)
C9—C4—C3 123.80 (10) C14—C17—C18 107.72 (10)
O2—C1—O1 116.33 (10) C20—C17—C18 109.17 (12)
O2—C1—C2 126.25 (11) C19—C17—C18 108.73 (12)
O1—C1—C2 117.41 (10) C17—C19—H19A 111.9 (9)
O4—C10—O3 123.78 (10) C17—C19—H19B 109.9 (9)
O4—C10—C11 126.47 (11) H19A—C19—H19B 110.0 (13)
O3—C10—C11 109.74 (10) C17—C19—H19C 110.8 (9)
C2—C3—C4 119.92 (10) H19A—C19—H19C 106.1 (13)
C2—C3—H3 122.8 (8) H19B—C19—H19C 107.9 (13)
C4—C3—H3 117.2 (8) C17—C20—H20A 111.2 (9)
C12—C11—C16 119.14 (11) C17—C20—H20B 111.4 (9)
C12—C11—C10 119.88 (11) H20A—C20—H20B 109.1 (13)
C16—C11—C10 120.97 (10) C17—C20—H20C 108.3 (10)
C6—C7—C8 119.02 (11) H20A—C20—H20C 108.6 (14)
C6—C7—H7 121.8 (8) H20B—C20—H20C 108.1 (13)
C8—C7—H7 119.2 (8) C17—C18—H18A 110.9 (9)
C9—C8—C7 122.33 (10) C17—C18—H18B 112.4 (11)
C9—C8—O3 117.29 (10) H18A—C18—H18B 107.1 (14)
C7—C8—O3 120.12 (10) C17—C18—H18C 110.8 (10)
C15—C16—C11 120.53 (11) H18A—C18—H18C 107.2 (13)
C15—C16—H16 118.6 (8) H18B—C18—H18C 108.3 (14)
C1—O1—C5—C6 −175.80 (10) C5—C6—C7—C8 0.31 (17)
C1—O1—C5—C4 3.67 (16) C4—C9—C8—C7 −1.38 (17)
O1—C5—C6—C7 177.35 (10) C4—C9—C8—O3 −175.41 (10)
C4—C5—C6—C7 −2.11 (17) C6—C7—C8—C9 1.43 (18)
O1—C5—C4—C9 −177.29 (10) C6—C7—C8—O3 175.30 (10)
C6—C5—C4—C9 2.15 (17) C10—O3—C8—C9 −120.25 (11)
O1—C5—C4—C3 1.60 (16) C10—O3—C8—C7 65.57 (14)
C6—C5—C4—C3 −178.97 (10) C12—C11—C16—C15 −1.48 (18)
C8—C9—C4—C5 −0.39 (16) C10—C11—C16—C15 177.09 (10)
C8—C9—C4—C3 −179.21 (10) C11—C16—C15—C14 1.79 (18)
C5—O1—C1—O2 173.38 (10) C13—C14—C15—C16 −0.42 (17)
C5—O1—C1—C2 −6.99 (15) C17—C14—C15—C16 −178.56 (11)
C3—C2—C1—O2 −175.08 (12) C16—C11—C12—C13 −0.18 (18)
C3—C2—C1—O1 5.34 (17) C10—C11—C12—C13 −178.76 (11)
C8—O3—C10—O4 3.51 (16) C11—C12—C13—C14 1.6 (2)
C8—O3—C10—C11 −175.37 (9) C15—C14—C13—C12 −1.26 (18)
C1—C2—C3—C4 −0.26 (17) C17—C14—C13—C12 176.81 (12)
C5—C4—C3—C2 −3.21 (16) C15—C14—C17—C20 −168.91 (12)
C9—C4—C3—C2 175.60 (11) C13—C14—C17—C20 13.06 (17)
O4—C10—C11—C12 24.57 (18) C15—C14—C17—C19 −47.60 (15)
O3—C10—C11—C12 −156.59 (11) C13—C14—C17—C19 134.37 (13)
O4—C10—C11—C16 −153.99 (12) C15—C14—C17—C18 70.93 (15)
O3—C10—C11—C16 24.85 (15) C13—C14—C17—C18 −107.11 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O1i 0.987 (13) 2.584 (13) 3.5682 (14) 174.8 (10)
C6—H6···O3ii 0.985 (14) 2.603 (15) 3.5835 (14) 173.9 (12)
C9—H9···O1i 0.987 (13) 2.584 (13) 3.5682 (14) 174.8 (10)
C16—H16···O2iii 0.968 (14) 2.416 (15) 3.2628 (16) 146.0 (11)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x, −y+1, −z.

References

  1. Abdel-Aal, S. K., Kenfack, T. P., Bouraima, A., Djifa, H. A., Emmanuel, W., Bendeif, E.-E. & Lecomte, C. (2023). https://www. iucr. org/news/newsletter/volume-31/number-1/appui-a-la-formation-et-la-recherche-a-travers-les-mesures-a-distance-aframed-a-recent-and-ambitious-project-for-the-development-of-crystallography-in-africa.
  2. Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650. [DOI] [PubMed]
  3. 12
  4. Bruker (2019). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795. [DOI] [PubMed]
  8. Ji, W., Liu, G., Li, Z. & Feng, C. (2016). Appl. Mater. Interfaces, 8, 5188–5195. [DOI] [PubMed]
  9. Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46. [DOI] [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Lacy, A. & O’Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. [DOI] [PubMed]
  12. Majoumo-Mbe, F., Ngwang Nfor, E., Kenfack Tsobnang, P., Nguepmeni Eloundou, V. B., Ngwain Yong, J. & Iris Efeti, I. (2019). Acta Cryst. E75, 251–254. [DOI] [PMC free article] [PubMed]
  13. Maurer, H. H. & Arlt, J. W. J. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195. [DOI] [PubMed]
  14. Murthy, G. S., Ramamurthy, V. & Venkatesan, K. (1988). Acta Cryst. C44, 307–311.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Ziki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). Pharm. Res. Int. 35, 10–33.
  20. Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023011052/hb8087sup1.cif

e-80-00106-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023011052/hb8087Isup2.hkl

e-80-00106-Isup2.hkl (393.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023011052/hb8087Isup2.cml

CCDC reference: 2301781

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES