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Abstract

Background.—In electronic health records, patterns of missing laboratory test results could 

capture patients’ course of disease as well as reflect clinician’s concerns or worries for possible 

conditions. These patterns are often understudied and overlooked. This study aims to identify 

informative patterns of missingness among laboratory data collected across 15 healthcare system 

sites in three countries for COVID-19 inpatients.

Methods.—We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 

patients with positive COVID-19 PCR tests across three countries from 1 January 2020 through 

30 September 2021. We analyzed missing laboratory measurements across sites, missingness 

stratification by demographic variables, temporal trends of missingness, correlations between 

labs based on missingness indicators over time, and clustering of groups of labs based on their 

missingness/ordering pattern.

Results.—With these analyses, we identified mapping issues faced in seven out of 15 sites. We 

also identified nuances in data collection and variable definition for the various sites. Temporal 

trend analyses may support the use of laboratory test result missingness patterns in identifying 

severe COVID-19 patients. Lastly, using missingness patterns, we determined relationships 

between various labs that reflect clinical behaviors.

Conclusion.—In this work, we use computational approaches to relate missingness patterns to 

hospital treatment capacity and highlight the heterogeneity of looking at COVID-19 over time 

and at multiple sites, where there might be different phases, policies, etc. Changes in missingness 

could suggest a change in a patient’s condition, and patterns of missingness among laboratory 

measurements could potentially identify clinical outcomes. This allows sites to consider missing 

data as informative to analyses and help researchers identify which sites are better poised to study 

particular questions.
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Graphical Abstract
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Introduction

The increasing availability of electronic health record (EHR) data has led to the burgeoning 

use of these data in various domains, including the identification of disease phenotypes 

and the clinical course of disease. Most recently, the EHR has been used as a rich source 

of data for characterizing the trajectory of the Coronavirus Disease (COVID-19) that is 

caused by the SARS-CoV-2 virus. However, it is commonly acknowledged that EHR data 

often require rigorous processing before they are of usable quality, thereby presenting 

considerable challenges to those using these data for research, quality improvement, or 

disease surveillance. Issues such as data availability [1–3], data recording or format 

inconsistencies [4,5], temporal changes in data policies [5,6], poorly standardized free-text 

[1,6], lack of interoperability between EHR systems [6,7], healthcare processes that can bias 

inferences made from EHR data [8]and diagnostic coding errors [1] all impair the usability 

of EHR data. Moreover, the most frequently reported barrier to EHR usability is missing 

data or data which are expected to be in the record but are not [3,4,6,9–13].

There is an important difference in the way that clinicians and informaticians tend to view 

missing data. To a clinician, data is considered missing if a laboratory test was supposed to 

be conducted and its value recorded, but for some known or unknown reason, it is absent 

from the medical record. Therefore, if a test is measured and recorded once per week 

according to protocol, and this is carried out without issues, there is no missing data for this 

particular test. On the other hand, if an informatician is carrying out a time series analysis, 

and their specified time window is daily measurements, this indicates that a laboratory test 
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that is not measured on a given day will be considered missing, despite the fact that the 

correct ordering frequency is being carried out by the clinician. This study was originally 

motivated by the desire to carry out a time series analysis; but with laboratory tests collected 

at different frequencies, the issue of missing data and how to deal with it needed to be 

addressed. As we delved into this, we realized that missing data itself could be leveraged to 

learn more about EHRs, nuances across sites, ordering patterns, and relationships between 

the labs themselves.

Much has been written about missing data as a principal contributing factor to poor data 

quality in the clinical record [1]. Data are missing in the EHR for two principal reasons. 

First, a laboratory test might have been ordered, but the result is missing from the record. 

Although important for ascertaining the quality of reporting systems, characterizing this type 

of missing data is difficult without access to clinical notes and ordering systems in the EHR. 

The second reason missing data is that a laboratory test was never ordered, or where a test 

was ordered and resulted, but for some reason was not resulted for some time or ever again 

during a hospital stay, and thus a result would not be expected in the EHR. Such missing 

data should not be considered as a direct measure of EHR data quality, since there are many 

factors, often clinical, that determine when and if a test result is absent from the record. 

We focus here on the latter type of missing data, and we propose that the absence of data 

can be informative, and that patterns of these missing data can be considered as informative 
missingness.

Thus, our research question is “What can we learn from patterns of missingness in EHR 

data that could amplify our understanding of the pathophysiology, severity, trajectory, and 

outcomes of disease?”

Patterns of Data Missingness

Missing data is typically characterized according to three commonly accepted missingness 
patterns. The first is missing completely at random (MCAR). In this pattern, the missingness 

of a variable is not associated with any observed or unobserved variables, including the 

variable itself. An example would be where responses to a survey question about smoking 

status is not present on some proportion of respondents because the question was asked (or 

not) in a truly random fashion; in other words, there is no nonrandom pattern of missingness. 

In the second pattern, missing at random (MAR), the missingness of a variable is associated 

with the value of another observed variable. For example, responses to a question on 

smoking status are dependent on one’s occupation, resulting in a missing value for smoking 

when a respondent notes that their occupation is in health care. Finally, when data are 

missing in the EHR, it is often missing not at random (MNAR) [14]. A variable may be 

missing because of the value of the variable itself. For example, a smoker may be less likely 

to answer a survey question about smoking status because they are a heavy smoker. Note 

that it is not known whether or not the respondent is, in fact, a smoker, and that would 

not be known because they did not answer the question. In other words, the probability of 

determining if a respondent is a smoker is depending on the value of the smoking question. 

For this reason, such missing data are nonignorable, which implies that such data violate 
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assumptions for imputation and need to be considered (encoded) explicitly as missing data 

for purposes of imputation.

However, we contend that there is a special case of MNAR, where the missing data are 

informative, in this case indicating a clinician’s assumption and a decision not to order a test 

subsequent to the previous one. This type of missingness has been referred to as structurally 

missing data [15], in that there is a logical, non-random reason the data are missing. 

However, we refer to this pattern as informative-missing not at random (I-MNAR). In this 

pattern, the missingness of a variable is dependent on the value of the variable, like MNAR, 

but may also be influenced by the value of other variables as well, whether they are observed 

or unobserved. It is a pattern commonly seen in the EHR, where once a normal laboratory 

result is obtained, no further assays of the same type are present in the record. The absent 

results indicate that the decision not to order the test after the normal result was likely due 

to the normal value itself, but it could be that the values of other variables (such as other 

laboratory tests or clinical assessments) are taken into account during the decision-making 

process. Thus, the absence of laboratory results after a given result is informative, perhaps 

about the severity of the disease, the availability of the test, practice guidelines, or clinician 

preferences. An example of this is in [16], where the recording of rheumatoid factor test 

results in the EHR was found to be missing when a test result was negative. In other words, a 

test was not ordered because it was assumed that the test would be negative based on a prior 

result of the test.

Informative Missing-Not-At Random in EHR Studies

The I-MNAR pattern has been investigated in the literature, albeit under a different 

nomenclature, typically referred to simply as “informative missingness”. For example, in 

[17] it was noted that missing data are often correlated with a target variable, such as 

outcome. Informative missing data has been identified in genotype analysis and genetic 

association studies [18–23], longitudinal cohort studies [24,25], meta-analyses [26–31], 

exposure assessment in case-control studies [32], and particularly in studies using EHR data 

[33].

The goal of this study was to identify patterns of missing laboratory tests that might suggest 

levels of disease severity or other factors, such as patient sex or hospital characteristics that 

could influence the availability of laboratory data in the EHR. From this study, we hope to 

determine if these missing data fit an I-MNAR pattern and interpret this informativeness. 

Accordingly, we focus here specifically on the laboratory data patterns found in our 

examination of EHR data in an international federated data consortium.

After this introduction, we describe our methodology for defining the sample population, the 

variable set, and the analytic methods used to quantify and describe missing values. Next, 

we present the results as characterization of the distribution of missing data by laboratory 

test, stratified by sex, hospital site, and disease severity, across different time periods from 

admission through 60 days thereafter. We also present the results of an analysis that seeks 

to investigate the patterns of missingness with regard to pairs of laboratory tests. Finally, we 

consider a topic model analysis that clusters groups of labs together based on missingness 

patterns.
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Statement of significance

Problem—Missing data is pervasive in the electronic health record (EHR).

What is already known—Missing data in EHRs are difficult to remediate through source 

data or imputation. In addition, missing data of all types are often used to reflect the quality 

of EHR data.

What this paper adds—This study focuses on the informativeness of missing data, 

thereby providing new insights into the nature of EHR data, hospital treatment capacity, 

relation to clinical outcomes, and opportunities for applying novel statistical and machine 

learning methods to temporal pattern estimation in the presence of missing data.

Methods

For an overview of our workflow, please see the graphical abstract corresponding to this 

paper.

Study Population and Setting

COVID-19 was and continues to be a pressing global health crisis that is still poorly 

understood. Due to a general lack of guidelines for COVID-19 (as compared to other 

diseases) and the rapidly evolving phenotype and treatment regimens for COVID-19 we 

imagined there would be many interesting missing data patterns in this setting as clinicians 

investigated how to diagnose and treat it. In addition, the COVID-19 pandemic presented 

a unique opportunity of collaboration between many diverse and international sites that led 

to the formation of the Consortium for the Clinical Characterization of COVID-19 by the 

EHR (4CE) consortium. It was through the efforts of this consortium where the common 

data model allowed for analysis across multiple institutions across the world.

We leveraged the resources of the international 4CE consortium (4CE). The 4CE uses a 

federated data model and predictive analytics framework in a hub-and-spoke configuration. 

Specifically, all 4CE-contributing academic medical centers (spokes) query and standardize 

EHR data elements using a COVID ontology, and apply analysis locally to their COVID 

datasets, and then provide aggregate statistics to a coordinating academic medical center 

(hub). This agile, rapid, and privacy-preserving data sharing approach has efficiently and 

effectively supported several COVID studies over the last two years [34–40]. For sites with 

multiple hospitals, we assume that practice patterns are similar across the hospitals within 

those sites. There are many benefits to analyzing multiple sites across the world– it enables 

us to be able to look at a broader population across multiple countries and ensure the 

results are generalizable. We keep in mind the difference in practices and focus on how the 

missing patterns might bring out these differences/similarities across systems and their role 

in providing additional insight to the relationship between labs, disease severity, and test 

ordering patterns that may reflect adherence to clinical guidelines.

This retrospective observational study of EHR was reviewed and approved by the ethics and 

institutional review boards for all participating 4CE contributing sites.
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We analyzed laboratory test ordering patterns in EHR data for 69,939 patients from 232 

hospitals across three countries from the 4CE consortium for the period of 1 January 2020 

through 30 September 2021. Fifteen 4CE consortium contributing sites are described in 

Table 1. Most sites in 4CE use the i2b2 common data model, ensuring consistent mapping of 

the variables. While there are sites which are not on i2b2, quality control is performed after 

data extraction to ensure that the correct mappings are used.

The inclusion criteria include a positive COVID-19 polymerase chain reaction (PCR) test 

on or during admission to the inpatient setting. Only data from a patient’s first COVID-19 

admission was considered; subsequent admissions were not included in the analysis. We 

collected results from 16 laboratory tests conducted over the entire admission. We selected 

these labs because (1) their abnormal values have been associated with worse outcomes 

among COVID patients in the literature and in our own 4CE mortality risk prediction 

models; (2) they reflect acute pathophysiology of COVID-19 patients as markers of cardiac, 

renal, hepatic, and immune dysfunction; (3) the labs were mappable across sites with an 

identifiable LOINC code. The clinical significance of these tests and common ordering 

practice is described in [41–43].

Quantifying missingness: definitions

A missing laboratory test is logged when no results for the test are available in the EHR for 

a patient within a time point, usually within a day. Thus, we assume that a missing test result 

serves as a proxy for a test that wasn’t ordered. The number of missing results per patient 

will hence be the total number of days without a given laboratory test result for the period of 

hospital admission. Note that this is oftentimes not how missing data are defined in a clinical 

setting. Even though it could be routine practice not to order a given laboratory test each 

day, we still want to capture this information on a per-day basis to understand the ordering 

patterns of the various labs.

Quantifying missingness across selected indicators

We first investigated the overall number of missing results and the proportion of missing 

values for each site and lab. The proportion missing for a given patient is defined as the 

total number of hospital days with no results for a given laboratory test divided by the total 

number of days admitted. We characterized the degree of missingness across variables of 

severity, sex, and time. We defined COVID severity by applying an EHR-based algorithm 

that defines severe patients based on the blood gas results (partial pressure of carbon dioxide 

or partial pressure of oxygen), medications (sedatives/anesthetics or treatment for shock), 

diagnoses (acute respiratory distress syndrome or ventilator-associated pneumonia), and 

procedures (endotracheal tube insertion or invasive mechanical ventilation) [35]. A patient 

with one or more of the aforementioned data elements was noted as severe; otherwise, the 

patient was assigned as non-severe. We assess for differences in quantiles of missingness 

between male and female patients and levels of severity.

We also investigated the proportion of missing laboratory values over different time 

intervals to capture the differences in patterns of laboratory missingness. To identify initial 

differences in missingness during the early days of hospital admission, we plotted on a 
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heatmap the difference in proportion missing during the first 3 days of admission between 

severe and non-severe patients.

To identify changes in trends of missingness over time, we first modeled the rates of change 

of proportion missing over time for severe and non-severe patients separately and then 

plotted on a heatmap the difference in the rates of change. We obtained rates of change 

by fitting linear models across days since admission and obtaining the beta coefficients. 

We examined three different time intervals: 0–10 days, 0–30 days, and 0–60 days to 

capture patients with short, medium, and long term hospital stays. For 0–10 days and 0–30 

days, linear models were fit across the proportion missing on each hospital day following 

admission for all patients. For 0–60 days, the models were fit over three-day periods.

Patterns of missingness shared between pairs of laboratory tests—We were 

interested in the temporal relationships between the various labs based on their missingness. 

For each lab, we compiled a list of missing indicators for each patient on each day since 

admission. We then calculated the Spearman correlation between two laboratory test pairs 

at a given time point based on the missing indicators. We repeated this out to 30 days after 

admission. Then, for each laboratory test pair, we fit a linear model across the Spearman 

correlation values across time points. A positive slope indicates that tests were not initially 

ordered or missing together and they become more concordant as the hospital admission 

continues; a negative slope indicates that tests are initially ordered or missing together and 

lose their concordance over time. Both of these dynamics could reveal biological and clinical 

mechanisms at work.

Patterns of missingness shared between groups of laboratory tests

Identifying relationships between variables based on missingness and ordering 
patterns: We also characterized the relationships between the labs themselves based on 

their missingness patterns. To this end, we employed Latent Dirichlet Allocation (LDA) 

topic modeling to identify similar labs based on their ordering and missingness patterns.

Topic modeling, or the discovery of hidden semantic structures in a text body, can help 

us identify some of the relationships between the labs based on their missingness patterns. 

Our “topics” would be groups or clusters of similar labs. To this end, we employed Latent 

Dirichlet Allocation (LDA) topic modeling.

LDA topic modeling is a generative probabilistic approach applied to collections of data, 

which in practice is typically text corpora [42]. In a natural language processing setting, 

documents are represented as random mixtures over latent topics, and each topic is 

characterized by a distribution over the words in the documents. The topic probabilities 

provide a representation of a document. In our case, the “words” are the individual labs, 

each “document” corresponds to each patient– the sum of indicators (whether or not a lab 

was ordered) for each lab across 30 days. The “topics” are the groups / clusters of similar 

labs based on those patterns. In essence, it is identifying which labs tend to co-occur, or be 

missing together. For more information on LDA topic modeling, see [42].
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We first identified the optimal number of topics for our input data; and then LDA learns the 

probabilities that a given word belongs to a topic.

We used four metrics to determine the optimal number of topics to learn from the data; in 

order to accomplish this, we evaluated a range of two to eight topics. We assessed which of 

these maximized:

• the held-out likelihood, which provides a measure of how predictive the model is 

on unseen documents;

• the semantic coherence, which captures the tendency of a topic’s high probability 

words to co-occur in the same document;

• the lower bound on the marginal likelihood;

and which minimized the residuals.

Because every laboratory test has a non-zero probability of belonging to a given topic, we 

determine a cut-off based on the sum of the cumulative probabilities in decreasing order. If 

the difference between 1 and the sum of the cumulative probabilities is <= 0.05, then only 

the labs that have been summed up to that cutoff are determined to describe the topic or 

make up the majority of the probability. In essence, the labs that make up a topic should be 

responsible for about 95% of the probability mass.

For each site, we generate a list of topics and the labs that describe that given topic based on 

their cumulative sum cut-off. From there, we are interested in groups of laboratory tests that 

intersect topics frequently across sites. We looked for the largest unique combination of labs 

that intersect at least nine times across all the topics from all the sites. Nine intersections 

was chosen empirically because it allowed for four unique groups of labs across the 15 sites. 

From there, we identified other lab tests that might intersect with a given established unique 

group at least six times to show the heterogeneity between topics.

Results

Quantifying missingness of laboratory test across sites

Figure 1 shows that the missingness across labs varies widely across sites and lab measures. 

The larger variability in the number of missing values per patient Figure 1 (A) compared 

to the average proportion missing per patient Figure 1 (B) across sites is possibly due 

to differences in the distribution of the length of stay and sample size at particular sites. 

Nonetheless, the number of missing values per patient still informs the exact number of 

missing tests and is useful for identifying sites with more valid values which might be 

required for some analyses. To account for the length of admission, the proportion missing 

(Figure 1 (B)) is normalized against the total number of admitted days for each patient. 

Generally, creatinine and leukocytes show the lowest number and proportion missing 

compared to all other tests. This is closely followed by bilirubin, albumin, ALT, and AST, 

which have a considerably lower number of average missing values per patient and a lower 

proportion missing (throughout patient admission) across most of the sites. Lymphocytes 
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and neutrophils show a similar level of missingness as the above labs except for a visibly 

higher measure of missingness in Site 5.

Quantifying missingness across sex and severity

Figure 2(A) shows the difference in proportion missing between males and females for 

each lab. Generally, across all labs, the difference in missingness by sex is varied in 

both directions across all sites. We observe the largest difference in missingness between 

males and females at Site 2, with some female patients having much more missingness 

for D-dimer, PT, and leukocytes. We also observe some slight deviations at some of the 

sites with more missingness among females in neutrophils at Site 12 and more missingness 

among males at Site 13 in AST and bilirubin. It is important to note that Site 2 has the 

smallest sample size (n=162), and Sites 11–15 have very few female patients (ranging from 

5.2–6.4 percent). Thus deviations are likely a result of variability in the data. Beyond these 

findings, we observe that most sites are well-balanced across the different sexes with regard 

to missingness in the data.

Next, we quantified the difference in proportion missing between severe and non-severe 

patients across the entire cohort in Figure 2(B). We hypothesized for this experiment that 

there would be a higher proportion missing in non-severe patients. We observe in Figure 

2(B) that most deviations occur at Site 2 and Site 4. We note more missing data in severe 

patients at Site 2 for fibrinogen, D-dimer, and CRP, and more missing procalcitonin results 

in non-severe patients. These attributes could be explained by the fact that Site 2 has a 

smaller sample size and is a pediatric hospital, hence the current severity definition might 

not be suited for its patients. At Site 4, we observe more missing data in severe patients for 

D-dimer, CRP, ferritin, albumin, AST, ALT, bilirubin, and creatinine while we observe more 

missing procalcitonin data in non-severe patients. Site 4 does not have an intensive care unit 

(ICU) which could explain the higher proportion of missingness in severe patients. Other 

than these two sites, the remaining sites seem to be well-balanced across levels of severity 

with regard to missingness in the data over the whole admission period.

Quantifying missingness over course of admission

After quantifying overall missingness in severe vs. non-severe patients, we were also 

interested in the temporal dynamics of this missingness. We observe that for all labs, 

missingness increases faster over time in non-severe patients as opposed to severe patients. 

We present the results for three labs with varying amounts of initial missingness below.

Troponin overall has more missingness than all other labs. The range for possible 

missingness proportions is limited to [0,1] and initially we observe more missingness in 

the non-severe group as opposed to the severe group. Thus, many sites hit a maximum 

proportion of missingness much faster in the non-severe group, making the rate of change 

smaller than it would be for severe patients. We also see more variability in the non-severe 

group out to later days in the hospital admission.

Another trend is that a test may initially have a higher rate of change in non-severe patients 

early on, but the rate of change is higher in severe patients out to 60 days. We see that 

this is the case for Ferritin, as shown in Figure 4. Initially, we see a stronger increase in 
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missingness in the first 10 days for non-severe patients and this remains to be the case 

for many sites in 0–30 days. However, again, patients in the non-severe group reach the 

maximum level of missingness faster than patients in the severe group. Thus, because the 

severe patients take more time to reach the maximum level of missingness, many sites will 

have an overall greater rate of change in the severe group.

Lastly, some labs might have a consistently larger rate of change across time intervals for 

non-severe patients. We see in Table S1 that this is the case for Leukocytes, where this lab 

has a consistently lower amount of missingness compared to the other labs. Because the 

upper bound for missingness is further away from the initial amounts of missingness, we see 

that in non-severe patients it increases more quickly and is more pronounced overall.

Based on the trends we observe in the temporal line plots, we conclude that overall, there is 

more missingness in non-severe patients as opposed to severe patients over time across many 

of the labs in our dataset. This is what we might expect to see because clinicians might not 

test non-severe patients as heavily over time as severe patients who could be having more 

issues as their stay continues.

Patterns of missingness shared between pairs of laboratory tests—In 

identifying relationships in missingness across labs, we investigated laboratory test pairs 

that show a change in correlation across admission days (Figure 6). We then shortlisted test 

pairs with either a significant positive or negative change in correlation over admission days 

(Figure 6). Only test pairs that show reproducible correlations across sites are shortlisted. To 

obtain the rate of change, we fit linear models across the Spearman correlation values over 

time (Figure 6 (A) & (B)). Sites were included for a pair of the slope = |0.3| and standard 

error <= 0.25.

In Table 2, we observe several lab pairs that become positively associated during the later 

parts of admission. Notable lab pairs indicate suspicion of infection, coagulopathy including 

cardiac involvement, liver involvement, severe COVID-19 outcomes as well as rule out of 

differential diagnoses such as bacterial pneumonia.

In Table 3, we observe several lab pairs that become strongly associated during early 

admission. Notable lab pairs indicate suspicion of infection with or without kidney or liver 

involvement.

Patterns of missingness shared between groups of laboratory tests—To 

identify groups of labs that share patterns in missingness, topic modeling was done to arrive 

at a common set of labs across sites (Figure 7(A)). From 15 sites, we end up with 91 topics 

derived from LDA. We include unique groups of labs with at least nine intersections across 

topics in an pSet plot. Based on these criteria, we obtained four unique groups that are 

reproducible across sites presented in Figure 7(A). The black points represent the labs that 

are consistent across all topics found across sites while the pink and red ones represent labs 

that are only found in some but not all of the topics across sites (Figure 7(A)). We find that 

overall, the groups of intersections represent groups of labs that measure for similar issues 

in a COVID-19 setting, and thus are related to one another. Group 1 consists of labs that are 
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commonly ordered together on a daily basis, measuring for renal issues and infection. Group 

2 are likely tests ordered individually rather than as a group. They all are labs that have at 

times been thought to help prognosticate potential severity of COVID. Group 3 represents 

tests that are ordered together to assess liver function, and Group 4 represents coagulation 

studies that may or may not be ordered as a group.

Discussion

Through characterizing and exploring laboratory test missingness patterns across a multi-

national COVID-19 study, we identified several insights and opportunities [1].

1. Missingness patterns can indicate responses to hospital treatment capacity

During the global pandemic, several academic medical centers were not prepared for 

the large influx of patients with intensive care needs. Many created makeshift ICUs. 

Furthermore, some facilities may have implemented new triaging procedures. For example, 

the higher proportion of missing data in the initial three days of admission in Site 4 across 

almost all the labs could be attributed to the lack of an ICU in Site 4. Because patients 

with serious conditions might be in the process of having a transfer being arranged, it could 

explain the higher proportion of missing labs in the severe patients from Site 4.

2. Missingness patterns can change over time and at different rates

Although all patient groups exhibit some proportion of non-reported labs, not all patient 

groups consistently demonstrate the same rate of non-reported labs over time. This finding 

echoes one study that found that counting lab measurements from an arbitrary, rather than 

clock, time is superior in attaining a stable time series [45]. Patients among the non-severe 

group reach the maximum level of non-ordered labs faster than patients among the severe 

group. For short-stay patients, we observe this change for labs like troponin. For ferritin, we 

observe a higher rate of change in non-severe patients. Intuitively, for non-severe patients, 

clinicians may become less concerned about a patient’s condition, leading to reduced 

ordering rates. As a corollary, the absence of test ordering can indicate improvements in 

the patient’s health.

3. Missingness patterns could be predictive of clinical outcomes

Missingness patterns in healthcare data also carries a signal within itself. Previous work 

has shown that missing data can indicate a variety of issues: access to healthcare, the 

health status of patients, all of which can impact disease models [53]. In this setting, 

because the reporting patterns between labs are cross-correlated (groups of labs with shared 

reporting (and non-reporting) patterns as shown in topic modeling Figure 7), the removal 

of one test’s missing values from a model could potentially affect model performance. 

Furthermore, using two different data-driven methods -- spearman correlations over time 

as well as topic models -- we observed common clinical themes among lab pairs and sets 

including coagulation, infection with renal involvement, and liver involvement. For future 

work, it would be interesting to see how the collective missingness in the groups identified 

by LDA topic modeling is associated with certain comorbidities such as thrombotic events, 

neurological outcomes, and acute respiratory distress. We also plan to incorporate concepts 
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from causal inference, such as propensity score matching to ensure that the associations 

found between missingness and comorbidities are reliable.

4. Computational approaches for addressing ordering patterns

Missingness patterns could inform which variables would benefit from imputation for 

future studies. A number of approaches to dealing with informative missingness have 

been reported. These include using a Monte Carlo Expectation-Maximization simulation 

series that incorporates within-subject autocorrelation with a latent autoregressive process 

for longitudinal binary data [46], a Bayesian shrinkage approach to improve estimation of 

sparse patterns [47], the use of an informative ordering pattern odds ratio [48–50]. Another 

approach could extend the PopKLD algorithm for high-throughput phenotyping to deal with 

informative missingness [51]. This could be especially valuable in our continued work in 

temporal pattern estimation in the face of informative missing data that will investigate these 

methods in the context of these COVID consortium data [52].

This study has several limitations.

• Order sets were not investigated. The patterns of missingness for laboratory 

and other tests and procedures were likely influenced by standing order sets. 

Furthermore, order sets are likely to change over time as knowledge about 

COVID and therapies for it evolve over time. We plan to correlate patterns of 

missingness with the content of order sets and how they change over the course 

of the pandemic.

• Missingness was not correlated with secular trends of the pandemic. As the 

pandemic has evolved, there have been a number of irregular cycles in the 

epidemic curve, with marked changes in disease incidence associated with 

the Delta and Omicron variants. These changes are likely associated with 

corresponding changes in order sets and clinical practice. We will investigate 

patterns of laboratory test missingness as they may reflect clinical practice 

patterns which in turn may reflect the undulation in the incidence of COVID 

over time.

• Type of patient care unit was not captured. It is possible that test ordering 

patterns could be influenced by the type of unit a patient was on at given points 

in time. For example, order sets may be used less frequently in intensive care 

units than in medical units, even those dedicated to COVID. Our future work 

will include an examination of “unit effect” in a temporal context, which will be 

important as patients move between acute and less-acute care settings in a given 

hospitalization.

• Focus on missing test values, as opposed to missing orders. We assumed that 

a missing laboratory test result indicated that the test was not ordered. While a 

reasonable assumption, a more accurate indicator of ordering behavior would be 

to capture orders in addition to test results. We will investigate the feasibility of 

obtaining these data from the EHR in future work.
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• Severity definitions might change over time. When patients stay in the hospital 

for long periods of time, it is possible that their severity changes. Thus, there are 

limitations in looking at Figure 4 due to the fact that patients initially labeled 

as non-severe that remain in the hospital out to 60 days might not actually be 

non-severe at that point.

Conclusion

In this study, we investigated and demonstrated how characterization of missing data 

patterns in EHRs, particularly lab results, could support various steps in scientific study 

ranging from hypothesis generation to inferential analyses. Our key takeaway is that 

missingness patterns can relate to hospital treatment capacity and reflect heterogeneity when 

looking at the disease over time and at multiple sites, where there might be different phases, 

policies. Changes in missingness could potentially reflect a change in patient condition and 

suggest correlations to clinical outcomes like coagulation, infection with renal involvement, 

and liver involvement. Furthermore, missing data patterns will enable consortia to identify 

which sites are better poised to study particular questions and potentially inform the use 

of imputation methods for addressing these challenges. Finally, our results may provide 

insights into some of the biological relationships between labs in EHRs data for COVID-19 

patients.
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Figure 1: Summary of missingness for lab measures across all sites.
(A) Number of missing labs is calculated for each patient before it is averaged over the total 

number of patients. (B) Proportion missing is calculated by taking into account the total 

number of days with no measurements of labs divided by the total number of admitted days 

for each patient. The proportion missing is averaged across all patients. The sites with the 

highest percentage missing are labeled on the right within the plot.
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Figure 2: Difference in the quantiles of proportion missing across labs between (A) males and 
females as well as between (B) severe and non-severe patients.
Sites with the largest deviation in the proportion missing are labeled in the plots. For 

(A), sites with more missingness in the positive direction have more missingness in male 

populations. For (B), sites with more missingness in the positive direction have more 

missingness in severe populations.
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Figure 3. Changes in missing Troponin results over time.
(A) severe patients and (B) non-severe patients. Since the range of proportions is limited to 

[0,1], and non-severe patients initially have more missingness than severe patients, we see 

that the rate of change across all time is higher for severe patients.
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Figure 4. Changes in missing Ferritin results over time.
(A) severe patients and (B) non-severe patients. Since the range of proportions is limited to 

[0,1], and non-severe patients initially have more missingness than severe patients, we see 

that the rate of change across all time is higher for severe patients.
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Figure 5. Changes in missing Leukocytes over time.
(A) severe patients and (B) non-severe patients. Since the range of proportions is limited to 

[0,1], and non-severe patients initially have more missingness than severe patients, we see 

that the rate of change across all time is higher for non-severe patients.
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Figure 6. Correlations of pairs of laboratory tests.
Pairs of labs with (A) positive or (B) negative correlations through admission. Labs 

with position correlations are more strongly correlated in their missingness during later 

parts of admission; Labs with a negative association are more strongly correlated in their 

missingness during the earlier parts of admission.
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Figure 7: Grouped labs with similar patterns of missingness.
Prevalence of the top four groups of labs from topic modeling analyses across sites. The 

red/pink points show slight deviations in group membership of labs across different sites.

Tan et al. Page 24

J Biomed Inform. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tan et al. Page 25

Table 1.

4CE contributing sites.

4CE contributing site Location Number of 
Hospitals

Number of 
Beds

Inpatient 
discharges/
year

Ratio of 
Female: 
Male

Ratio of 
Severe: 
Non-
Severe

Boston Children’s 
Hospital

Boston, Massachusetts, 
United States

1 404 28,000 1.03 0.30

Beth Israel Deaconess 
Medical Center

Boston, Massachusetts, 
United States

1 673 40,752 1.02 1.14

Bordeaux University 
Hospital

Bordeaux, France 3 2,676 130,033 0.76 2.23

ASST Papa GGiovanni 
XXIII Bergamo

Bergamo, Italy 1 1,080 45,000 0.60 0.36

Istituti Clinici Scientifici 
Maugeri

Pavia, Lumezzane, and 
Milano, Italy

3 775 12,344 1.10 0.06

Mass General Brigham 
(Partners Healthcare)

Boston, Massachusetts, 
United States

10 3,418 163,521 0.94 0.58

Northwestern University Evanston, Illinois, United 
States

5 193 15,748 0.97 0.61

University of Pennsylvania Philadelphia, Pennsylvania, 
United States

5 2,469 118,188 1.13 0.33

University of Michigan Ann Arbor, Michigan, 
United States

3 1,000 49,008 0.98 1.66

University of Pittsburgh Pittsburgh, Pennsylvania, 
United States

39 8,085 369,300 0.98 0.36

Department of Veteran 
Affairs (1)

North Atlantic District, 
United States

49 3,594 151,075 0.05 0.87

Department of Veteran 
Affairs (2)

Southwest District, United 
States

29 3,115 156,315 0.07 0.843

Department of Veteran 
Affairs (3)

Midwest District, United 
States

39 2,686 145,468 0.06 0.59

Department of Veteran 
Affairs (4)

Continental District, United 
States

24 2,110 113,260 0.07 1.06

Department of Veteran 
Affairs (5)

Pacific District, United 
States

29 2,296 114,569 0.06 0.86
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Table 2.

Lab pairs that are more strongly associated during later parts of admission and their implications

Pair of Labs # of Sites Median Slope (Min, Max) Implication

LDH, Fibrinogen 6 0.591 (0.439, 1.608) Suspicion of infection

Fibrinogen, D-dimer 6 0.629 (0.4, 1.843) Suspicion of coagulopathy

Fibrinogen, Procalcitonin 7 0.489 (0.341, 1.6) Suspicion of coagulopathy with cardiac involvement

LDH, Albumin 6 0.5725 (0.33, 0.918) Suspicion of severe COVID-related outcome

LDH, Bilirubin 6 0.6685 (0.347, 0.882) Suspicion of liver involvement

LDH, ALT 6 0.572 (0.348, 0.698) Suspicion of liver involvement

LDH, AST 6 0.541 (0.342, 0.688) Suspicion of liver involvement

Procalcitonin, Ferritin 7 0.698 (0.364, 1.787) Differential diagnosis- COVID-pneumonia vs. bacterial pneumonia

Procalcitonin, D-dimer 6 0.7325 (0.657, 1.7) Suspicion of severe COVID-related outcome
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Table 3.

Lab pairs that are more strongly associated during earlier parts of admission and their implications

Pair of Labs # of Sites Median Slope (Min, Max) Implication

Bilirubin, Creatinine 6 −0.5065 (−0.809, −0.311) Suspicion of kidney involvement

ALT, Creatinine 6 −0.499 (−0.74, −0.317)
Suspicion of severe COVID-related outcome due to liver and kidney 
involvement

Neutrophil, Creatinine 6 −0.44 (−1, −0.31) Suspicion of infection with kidney involvement

Lymphocyte, Creatinine 6 −0.5535 (−0.994, −0.307) Suspicion of infection with kidney involvement
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