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The simplest example of an average is the arithmetical mean. The
arithmetical mean of a number of quantities is their sum, divided by their
number. If a result is due to a number of causes whose contribution to
the result is simply additive, then the result will remain unchanged if for
each of these causes is substituted their mean.
Now, the causes contributing to an effect may be infinite in number

and in this case the ordinary definition of the mean breaks down. In this
case some sort of measure may be used to replace number, integration
to replace summation, and the notion of mean reappears in a generalized
form. For instance, the distance Rm one end of a rod to its center of grav-
ity is the mean of its length with reference to its mass, and may be written
in the form

f dm .-fdm
where I stands for length and m for mass. It is to be noted that I is a func-
tion of m, and that the mean we are defining is the mean of a function.
Furthermore, the quantity, here the mass, in terms of which the mean is
taken, is a necessary part of its definition. We must assume, that is, a
normal distribution of some quantity to begin with, in this case of mass.
The mean just discussed is not confined to functions of one variable; it

admits of an obvious generalization to functions of several variables. Now,
there is a very important generalization of the notion of a function of sev-
eral variables: the function of a line. For example, the attraction of a
charged wire on a unit charge in a given position depends on its shape. The
length and area of a curve, between two given ordinates depend on its
shape. As a curve is essentially a function, these functions of lines may
be regarded as functions of functions, and as such are known as func-
tionals. Since a function is determined when its value is known for all
arguments, a functional depends on an infinity of numerical determi-
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nations, and may hence be regarded as in some wise a function of infi-
nitely many variables.
To determine the average value of a functional, then seems a reasonable

problem, provided that we have some convention as to what constitutes
a normal distribution of the functions that form its arguments. Two
essentially different discussions have been given of this matter: one, by
GAteaux, being a direct generalization of the ordinary mean in n-space;1
the other, by the author of this paper,2 involving considerations from the
theory of probabilities. The author assumes that the functions f(t)
that form the arguments of his functionals have as their arguments
the time, and that in any interval of the small length e as many receive
increments of value as decrements of equal size. He also assumes that the
likelihood that a particle receive a given increment or decrement is inde-
pendent of its entire antecedent history.
When a particle is acted on by the Brownian movement, it is in a mo-

tion due to the impacts of the molecules of the fluid in which it is sus-
pended. While the retardation a particle receives when moving in a fluid
is of course due to the action of the individual particles of the fluid, it seems
natural to treat the Brownian movement, in a first approximation, as an
,effect due to two distinguishable causes: (1) a series of impacts received by
a particle, dependent only on the time during which the particle is exposed
to collisions; (2) a damping effect, dependent on the velocity of the par-
-ticle. If we consider one component of the total impulse received by a
particle under heading (1), we see that it may be considered as a function
of the time, and that it will have the sort of distribution which will make
our theory of the average of a functional applicable.

It will result directly from the previous paper of the author that iff(t)
is the total impulse received by a particle in a given direction when the unit
of time is so chosen that the probability that f(t) lie between a and b is

1b x2
-e-t dx

-then the average value of
A + fbf (t) G (t)dt + fb Sbf (S)f (t) H (s,t) ds dt [H(s,t) = H(t,s)]

will be
+Jbs t H (s,t) ds dt..(1

We now proceed to a more precise and detailed treatment of the question.
2. Einstein3 has given as the formula for the mean square displacement

in a given direction of a spherical particle of radius r in a medium of
viscosity tq over a time t, under the action of the Brownian movement,
the formula

d2=RTt + 37rrqN
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where R is the gas-constant, T the absolute temperature of the medium,
and N the number of molecules per gram-molecule. In the deduction of
this formula, Einstein makes two important assumptions. The first is
that Stokes' law holds concerning forces of diffusion. Stokes' law states
that a force F will carry particle of radius r through a fluid of viscosity q
with velocity F . 67rrq. Einstein's second assumption is that the displace-
ment of a particle in some interval of time small in comparison with those
which we can observe is independent, to all intents and purposes, of its
entire antecedent history. It is the purpose of this paper to show that
even without this assumption, under some very natural further hypoth-
eses, the departure of dt/t from constancy will be far too small to observe.

In this connection, it is well to take note of just what the Brownian
movement is, and of the precise sense in which Stokes' law holds of parti-
cles undergoinga Brownian movement. In the study of the Brownian
movement, our attention is first attracted by the enormous discrepancy
between the apparent velocity of the particles and that which must animate
them if, as seems probable, the mean kinetic energy of each particle is the
same as that of a molecule of the gas. This discrepancy is of course due
to the fact that the actual path of each particle is of the most extreme sinu-
osity, so that the observed velocity is almost in no relation to the true ve-
locity. Now, Stokes' law is always applied with reference to movements
at least as slow as the microscopically observable motions of a particle. It
hence turns out that Stokes' law must be treated as a sort of average effect,
or in the words of Perrin,4 "When a force, constant in magnitude and di-
rection, acts in a fluid on a granule agitated by the Brownian move-
ment, the displacement of the granule, which is perfectly irregular at right
angles to the force, takes in the direction of the force a component pro-
gressively increasing with the time and in the mean equal to Ft . 64rta, F in-
dicating the force, t the time, t the viscosity of the fluid, and a the radius
of the granule."

It is a not unnatural interpretation of this statement to suppose that we
may assume the validity of Stokes' taw for the slower motions which are
all that we see directly of the Brownian motion, so that we may regard the
Brownian movement as made up (1) of a large number of very brief, inde-
pendent impulses acting on each particle and (2) of a continual damping
action on the resulting velocity in accordance with Stokes' law. It is to be
noted that the processes which we treat as impulsive forces need not be the
simple results of the collision of individual molecules with the particle, but
may be highly complicated processes, involving intricate interactions be-
tween the particle and the surrounding molecules. It may readily be
shown by a numerical computation that this is the case.

It follows from considerations discussed at the beginning of my paper
on The Average of an Analytic Functional that after a time the probabil-
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ity that the total momentum acquired by a particle from the impacts of
molecules will lie between xo and xi is of the form

rdtfae dx

Superimposed on this momentum is that due to the viscosity acting in ac-
cordance with Stokes' law, namely 67rrqV, where V is the velocity of the
particle. We shall write Q for 67rrl . M, whereM is the mass of a particle.

Let us write T for ct. Let the total impulse received by a given particle
in time t, neglecting the action of viscosity, be f (r). Consider m (t), the
actual momentum of the particle, as a function of t. Then

m(t + dt) = m(t) + f(ct + cdt) -f(ct) - Qm(ct + ctOdt)dt (o < d < 1).
We cannot treat this as a differential equation, as we have no reason to sup-
pose that f has a derivative. We can make it into an integral equation,
however, which will read

m(t) - m(o) = f(ct) - QfJm(t)dt.
Clearly one solution of this integral equation is

m(t) = m(o)e-Qt + f(ct) - Qe-Q Jff(ct)eQtdt,
and there is no difficulty in showing that an integral equation of this sort
can have only one continuous solution.
Another integration gives for the distance traversed by the particle in

time t

d=i{[= m) }+ f(ct)dt- Qe jQ f eQ'f(ct)dt]dt}

1{M(O) (1-e-Qt) +e-Q5 eQtf(ct)dt} (2)

= {m(o)1(-e-&t) + c f e7f(r)dr}

Applying the methods of my previous paper, we get for the mean value of
d2, in accordance with (1);

F~~~~~ l Q(X + y)
2 m (o) Q_ 1 ec yd

d2= (1-e-) + jI2 e 55 A {f(x)f(y) e c dydx

1 [m(o) Qtl 2 1 201ctFC Q( +y)1
=_ e)(-e +M2C2e- ye c dyjdx
[m (o) (1 2Q)] M2Qt c:{ ex~Q 2 2Qx 21 (3)

M2CI e +c~ e cJdx 3
[MQ ] M2c 3[Q2+

= ~[ (1-e-Q +42Q3 2Qt-3 + 4e-Qt-e~2t
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Therefore

|d2/t-c (M2Q2) |< lIt[> (o) (1-e.C Q,)I(MO)]

+ c(3-e0t)(1Q-eQ)/(4M2Q3t)

< [m(o)/(MQ)] +3c/(4M2Q3)

This represents the absolute departure of d4/t from constancy. Writing
v for m(o)/M, the initial velocity of the particle, we get

Id,/t-c/(2M2Q2)< v2/Q2 + 3/2Q
c/(2M2Q2) - c/2M2Q2

This is a measure of the relative departure of d2/t from constancy. v
cannot exceed, on the average, the velocity given on the average to the
particle on the basis of the equipartition of energy; actually it is much
smaller. c/(2M2Q2) can be found directly, as it is nearly the observed
value of d2/t. -Q can be readily computed from the constants of the par-
ticles. Taking as a typical case one of Perrin's experiments on gamboge, Q
turns out to- be of the order of magnitude of 108, c/2M2Q2 of the order of
magnitude of 10-8, and the kinetic energy velocity of the order of magni-
tude of 10-1. Hence the proportionate error is of the order of magnitude
of 10-8.
A proportionate error thus small is quite beyond the reach of our meth-

ods of measurement, so that we are compelled to conclude that d2/t, un-
der the hypotheses we have here formulated, is sensibly constant. There
are cases, however, which seem to give a slightly different value of d2/t
for small values of the time than for larger values. The.explanation has
been suggested' that over small periods the Einstein independence of an
interval on previous intervals does not hold. The result of the present
paper would be to suggest strongly, if not to demonstrate, that the source
of the discrepancy, if, as appears, it is genuine, and not due to experimental
error, is in the fact that Stokes' law itself is only a rough approxima-
tion, and that the resistance does not vary strictly as the velocity.

1 Paris, Bull. Soc. Math. France, 1919, pp. 47-70.
2 "The Average of an Analytic Functional," in the last number of these
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