
Yaofeng Hu is a master student in Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese 
Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China. Her current research interests include single-cell transcriptomics and spatial 
transcriptomics. 
Kai Xiao is a master student in State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell 
Science, Chinese Academy of Sciences, Shanghai 200031, China. His current research interests include single-cell transcriptomics and spatial transcriptomics. 
Hengyu Yang is a master student in Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of 
Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China. His current research interests include deep learning and algorithm design 
for the biological fields. 
Xiaoping Liu is a professor in Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, 
University of Chinese Academy of Sciences, Hangzhou 310024, China. He studies the fields of computational systems biology and bioinformatics. 
Chuanchao Zhang received the PhD from Wuhan University, Wuhan, China, in 2017. He is currently an assistant research fellow in Key Laboratory of Systems 
Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 
310024, China. His current research interests include machine learning, deep learning, single-cell transcriptomics and spatial transcriptomics. 
Qianqian Shi received the PhD from Shanghai Institute of Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China, in 
2017. She is currently an associate professor at College of Informatics, Huazhong Agricultural University, Wuhan, China. Her current research interests include 
machine learning, deep learning, network biology, computational biology, single-cell transcriptomics and spatial transcriptomics. 
Received: November 22, 2023. Revised: December 29, 2023 
© The Author(s) 2024. Published by Oxford University Press. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/ 
licenses/by-nc/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com 

Briefings in Bioinformatics, 2024, 25(2), 1–11

https://doi.org/10.1093/bib/bbae016

Problem Solving Protocol

Spatially contrastive variational autoencoder for 
deciphering tissue heterogeneity from spatially 
resolved transcriptomics 
Yaofeng Hu , Kai Xiao, Hengyu Yang, Xiaoping Liu , Chuanchao Zhang and Qianqian Shi 
Corresponding authors: Qianqian Shi, Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 
Wuhan430070, China. Tel.: +8613621861554; E-mail: qqshi@mail.hzau.edu.cn; Chuanchao Zhang, Key Laboratory of Systems Health Science of Zhejiang Province, 
School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, China. Tel.: +8615994265216; 
Fax: 02154920102; E-mail: chuanchaozhang@ucas.ac.cn; Xiaoping Liu, Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, 
Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, China. Tel.: +86-571-86080306; Fax: 02154920102; 
E-mail: xpliu@ucas.ac.cn 

Abstract

Recent advances in spatially resolved transcriptomics (SRT) have brought ever-increasing opportunities to characterize expression 
landscape in the context of tissue spatiality. Nevertheless, there still exist multiple challenges to accurately detect spatial functional 
regions in tissue. Here, we present a novel contrastive learning framework, SPAtially Contrastive variational AutoEncoder (SpaCAE), 
which contrasts transcriptomic signals of each spot and its spatial neighbors to achieve fine-grained tissue structures detection. By 
employing a graph embedding variational autoencoder and incorporating a deep contrastive strategy, SpaCAE achieves a balance 
between spatial local information and global information of expression, enabling effective learning of representations with spatial 
constraints. Particularly, SpaCAE provides a graph deconvolutional decoder to address the smoothing effect of local spatial structure 
on expression’s self-supervised learning, an aspect often overlooked by current graph neural networks. We demonstrated that SpaCAE 
could achieve effective performance on SRT data generated from multiple technologies for spatial domains identification and data 
denoising, making it a remarkable tool to obtain novel insights from SRT studies. 

Keywords: spatially resolved transcriptomics; spatial domain identification; spatially contrastive learning; graph embedding variational 
autoencoder 

INTRODUCTION 
Understanding the intricate process underlying organ genesis and 
pathology necessitates a comprehensive study of in situ gene 
expression variations across different tissue regions. The recent 
emergence of spatially resolved transcriptomics (SRT) technolo-
gies has revolutionized scientific research in these domains. These 
innovative technologies enable the concurrent measurement of 
gene expression and their precise spatial locations, significantly 
advancing our capabilities in these fields [1, 2]. Sequencing-based 
SRT methods offer the potential for whole-genome-wide gene 
expression profiling [3, 4]. However, they are constrained by reso-
lution, typically quantifying gene expression within small groups 

of cells known as spots, rather than at the single-cell level. For 
instance, the widely used 10x Visium technology can measure 
a spot encompassing approximately 10 cells, with a diameter 
of 55 μm. Recently, high-resolution SRT technologies, such as 
Slide-seq [5], Slide-seqV2 [6] and Stereo-seq [7], have emerged, 
offering near single-cell resolution measurements. These cutting-
edge technologies, while promising, have presented a common 
challenge—the data they generate often exhibit dropouts and 
elevated noise levels. This challenge is particularly pronounced 
in large-scale high-resolution datasets, underscoring the need 
for robust computational methods to effectively address these 
complexities.
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Spatial domain detection is a fundamental task in SRT data 
analysis. It involves identifying clusters of spots with similar gene 
expression patterns and spatial coherence. Such spatial domains 
often represent regions with shared biological functions, making 
them crucial for downstream analyses, including the identifi-
cation of spatially variable genes (SVGs) and prognostic gene 
discovery in tumor tissues. To effectively address spatial domain 
detection, computational methods must simultaneously model 
gene expression data and their corresponding spatial dependen-
cies. Previously proposed computational approaches for spatial 
domain detection have fallen into two primary categories: prob-
abilistic models and deep learning models. Probabilistic models, 
such as hidden Markov random field (HMRF) [8], BayesSpace [4] 
and SpatialPCA [9], typically tailor probabilistic graphical models 
to accommodate spatial information. In contrast, deep learn-
ing models, including SpaGCN [10], STAGATE [11], DeepST [12], 
GraphST [13] and SpaceFlow [14], leverage graph convolutional 
modules and their variations to model spatial dependencies. The 
existing methods directly utilize sparse SRT data as input, lim-
iting their ability to fully exploit the spatial dependence of gene 
expression and effectively mitigate the impact of high sparsity. 
Therefore, how to effectively use highly sparse SRT data with 
spatial context to explore the expression landscape in tissue is 
still a challenge. 

Here, we develop a novel contrastive learning, SPAtially 
Contrastive variational AutoEncoder (SpaCAE), which discerns 
fine-grained tissue structures by contrasting the transcriptomic 
signals between each spot and its spatial neighborhoods. 
Specifically, SpaCAE generates spatially augmented expression 
of each spot by borrowing the shared information from spatially 
neighboring spots. Then, SpaCAE builds the graph convolutional 
encoder and graph deconvolutional decoder to learn effective 
representation with spatial constraint from the original and 
augmented expression data. Finally, SpaCAE provides a deep 
contrastive strategy to achieve a harmonious integration of 
spatial local information and global information during the 
process of representation learning. Especially, SpaCAE reduces 
the smoothing effect of local spatial structure on expression’s 
self-supervised learning by graph deconvolutional decoder, which 
is ignored by current graph neural networks. In this way, SpaCAE 
not only rectifies the low-quality gene expression by adopting the 
spatial dependence of gene expression but also balances spatial 
coherence and expression variability to improve the performance 
of spatial domains detection. 

We demonstrate the superiority of SpaCAE by benchmarking 
it against seven state-of-the-art methods on a total of 16 
SRT datasets generated by 10x Visium, Slide-seqV2 and ST 
technologies. For the SRT datasets with known ground truth 
annotations from 10x Visium and imaging-based platform, 
SpaCAE exhibits higher clustering accuracy than other methods. 
Applied to mouse hippocampus Slide-seqV2 data, SpaCAE reveals 
finer-grained anatomical regions for interpreting tissue functions. 
Employed in human breast cancer ST data, SpaCAE deciphers 
tumor heterogeneity and provides more biological insights on 
cancer-associated genes, providing valuable validation by the 
survival analysis of independent clinical data. 

METHODS 
Overview of SpaCAE 
SpaCAE learns the representation with spatial constraint from 
multi-modal data by balancing the spatial dependence and 
variance of gene expression (Figure 1A–C). Specifically, SpaCAE 

employs the spatial dependence of gene expression to contrast 
the biological signals of each spot with those of its adjoining 
spatial neighbors during representation learning (Figure 1B). 

SpaCAE first borrows the shared information from spatially 
neighboring spots to generate augmented expression of each spot 
based on the constructed graph A ∈ RN×N (i.e. original data X0 ∈ 
RM×N → augmented data X1 = X0 + αX0A ∈ RM×N, M and N denote 
the number of genes and spots). Then, SpaCAE learns effective 
representation from the original data X0 and the augmented 
data X1 based on a novel graph embedding contrastive varia-
tional autoencoder (GC-VAE) model (Figure 1C). Note that SpaCAE 
leverages a graph convolutional network (GCN) encoder to ensure 
the learned representation with spatial constraint and provides 
a graph deconvolutional network (GDN) decoder to reduce the 
smoothing effect of local spatial structure during representation 
learning. To balance spatial local information and global informa-
tion of expression from original data X0 and the augmented data 
X1, SpaCAE proposes the deep contrastive strategy to contrast 
each hidden layer (i.e. H(l) 

0 and H(l) 
1 , l = 1, . . .  , L, L is the number 

layers) of GC-VAE. 
In this way, SpaCAE can learn an optimal latent representation 

(i.e.
(
H(J) 

0 + H(J) 
1

)
/2, J is the number of encoder layers) and recon-

structed expression matrix 
∼ 
X1, which can be used for multiple 

downstream analytical tasks (Figure 1D and E). Matrix 
∼ 
X1 enables 

SpaCAE to denoise the expression profile to improve individual 
gene analysis (Figure 1D), e.g. SVGs or differentially expressed 
genes (DEGs) identification. The optimal

(
H(J) 

0 + H(J) 
1

)
/2 serves to 

detect spatial domains (Figure 1E) interoperating with Mclust [15]. 

Building SpaCAE model 
Constructing graph-structure data form spatial 
multi-modal data 
SpaCAE converts spatial multi-modal data into a weighted graph 
G (X0, A). Matrix A denotes the relationship between each spot 
and its spatial neighbors, which reflects spatially local structure 
of SRT. 

First, SpaCAE uses the strategy from SpaGCN [10] to calculate  
the Euclidean distance of each pair of spots based on the spatial 
coordinates and the corresponding histology image information 
and screens out the K-nearest spatial neighbors [16] of each spot 
(i.e. K default to 10 for 10x Visium datasets and 30 for Silde-seqV2 
and Stereo-seq datasets). 

Then, SpaCAE calculates the cosine distance of these neigh-
boring spots based on PCA embedding (i.e. PCs) of expression (i.e. 
U ∈ R15×N, 15 is the number of PCs from expression data) and 
exponentially transforms this distance to a similarity matrix (i.e. 
D ∈ RN×N) as  

D = exp
(
2 − cosine_dist(U)

)
. (1)  

The weight matrix A (i.e. A ∈ RN×N,
∑N 

t=1Ati = 1, Aii = 0, ∀i) is the  
normalized form of the similarity matrix D. 

Aij = Dij∑N 
i=0 Dij 

. (2) 

Spatial expression augmentation 
The gene expression of each spot is modified by incorporating 
shared information from its surrounding neighborhoods, and it is 
regarded as the augmented spatial expression of the correspond-
ing spot. Using a weight matrix A, the augmented expression
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Figure 1. Schematic overview of SpaCAE augmentation-encoding-decoding (A–C) processes and potential biological applications of SpaCAE in 
downstream SRT analysis (D, E). (A) The three data sources for SpaCAE inputs are STR expression matrix, spatial coordinates and hematoxylin and eosin 
(H&E) staining image. (B) Weighted graph (i.e. A) construction from spatial multi-modal data and spatial expression augmentation from aggregating 
expression information from neighborhood spots. SpaCAE integrates spatial information into gene expression to augment the shared expression between 
spots by aggregating the gene expression from their K spatial neighbors through weighted graph, which forms the spots’ spatial contrastive structure 
(e.g. X0→X1). (C) SpaCAE model. SpaCAE uses robust graph convolutional encoder and deep contrastive variational autoencoder to generate the low-
dimensional representation (i.e. X0→H(2) 

0 , X1→H(2) 
1 ). The input data are the original gene expression matrix (i.e. X0), the augmented gene expression 

matrix (i.e. X1) and weighted spatial graph A from (B). Based on the original and low-dimensional data, SpaCAE performs data reconstructions via 
graph deconvolutional decoder and deep contrastive variational autoencoder. SpaCAE iteratively learns the graph convolutional encoder qΦ0 , qΦ1 and 
graph deconvolutional decoder pψ0 , pψ1 by minimizing the sum of reconstruction losses and contrastive losses (see Methods). When SpaCAE reaches 
convergence, the optimum is achieved for further downstream analyses. (D, E) Biological applications for SpaCAE including data denoising and spatial 

domain identification. (D) The reconstructed augmented spatial expression 
∼ 
X1 can be employed to denoise data. (E) The low-dimensional representation 

(i.e. (H(2) 
0 + H(2) 

1

)
/2) can be applied to detect spatial domains. 

matrix X1 can be calculated specifically as follows: 

X1 = X0 + αX0A, (3) 

where the tunable parameter α can be manually set according 
to the obtained outcomes, which controls the impact of spatial 
neighborhood similarity on spatial domains (Supplementary Fig-
ure 1). 

Graph embedding contrastive variational autoencoder 
We build a GC-VAE to contrast the biological signals of each 
spot and its spatial neighbors for learning representation. There 
are three principal components: graph convolutional encoder, 
graph deconvolutional decoder and deep contrastive variational 
autoencoder (VAE). The main procedure can be stated as follows. 

• Graph convolutional encoder: we use the GCN as the encoder 
to learn representation with spatial constraint from the orig-
inal and augmented expression data (i.e. X0 and X1). In gen-
eral, graph convolutional operation can be interpreted as a 
special form of Laplacian smoothing [17]. From the spectral 
perspective, the tth layer of the graph convolutional encoder 
for X0 and X1, denoted as H(t) 

0 and H(t) 
1 , is defined as 

H(t) 
0 = φ (t) 0

(
W(t) 

0 H(t−1) 
0 ∗ gc(L) + b(t) 

0

)
= φ (t) 0

(
W(t) 

0 H(t−1) 
0 Udiag

(
gc (λ1) , . . .  , gc (λN)

)
UT + b(t) 

0

)
, t = 1, . . . , J, 

(4) 

H(t) 
1 = φ (t) 1

(
W(t) 

1 H(t−1) 
1 ∗ gc(L) + b(t) 

1

)
= φ (t) 1

(
W(t) 

1 H(t−1) 
1 Udiag

(
gc (λ1) , . . .  , gc (λN)

)
UT + b(t) 

1

)
, t = 1, . . . , J, 

(5) 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
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where L = I − D− 1 
2 AD− 1 

2 = U�UT = Udiag (λ1, . . . , λN) UT is the 
normalized Laplacian matrix and {λi}N 

i=1 and U are the eigenvalues 
and eigenvectors of matrix L. D denotes the degree matrix. φ (t) 0 and 
φ (t) 1 are the activation functions of the tth GCN encoder layer for X0 

and X1, respectively. J is the number of encoder layers. ∗ denotes 
convolutional operator. W(t) 

0 and W(t) 
1 denote the weight matrix 

of encoder for X0 and X1, respectively. b(t) 
0 and b(t) 

1 correspond 
to the bias term of VAE for X0 and X1, respectively. We use the 
convolutional operator of GCN as the convolution operation of 
this model (i.e. gc (λi) = λi). For convenience, we denote the gene 
expression matrix X0 and X1 as H(0) 

0 and H(0) 
1 , respectively. 

• Graph deconvolutional decoder: although graph convolution 
can effectively learn representation with local spatial infor-
mation, the resulting smoothness affects the expression data 
reconstruction and weakens the global information of the 
learnable representation from the gene expression data. To 
solve this problem, we propose the GDN as the decoder to 
attenuate the effect of graph convolution, enabling efficient 
representation to be learned from the expression. As an 
inverse to graph convolution, the kth layer ( k = J + 1, . . . , L, 
L is the number of GC-VAE layers) of the graph deconvolution 
decoder for X0 and X1, denoted as H(k) 

0 and H(k) 
1 , is defined as 

H(k) 
0 = ψ (k) 

0

(
W(k) 

0 H(k−1) 
0 Udiag

(
gd (λ1) , . . . , gd (λN)

)
UT + b(k) 

0

)
, 

k = J + 1, . . . , L, 
(6) 

H(k) 
1 = ψ (k) 

1

(
W(k) 

1 H(k−1) 
1 Udiag

(
gd (λ1) , . . . , gd (λN)

)
UT + b(k) 

1

)
, 

k = J + 1, . . . , L, 
(7) 

where ψ (k) 
0 and ψ (k) 

1 are the activation functions of the kth GDN 
decoder layer for X0 and X1, respectively. gd (λi) is the deconvolu-
tional operator of GDN. W(k) 

0 and W(k) 
1 denote the weight matrix of 

decoder for X0 and X1, respectively. b(k) 
0 and b(k) 

1 correspond to the 
bias term of VAE for X0 and X1, respectively. 

In general, the deconvolutional operator gd is the inverse func-
tion of gc, e.g.  gd (λi) = 1/λi. Due to the randomness of the latent 
representation in GC-VAE, the general deconvolutional operator 
is not suitable for this model (Supplementary Note S1). Therefore, 
we adopt the following new deconvolution operators for the kth 
layer decoder H(k) 

0 and H(k) 
1 : 

g(k) 
d (λi) = g(k) 

c (λi) 

g(k) 
c (λi)

2+ 
σ (k) 
0 

2+σ (k) 
1 

2 

E

[(
H(k) 

0

)2 

i

]
+E

[(
H(k) 

1

)2 

i

]
, k = J + 1, . . . , L, 

(8) 

where σ (k) 
0 

2 
and σ (k) 

1 
2 
are the variance of the stochastic disturbance 

in
(
H(k) 

0

)
i 
and

(
H(k) 

1

)
i 

and E [∗] denotes mathematical expecta-

tion, respectively. The average values (i.e. 1 
N

∑N 
i=1E

[(
H(k) 

0

)2 

i

]
and 

1 
N

∑N 
i=1E

[(
H(k) 

1

)2 

i

]
) are used to approximate the value of E

[(
H(k) 

0

)2 

i

]

and E
[(

H(k) 
1

)2 

i

]
, respectively. Due to the following statistical for-

mula

∑N 
i=1E

[(
H(k) 

0

)2 

i

]
= ∑N 

i=1E
[(

H(k) 
0

)
i

]2 + VAR
[(

H(k) 
0

)
i

]
, (9)

∑N 
i=1E

[(
H(k) 

1

)2 

i

]
= ∑N 

i=1E
[(

H(k) 
1

)
i

]2 + VAR
[(

H(k) 
1

)
i

]
. (10) 

The values of E
[(

H(k) 
0

)2 

i

]
and E

[(
H(k) 

1

)2 

i

]
are estimated as fol-

lows: 

E
[(

H(k) 
0

)2 

i

]
= 1 

ND′

(∥∥∥H(k) 
0

∥∥∥2 

F 
+

∥∥∥H(k) 
0 − 1 

N H(k) 
0 1

∥∥∥2 

F

)
, (11) 

E
[(

H(k) 
1

)2 

i

]
= 1 

ND′

(∥∥∥H(k) 
1

∥∥∥2 

F 
+

∥∥∥H(k) 
1 − 1 

N H(k) 
1 1

∥∥∥2 

F

)
, (12) 

where 1 ∈ RN×N is the all ones matrix and D′ is the feature size of 
the kth layer of decoder. The variance σ (k) 

0 
2 
, σ (k) 

1 
2 

are estimated by 
considering their neighborhoods as 

σ (k) 
0 

2 = 1 
ND′

∥∥∥H(k) 
0 − D−1AH(k) 

0

∥∥∥2 

F 
, (13) 

σ (k) 
1 

2 = 1 
ND′

∥∥∥H(k) 
1 − D−1AH(k) 

1

∥∥∥2 

F 
. (14) 

• Deep contrastive VAE: to balance spatial local information 
and global information from the original and augmented 
expression data, we present a deep contrastive strategy as 
the soft constraint during representation learning. The con-
trastive loss can be expressed as 

Lcon = ∑L 
l=1

∥∥∥H(l) 
0 − H(l) 

1

∥∥∥2 

F 
. (15) 

Combined with the loss (i.e. L0 
ELBO and L1 

ELBO) of VAE  for the  
original data X0 and the augmented expression data X1, the  
overall loss function of SpaCAE is denoted as follows: 

L0 
ELBO = −E

q
(
H(J) 

0 |X0

) (
log p

(
X0|H(J) 

0

))
+ KL

(
q

(
H(J) 

0 |X0

) ∥∥∥p
(
H(J) 

0

))
, 

(16) 

L1 
ELBO = −E

q
(
H(J) 

1 |X1

) (
log p

(
X1|H(J) 

1

))
+ KL

(
q

(
H(J) 

1 |X1

) ∥∥∥p
(
H(J) 

1

))
, 

(17) 

L = L0 
ELBO + L1 

ELBO + λLcon. (18) 

where the tunable parameter λ can be manually set and defaults 
to 1. 

Hyperparameter tunings and implementations 
In SpaCAE model, two crucial hyperparameters, namely, α and 
λ, significantly impact its performance. Parameter α controls the 
proportion of the neighborhood to the center spot in the aug-
mented gene expression X1, thereby influencing the spatially local 
structures or similarities of the learned representation (Supple-
mentary Figure 1). On the other hand, parameter λ determines the 
strength of the contrastive loss, facilitating the model in learning 
consistent representations from both the original gene expression 
X0 and the augmented gene expression X1 (Supplementary Fig-
ures 2 and 3). Increasing both parameters α and λ results in a 
final representation learned by SpaCAE with a stronger spatially 
local structure and improved spatial consistency of the identified 
spatial domains. 

In real applications, a fixed value of α cannot work for all 
kinds of datasets because different datasets could have different 
sensitivities to the changes of α. We started to search α from a 
small value, and the default search list for α ∈[0,2] in SpaCAE is 
{0.005, 0.01, 0.05, 0.1, 0.2, 0.3, . . . , 2}. For each fixed α, λ ∈[0,5] 
is determined by grid search based on the cross-validation. The 
goal of SpaCAE is to identify the spatial regions that are most 
consistent with the pathological characteristics and physiological 
structure. Based on this motivation as a priori, we decide α and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
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λ by maximizing unsupervised cluster evaluation measurements 
ARI or purity. In cases where datasets lack manual annotations 
but include reference diagrams, we provide a search range for 
parameters α and λ in the SRT data from different platforms. 
Based on these search range, the optimal combination of param-
eters α and λ is determined based on the output results (Supple-
mentary Table 1). 

Data collection and general preprocessing 
We used 16 datasets from four different SRT platforms including 
12 10x Visium datasets, 2 imaging-based SRT slices, 1 Slide-seqV2 
dataset and 1 ST [18] dataset. Based on SCANPY [19] Python 
package, we firstly selected top 2000 highly variable genes (HVGs). 
Then, we log-transformed and standardized the original gene 
expression data as the input of SpaCAE. 

Spatial domain identification, gene expression 
denoising and survival analysis 
We used the latent representation

(
H(J) 

0 + H(J) 
1

)
/2 to identify spa-

tial domains by Mclust algorithms. We used the reconstructed 

augmented expression 
∼ 
X1 to denoise the SRT profiles. We per-

formed Kaplan–Meier (KM) analysis and evaluated the prognostic 
significance of domain-specific marker genes using bulk expres-
sion profiling data with patient survival information in cancer 
study. 

Performance evaluation 
We describe below the metrics to evaluate the performance of 
SpaCAE. Details of the benchmarking approaches are provided in 
Supplementary Note S1. 

• Accuracy of spatial domains identification: Adjusted Rand 
index (ARI) [ 20–26] and cluster purity (i.e. Equation (19)) [4] are  
used to quantify the accuracy of identifying spatial domains. 

cluster purity = 1 
N

∑
y∈Y max 

f∈F

∣∣f ∩ y
∣∣ , (19) 

where Y is the set of clusters or spatial domains; F is the set of 
reference groups. 

• Spatial continuity and expression specificity of gene after 
denoising: the Moran’s I statistic is employed to assess the 
spatial autocorrelation of gene expression both before and 
after the denoising process. Additionally, we evaluate the 
specificity of gene expression before and after denoising by 
comparing the log2 fold change (Log2FC) values of the top 
marker genes associated with each spatial domain. 

RESULTS 
Benchmarking SpaCAE against existing spatial 
domain detection methods 
To quantitatively evaluate the spatial domain identification abil-
ity of SpaCAE, we first applied SpaCAE onto 12 human dorsolateral 
prefrontal cortex (DLPFC) sections from 10x Visium. Maynard et al. 
[27] has manually annotated the cortical layers (L1-L6) and white 
matter (WM) of these slides. Regarding them as the ground truth, 
we compared SpaCAE with existing state-of-the-art methods (i.e. 
STAGATE [11], GraphST [13], BayesSpace [4], DeepST [12] and  
SpaGCN [10]) and graph autoencoder (GAE) [28] and  VAE [29] 
in terms of ARI, and the results demonstrated that the spatial 
domains identified by SpaCAE were consistent with the manual 
annotation of DLPFC and the definition of cortical stratification 
in neuroscience. 

For the boundary division of cortical layers, the ARI of SpaCAE 
was 0.601 ± 0.079, which was substantially higher than that 
of other methods (e.g. GraphST, ARI = 0.538 ± 0.084; STAGATE, 
ARI = 0.499 ± 0.106; DeepST, ARI = 0.472 ± 0.071; BayesSpace, 
ARI = 0.448 ± 0.076; SpaGCN, ARI = 0.413 ± 0.082, the difference 
between SpaCAE and each of the others is confirmed by the 
Wilcoxon rank-sum test, P < 0.05, as depicted in Figure 2B and 
Supplementary Figure 4). Taking slide 151675 (there are 3592 spots 
and 33 538 genes) as an example, we found that SpaCAE obtained 
the higher clustering accuracy with ARI = 0.686 (Figure 2A and D). 
Notably, domains identified by SpaCAE demonstrated smoother 
boundaries and less noisy. 

Specifically, we systematically evaluated the contribution of 
SpaCAE components to overall performance. First, we replaced 
graph convolution in encoder (−GCN) and graph deconvolution 
in decoder (−GDN) with linear layers on 12 DLPFCs and calculated 
their ARI values (Figure 2C). SpaCAE−GDN (ARI = 0.523 ± 0.097) 
obtained higher ARI values and better model robustness 
(SpaCAE−GCN , ARI = 0.362 ± 0.092) relatively, but it was still inferior 
to the complete SpaCAE (ARI = 0.601 ± 0.079). On the one hand, the 
resolved relative spatial locations of spots provide valuable infor-
mation about neighboring context, and the graph convolution 
contributed to representations with local information constraints; 
on the other hand, the corresponding graph deconvolution 
compensated for the global information reduction caused by local 
smoothness of graph convolution exactly. However, in the absence 
of graph convolution, the bias could be further propagated to local 
areas through graph deconvolution networks. Considering the 
fact that the deep contrast strategy is what differentiates SpaCAE 
from other spatial algorithms, we ran SpaCAE without 1st and 3rd 
contrast operations [Figure 2C, –SC (h1/h3, i.e. spatial contrast), 
ARI = 0.506 ± 0.097] and without entire deep spatial contrast 
[Figure 2C, −SC(h1/h2/h3), ARI = 0.432 ± 0.120]. Deep contrast 
could significantly improve SpaCAE performance. To quantita-
tively assess the contribution of the augmentation matrix X1 on 
SpaCAE performances, we ran VAE with matrix X1 [Figure 2C, 
VAE (with DA, i.e. data augmented), ARI = 0.377 ± 0.069] and with 
matrix X0 [Figure 2C, VAE (without DA), ARI = 0.190 ± 0.128]. The 
results show that matrix X1 does improve the performance of 
clustering results than matrix X0, but it is still inferior to the 
representation of SpaCAE. Thus, spatial data augmentation could 
significantly reduce noise interference and clarify spatial patterns 
to improve clustering performance. These results indicated these 
components all play crucial roles in accurately identifying tissue 
spatial structure. 

SpaCAE detects tissue functional regions in 
single-cell resolution SRT data 
SpaCAE could work well on various SRT data independent of plat-
forms. Aside from the 10x Visium platform, we then tested that 
SpaCAE on the osmFISH data from mouse somatosensory cortex 
includes 5328 positions and 33 genes at a coverage of 162 UMIs 
per bead, which profiles the typical anatomical multi-layered 
structure of the cortex [30]. Strikingly, SpaCAE presented the 
highest ARI than the competing methods over the slice (SpaCAE, 
ARI = 0.466; DeepST, ARI = 0.425; SpaGCN, ARI = 0.406; BayesSpace, 
ARI = 0.383; SpatialPCA, ARI = 0.316; STAGATE, ARI = 0.227) and rel-
atively less noise points (the difference between SpaCAE and each 
of the others is confirmed by the Wilcoxon rank-sum test based 
on random seed settings, P < 0.01, as depicted in Figure 3A and B 
and Supplementary Figure 5). 

Similarly, SpaCAE was applied to another imaging-based 
molecular multiplexed ion beam imaging by time of flight 
(MIBI-TOF) data, which imaged 36 labeled antibodies with

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
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Figure 2. Comparative performance of SpaCAE to existing spatial and non-spatial methods on spatial domain identification. (A) DLPFC layers were 
annotated by Maynard et al. The ground truth of spots was mapped on their spatial position in slide 151675 (n = 3592 spots), which was separated into six 
cortical layers (L1–L6) and WM. Layers with annotations are provided on the remaining slides (Supplementary Figure 4 ). (B) Boxplots of the performance 
of SpaCAE and other algorithms for all 12 DLPFCs. The y-axis shows the ARI, which was used to compare the similarity of the predicted spatial layers and 
the manually annotated layers for each algorithm. (C) ARI boxplots of whether deep spatial contrast is used, whether spatial data augmentation is used 
and whether replace GCN/GDN with linear layer in SpaCAE are shown. (D) Identification of spatial domains by SpaCAE and existing state-of-the-art 
algorithms (GraphST, STAGATE, DeepST, BayesSpace, SpaGCN), VAE and GAE for slide 151675. 

histochemical staining and endogenous elements [ 12]. SpaCAE 
revealed partial regional continuity and local element fusion on 
the imaging results, which was almost compatible with original 
annotation (SpaCAE, ARI = 0.357; SpaGCN, ARI = 0.336; DeepST, 
ARI = 0.330; BayesSpace, ARI = 0.328; SpatialPCA, ARI = 0.206; 
STAGATE, ARI = 0.200, the difference between SpaCAE and each 
of the others is confirmed by the Wilcoxon rank-sum test based 
on random seed settings, P < 0.01, as depicted in Figure 3C and D 
and Supplementary Figure 5). Overall, SpaCAE also demonstrated 
better performance on spatial functional regions for the single-
cell resolution SRT data. 

SpaCAE reveals the finer-grained anatomical 
regions on mouse hippocampus Slide-seqV2 data 
SpaCAE enables to identify spatial domains of tissue structure 
from SRT data of different spatial resolution. We next evaluated 
the performance of SpaCAE on a mouse hippocampus Slide-seqV2 

dataset (41 786 locations), which has a higher resolution than the 
10x Visium platform [6]. Slide-seqV2 spatial expression profiles 
have more spots (>10 000 per slice), but higher dropouts, leading 
to greater challenges to identify tissue structure efficiently 
and greater time and computational consumption in domain 
detection. 

Considering the anatomical diagram from Allen Mouse Brain 
Atlas [31] as the illustrative reference, we compared SpaCAE 
with several methods to validate the performance of SpaCAE 
on a high-resolution and large-scale dataset. It was revealed 
that SpaCAE and STAGATE shows better regional continuity than 
other involved methods. In terms of fine-grained hippocampus 
structure, such as CA2, CA3, ventricle, dorsal part of the lateral 
geniculate complex (LGD) and ventral posteromedial nucleus of 
the thalamus (VPM) in the thalamus region, SpaCAE detected 
the corresponding regions with high consistency with Allen’ s 
reference (Figure 4A).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
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Figure 3. SpaCAE improves spatial domain recognition for high-resolution ST data. (A) Mouse somatosensory cortex osmFISH data (n = 5328 spots) 
was manually annotated into 12 categories. (B) Cluster assignments of somatosensory cortex layers generated by SpaCAE and five spatial algorithms 
(DeepST, SpaGCN, BayesSpace, SpatialPCA and STAGATE). (C) The ground truth of imaging-based molecular MIBI-TOF data (n = 1023 spots). (D) Spatial  
subdomains detected by above five methods and comparison of ARI. 

Key domains were further separated and validated individually 
from the perspective of genetic landscape. The expressions of 
many known gene markers also verified the cluster partition of 
SpaCAE. Concerning the regions identified only by SpaCAE, for 
CA2 and CA3 areas firstly, we discovered that the domain loca-
tions demonstrated high correspondence with the expression pro-
files of the marker genes (i.e. S100b for CA2 [ 32] and  Prkcd for CA3 
[33]) and independent ISH (in situ hybridization) image (Figure 4B). 
Then for the ventricle area, the shape of the detected domain 

was consistent with that of the region where the marker gene (i.e. 
Adck4 [34]) expressed at a prominently high level. Furthermore, 
SpaCAE successfully identified the LGD and VPM regions in the 
thalamus, which were not captured by other methods, and Tnnt1 
displayed specific spatial gene expression patterns in these areas 
[35] (Figure 4B). These results indicated that SpaCAE could dissect 
spatial heterogeneity and further uncover spatial expression pat-
terns; meanwhile, SpaCAE could be well adapted to large-scale 
and high-resolution datasets.
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Figure 4. SpaCAE identifies tissue structures and functional genes in mouse hippocampus Slide-seqV2 (n = 41 786 spots) data. (A) The corresponding 
anatomical definitions obtained from the Allen Mouse Brain Atlas (first image in A) is shown as reference. The identified spatial domains by all the 
involved approaches are illustrated on the spatial coordinates and distinguished using different colors without anatomical correspondence. The fine 
anatomical regions, for example, CA3, thalamus (LGD + VPM), CA2 and ventricle sections (second image in A) that SpaCAE detected while other methods 
did not are marked by black circles on computational results. (B) Individual loadings of each spatial domain identified by SpaCAE (top), the expression 
of domain-specific differential genes (middle) and the corresponding ISH (bottom). 

SpaCAE provides more biological insights into 
human breast cancer heterogeneity on ST data 
We tested the HER2-positive breast tumor data from the ST 
[18] technology, containing 613 locations and 15 030 genes to 
demonstrate the capacity of SpaCAE on cancer tissue. The tumor 
section was examined and annotated by a pathologist [36]. To 
accurately evaluate the effectiveness of SpaCAE, we took the 
histopathological image and annotations as reference and used 
clustering purity as quantitative assessment criteria. 

Clusters based on SpaCAE categorized the tissue into seven 
spatial domains, consistent with the regional annotations and 
were more accurate (purity = 0.648) than that by other five spatial 
clustering algorithms (BayesSpace, purity = 0.600; GraphST, 
purity = 0.577; SpatialPCA, purity = 0.575; STAGATE, purity = 0.569; 
SpaGCN, purity = 0.564; DeepST, purity = 0.447, the difference 
between SpaCAE and each of the others is confirmed by the 
Wilcoxon rank-sum test based on random seed settings, P < 0.01, 
as depicted in Figure 5D). Regions of carcinoma in situ and 
infiltrating carcinoma identified by the model were the most 
similar to that of the pathological tissue sections (Figure 5A and B 
and Supplementary Figure 6). 

On account that the data sparsity may hinder downstream 
analysis, we studied whether SpaCAE could provide more insights 
into the underlying tumor heterogeneity. Firstly, SpaCAE was 
employed to denoise the low-quality matrix and recover gene 
spatial expression patterns. According to the augmented gene 
expression, the DEGs) in each domain were identified. To evaluate 
the effectiveness of SpaCAE in denoising, we demonstrated the 
changes of Log2FC between original and denoised gene expression 
profile through SpaCAE and STAGATE, respectively, as to the 
changes of Moran’s I (Figure 5C and Supplementary Figure 7). The 

greater change of the two indicators before and after denoising, 
the stronger denoising ability. 

Comprehensively, the comparison highlighted the remarkable 
improvement of biological specificity brought by SpaCAE denois-
ing across the detected and annotated domains (Figure 5C and 
Supplementary Figures 7–9). Particularly, some DEGs expression 
(e.g. CD24 and HSP90AB1), which have been verified to be the 
potential prognostic risk factor for HER2-positive breast tumor, 
appeared more spatial specificity on cancerous areas (Figure 5D). 
Specifically, breast tumor expression of CD24 promotes immune 
escape by avoiding clearance of macrophages through its asso-
ciation with Siglec-10, a inhibitory receptor expressed on tumor-
associated macrophages [37]. HSP90AB1 is one of the heat shock 
proteins (HSPs) 90 isoforms [38, 39]. High-level expression of 
HSP90AB1 was driven by chromosome coding region amplifica-
tions and were independent factors that led to death from breast 
cancer among patients with HER2−/ER+ subtypes [39]. Collec-
tively, these results exhibited the ability of SpaCAE to diminish 
noise and augment spatial expression patterns. 

DISCUSSION 
Recent breakthroughs in SRT technologies provide new perspec-
tives to understand the heterogeneities of tissues and cancer 
under spatial context. The key issue of deciphering tissue spatial 
functional regions is to mitigate the high sparsity and noise of 
SRT data. However, the current methods commonly utilize high-
sparse SRT data as input and modeling spatial constraints solely 
based on meta-genes, resulting in these approaches failing to 
effectively mitigate the impact of high sparsity by fully lever-
aging the spatial dependence of gene expression. In this work,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae016#supplementary-data
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Figure 5. SpaCAE provides more biological insights into tumor heterogeneity in human HER2 breast cancer ST data (n = 613 spots). (A) H&E staining 
image (left) shows distinct tissue regions annotated by a pathologist in the original study. The annotated tissue regions include invasive cancer, fat 
tissue, fibrous tissue, normal breast glands, in situ cancer/DCIS and immune cells. (B) The comparison of spatial domain identification on breast cancer 
slice with domains = 7, the cluster purity is used to compare the similarity between the identified spatial domains and the ground truth annotations. (C) 
The change of gene differential expression and spatial autocorrelation patterns before and after data denoising. Since the second domain detected by 
SpaCAE was spatially corresponding to the undetermined tag of the real tissue slice and there were only two differential genes detected in the second 
domain against others, it was of little biological significance to discuss noise reduction in this spatial domain and the column of the second domain was 
removed from the boxplot. FC: fold change of gene expression. (D) Spatial expression of selected domain marker genes before (left) and after (middle) 
data denoising and the change of Moran’s I. Survival analysis (right) of the genes (CD24, HPS90AB1) associated with breast cancer. 

SpaCAE was designed as a novel spatially contrastive learning 
based on the spatial dependence of gene expression. SpaCAE 
contrasts the transcriptomic signals of each spot and those of 
its spatial neighbors to learn effective representation with spatial 
constraints by building the graph convolutional encoder, graph 
deconvolutional decoder and deep contrastive strategy, which are 
then used for accurate detecting spatial domain and denoising 
gene expression. The superiority of SpaCAE was verified on spatial 
domains detection and data denoising across multiple datasets 
of various technologies, i.e. 10x Visium, Slide-seqV2, ST. SpaCAE 
revealed the tissue heterogeneity of tumor and brain and the 
corresponding domain-specific genes. These findings suggest that 
SpaCAE is a powerful tool for identifying complex spatial expres-
sion landscape in SRT study. 

The superiority of SpaCAE is attributed to its distinctive design, 
which involves contrasting the transcriptomic signals of each 
spot and its spatial neighbors. Different from the current existing 
methods, SpaCAE uses the gene expression with spatial depen-
dence as one of the model inputs, which avoids the high sparsity 
affecting the performance of the method caused by only using 

the original expression modeling. To achieve this purpose, SpaCAE 
not only generates spatially strengthened expression of each 
spot but also builds the graph convolutional encoder and graph 
deconvolutional decoder to learn effective representation with 
spatial constraints from the original and augmented expression 
data. Additionally, SpaCAE provides a deep contrastive strategy to 
balance spatial local information and global information during 
representation learning. Thus, SpaCAE corrects the low-quality 
gene expression by borrowing the spatial dependence of gene 
expression before modeling and learns the representation with 
balancing spatial coherence and expression variance to improve 
the performance of spatial domains detection. 

The spatially contrastive strategy introduced by SpaCAE 
presents a novel approach for studying SRT data. However, this 
strategy is currently limited to spatial domain identification and 
lacks the capability to delve into the molecular mechanisms 
underlying tissue structure. This limitation of SpaCAE hinders 
its application in conducting in-depth analysis for biological 
interpretations. Meanwhile, gene co-expression networks provide 
a way to enhance SRT data. Therefore, drawing on the current
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gene regulatory networks inference methods [40–42], the next 
crucial work is to effectively infer gene regulatory networks 
through spatial contrast modeling and investigate spatially 
specific regulatory factors. 

Key Points 
• SpaCAE is a spatially contrastive variational autoen-

coder framework that effectively identifies spatial 
domains and denoises highly sparse SRT data, provid-
ing a novel contrastive learning model to facilitate the 
sharing of neighboring bio-signals and learn spatially 
constrained representations. 

• SpaCAE presents a tunable deep contrastive strategy 
to achieve a harmonious integration of spatial local 
and global information and utilizes graph convolutional 
encoder and graph deconvolutional decoder to capitalize 
on spatial information. 

• SpaCAE is a remarkable tool to provide novel insights in 
SRT studies and can be scaled for diverse SRT platforms. 

SUPPLEMENTARY DATA 
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The human dorsolateral prefrontal cortex (DLPFC) datasets 
are available in the spatialLIBD package at http://spatial.libd. 
org/spatialLIBD. The MIBI-TOF dataset is available at https:// 
github.com/scverse/squidpy . The osmFISH dataset of mouse 
somatosensory cortex is available at https://github.com/drieslab/ 
spatial-datasets . Mouse hippocampus data by Slide-seq V2 
is available at https://singlecell.broadinstitute.org/single_cell/ 
study/SCP815 . The HER2-positive breast tumor data from ST 
platform is available at https://github.com/almaan/her2st . 
Python source code of SpaCAE, under the open-source BSD 3-
Clause license, is available at https://github.com/HYF01/SpaCAE . 
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