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Abstract

Objectives

Synthetic datasets are artificially manufactured based on real health systems data but do

not contain real patient information. We sought to validate the use of synthetic data in stroke

and cancer research by conducting a comparison study of cancer patients with ischemic

stroke to non-cancer patients with ischemic stroke.

Design

retrospective cohort study.

Setting

We used synthetic data generated by MDClone and compared it to its original source data

(i.e. real patient data from the Ottawa Hospital Data Warehouse).

Outcome measures

We compared key differences in demographics, treatment characteristics, length of stay,

and costs between cancer patients with ischemic stroke and non-cancer patients with ische-

mic stroke. We used a binary, multivariable logistic regression model to identify risk factors

for recurrent stroke in the cancer population.

Results

Using synthetic data, we found cancer patients with ischemic stroke had a lower prevalence

of hypertension (52.0% in the cancer cohort vs 57.7% in the non-cancer cohort, p<0.0001),

and a higher prevalence of chronic obstructive pulmonary disease (COPD: 8.5% vs 4.7%,

p<0.0001), prior ischemic stroke (1.7% vs 0.1%, p<0.001), and prior venous thromboembo-

lism (VTE: 8.2% vs 1.5%, p<0.0001). They also had a longer length of stay (8 days [IQR

3–16] vs 6 days [IQR 3–13], p = 0.011), and higher costs associated with their stroke

encounters: $11,498 (IQR $4,440 –$20,668) in the cancer cohort vs $8,084 (IQR $3,947 –
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$16,706) in the non-cancer cohort (p = 0.0061). A multivariable logistic regression model

identified 5 predictors for recurrent ischemic stroke in the cancer cohort using synthetic

data; 3 of the same predictors identified using real patient data with similar effect measures.

Summary statistics between synthetic and original datasets did not significantly differ, other

than slight differences in the distributions of frequencies for numeric data.

Conclusion

We demonstrated the utility of synthetic data in stroke and cancer research and provided

key differences between cancer and non-cancer patients with ischemic stroke. Synthetic

data is a powerful tool that can allow researchers to easily explore hypothesis generation,

enable data sharing without privacy breaches, and ensure broad access to big data in a

rapid, safe, and reliable fashion.

Introduction

Cancer is the leading cause of mortality in Canada, accounting for approximately 30% of all

deaths [1]. In addition to the direct oncologic effects of cancer and cancer-associated treat-

ments, patients with cancer are at an increased risk for thrombotic complications, including

ischemic stroke [2–4]. Cancer-associated stroke has been proposed to be a separate entity from

stroke in the general population, and identifying key differences in risk factors for develop-

ment, treatment patterns, and outcomes is crucial in these patients [5]. Due to a lack of ran-

domized controlled trial (RCT)-level evidence in this specific subpopulation, most of what we

know about cancer and stroke has come from observational/administrative data. Administra-

tive health data are routinely collected data from interactions with the healthcare system for

the purpose of payment, monitoring, planning, priority setting, and evaluation of health ser-

vice provision [6]. This wealth of data can be used for disease modeling, risk analysis, quality

improvement, and much more. However, for the purpose of research/quality improvement,

obtaining access to administrative data can be time consuming and significant issues exist sur-

rounding patient confidentiality, allocation of internal resources, delays due to ethics approval,

and privacy concerns surrounding data sharing.

Synthetic data is a novel concept in epidemiological cancer and stroke research where

patient health data are artificially manufactured based on real health system. For synthetic data

to be useful in healthcare research, statistical properties must be nearly identical to original

data and could be analyzed as such [7]. The advantages to using synthetic data include reduc-

ing barriers to access by bypassing privacy and confidentiality controls, improving the ability

to share informative datasets between researchers at different institutions, reducing timing

delays in obtaining data, and decreasing the utilization of internal resources, such as informa-

tion technology (IT) teams. MDClone (Beer Sheva, Israel) is a data synthesis platform that uses

computational derivation methods to produce such deidentified, synthetic datasets based on

real health systems data. Previous studies using MDClone have demonstrated its utility and

efficiency, as the data was shown to maintain similar statistical properties compared to their

real data sources. This has proven to be particularly useful when rapid access to big data are

required to make informative decisions regarding public health policies and interventions,

such as during the COVID-19 pandemic [8, 9]. However, the utility of synthetic data has never

been demonstrated in stroke or cancer research.
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It is important to establish the utility of synthetic data in cancer and stroke, given the

increasing recognition of cancer-associated stroke and the challenges with conducting clinical

trials in this high-risk population [5]. Thus, our objectives for this study are: 1) to compare key

differences in demographics, acute treatments, hospital length of stay, and costs between can-

cer patients with ischemic stroke and non-cancer patients with ischemic stroke using synthetic

data produced by MDClone, 2) to validate the use of synthetic data in cancer and stroke

research by comparing key statistical properties between the synthetic dataset and the source

dataset from which the synthetic data originates, and to explore the statistical correlations and

properties of both datasets via the building of a multivariable predictive model for recurrent

ischemic stroke in cancer patients with stroke.

Methods

Patients or the public were not involved in the design, or conduct, or reporting, or dissemina-

tion plans of our research.

Standard protocol approvals and patient consents

The Ottawa Hospital is a tertiary care center that is the primary stroke center for a catchment

population of 1.6 million in the Eastern Ontario region. We analyzed data through the

MDClone platform, which produces synthetic data based on real health system data from the

Ottawa Hospital Data Warehouse–a relational database that has been widely used in previous

research and contains information that links several hospital information systems, including

patient registration, clinical data, case costing, and patient abstract systems. Extensive assess-

ments of data quality were performed during its development and continue to be executed

routinely as new data are added [10, 11]. MDClone is an interactive platform that synthesizes

existing data from the Ottawa Hospital Data Warehouse and reproduces an imitation dataset

that no longer contains data from individual patients, but rather a collection of observations

which maintain the statistical properties of the original dataset [7]. Next, real-patient data was

obtained from the Ottawa Hospital Data Warehouse for comparison. Patient consent was not

required as this was a retrospective chart review with deidentified data. The current study was

approved by the Ottawa Hospital Health Science Network Research Ethics Board (Reference

number or ID: 20210399-01H). Informed consent from patients was not required as this was a

retrospective chart review.

Patient and public involvement

No patients were involved in the design of this study.

Inclusion/exclusion criteria

We included all patients meeting inclusion criteria from April 1, 2002 –May 31, 2019. We cre-

ated two separate cohorts: the first cohort included all patients with a diagnosis of cancer

(excluding non-melanoma skin cancer or primary central nervous system [CNS] malignan-

cies) and a diagnosis of ischemic stroke within a 2-year window before and after their cancer

diagnosis. The list of cancer subtypes searched for are outlined in S1 Table in S1 File. Patients

with non-melanoma skin cancers (i.e. squamous or basal cell carcinoma) were excluded due to

their favourable prognoses. Primary CNS malignancies were excluded because of the potential

for misdiagnoses of acute vascular events in the context of tumours on neuroimaging [12].

The two-year window was chosen because there appears to be an elevated risk for arterial

thromboembolism in patients with cancer up to 24 months after a new diagnosis of cancer; the
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cumulative incidence curves for ischemic stroke start to cross over at 24 months [13]. There is

also an increased risk for stroke as early as two years before a cancer diagnosis, peaking around

the time of diagnosis [14]. Therefore, the two-year period immediately preceding and subse-

quent to a diagnosis of cancer was broadly chosen to be comprehensive and inclusive of all

strokes potentially related to a cancer diagnosis.

The second patient cohort consisting of ischemic stroke patients without a history of cancer

was created using administrative coding for “ischemic stroke”. All patients with ischemic

stroke and no record of any malignancy documented in their chart were included for analysis.

Stroke encounters were identified using International Classification of Diseases 10th edition

(ICD-10) codes. The list of codes can be found now in S3 Table in S1 File. For Emergency

Department visits, encounters were only included if stroke was the “most responsible diagno-

sis” associated with the visit. For hospitalizations, encounters were included if ischemic stroke

was defined as the “primary problem”.

Outcomes

Covariates included for analysis include baseline patient demographics including age, sex,

Charlson Comorbidity Index (CCI), presence of vascular risk factors, history of ischemic and

hemorrhagic stroke, and history of venous thromboembolism. We also included biochemical

information such as blood glucose at time of stroke presentation. Outcomes of interest

included the proportion of patients receiving intravenous thrombolysis and the proportion of

patients who underwent thrombectomy. We also analyzed the total cost associated with each

stroke encounter. Information regarding costs were available for all inpatient encounters from

April 2002, and for ED encounters, from April 2011. Direct costs were defined as all expenses

in direct functional centers related to patient care, including salaries, supplies, and equipment

amortization. Indirect costs included overhead allocation based on the percentage of the activ-

ity in the functional center, and consisted of costs not directly related to the patient, such as

human resources, finance, health records, administration fees, building maintenance, etc.

Mortality was captured from documented deaths in our administrative database. The primary

outcome of interest for the cancer cohort was recurrent ischemic stroke at least 14 days after

the reference event. This definition was chosen because exploratory analyses conducted using

the definition “any recurrent ischemic stroke” demonstrated erroneously high rates of recur-

rent stroke in both cohorts, likely a reflection of error in administrative coding due to dupli-

cate encounters created for the same presentation.

Statistical analysis

First, we described the cancer and non-cancer cohorts using descriptive statistics. We com-

pared statistical properties of the cancer cohort generated by MDClone (synthetic cohort) to

the cohort obtained from TOH Data repositories (real-patient cohort). Normality of distribu-

tion was assessed using histograms; results with a normal distribution were compared using

parametric tests for between-group comparisons (i.e. t-test for continuous outcomes and chi-

squared test for dichotomous outcomes). Categorical variables were compared using the two-

sample t-test. Non-parametric tests were performed for values with non-normal distribution,

as appropriate.

We used a binary, multivariable logistic regression model to identify risk factors for recur-

rent stroke in cancer patients. Variables assessed for inclusion in the model included: sex, age,

hypertension, coronary artery disease, chronic obstructive pulmonary disease, diabetes melli-

tus, dyslipidemia, history of ischemic stroke, atrial fibrillation, venous thromboembolism, and

Charlson Comorbidity Index (CCI). Age was an ordinal variable that we recategorized into 5
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subgroups: <50, 50–59, 60–69, 70–79, and�80. We first performed exploratory univariate

analyses to determine associations between candidate variables and the primary outcome,

using “any recurrent ischemic stroke” for the purpose of comparing synthetic data to real

patient data. We then used a backwards selection, stepwise approach to evaluate the impor-

tance of individual covariates for inclusion in the final multivariable logistic regression model

using the likelihood ratio test, set at a p value of<0.10 for covariate inclusion. Important col-

linearity was assessed with variance inflation factor (VIF) values. All statistical analyses were

performed using SPSS v27.0, (IBM, Armonk, NY).

Results

Objective 1

In total, we included 10,900 synthetic patients from datasets for analysis, with 1,275 subjects in

the cancer cohort and 9,625 in the non-cancer cohort. The baseline patient characteristics and

demographics are listed in Table 1. There was no difference between the cancer and non-can-

cer cohorts in the age of presentation at the time of their ischemic stroke: 73.0±12.0 in the can-

cer cohort vs 73.6±12.6 in the non-cancer cohort (p = 0.18). There was a higher proportion of

males in the cancer cohort (55.2% vs 44.7%, p<0.0001). We found no substantial difference in

the proportion of patients with diabetes, dyslipidemia, history of hemorrhagic stroke, transient

ischemic attack (TIA), atrial fibrillation, or coronary artery disease (Table 1). However, there

was a lower prevalence of hypertension (52.0% in the cancer cohort vs 57.7% in the non-cancer

cohort, p<0.0001), and a higher prevalence of chronic obstructive pulmonary disease (COPD:

8.5% vs 4.7%, p<0.0001), prior ischemic stroke (1.7% vs 0.1%, p<0.001), and prior venous

thromboembolism (VTE: 8.2% vs 1.5%, p<0.0001).

The distribution of cancer types included in the cancer and ischemic stroke cohort are out-

lined in S2 Table in S1 File. The most frequent cancer diagnosis was lung cancer, which was

present in 242/1275 patients (19.0%). The next most frequent cancer type were secondary

malignancies, defined as any malignancy that has emerged as a consequence of prior treatment

for another primary malignancy [15, 16]. Together with colorectal cancer (152/1275), bladder

cancer (95/1275), and immunoproliferative disease (87/1275), these five subtypes of cancer

made up 59.5% of the included patients. Of note, there were 6.2 of patients whose primary can-

cer site was unspecified, and 6.3% of patients that had their cancer type censored by MDClone.

There were similar proportions of patients that received acute treatments for their ischemic

stroke between the cancer and non-cancer cohorts: 1.4% of patients in the cancer cohort

received IV thrombolysis compared to 1.7% in the non-cancer cohort (p = 0.36). Similarly,

2.0% of patients in the cancer cohort underwent endovascular thrombectomy compared to

2.5% in the non-cancer cohort (p = 0.21). The median length of stay was noted to be longer in

the cancer cohort: 8 days (IQR 3–16) vs 6 days (IQR 3–13), (p = 0.011). Overall, costs associ-

ated with the stroke encounter were significantly higher for cancer patients compared to non-

cancer patients: $11,498 (IQR $4,440 –$20,668) vs $8,084 (IQR $3,947 –$16,706), respectively

(p = 0.0061). We also calculated the median and average costs associated with stroke encoun-

ters for each year between 2005–2019 and adjusted the costs for inflation based on the 2022

Canadian consumer price index [17]. The average costs associated with encounters in the can-

cer and stroke cohort was consistently higher compared to encounters in the non-cancer and

stroke cohort (S4 Table in S1 File). The rates of recurrent ischemic stroke were similar between

the two cohorts: 11.9% in the cancer cohort and 12.1% in the non-cancer cohort (p = 0.86).

Lastly, a higher proportion of patients died in the cancer cohort: 36.5% compared to 13.6% in

the non-cancer cohort (p<0.0001).
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Objective 2

MDClone generated a synthetic dataset of 1,275 patients with cancer and ischemic stroke,

compared to 1,246 patients from the Ottawa Hospital Data Warehouse. Table 2 summarizes

the clinical variables obtained from both the synthetic and original datasets. Most summary

statistics were similar between the two datasets, including the proportions of patients with

comorbidities, proportions of patients receiving acute treatments, and proportion of patients

with mortality or recurrent stroke outcomes. The mean age at cancer diagnosis in the synthetic

dataset was 72.9±12.0 years, compared to 72.4±12.1 in the original dataset (p = 0.30); the mean

age at stroke diagnosis was similar also (73.0±12.0 vs 72.6±12.0, p = 0.40). Fig 1 displays the

histograms of the frequencies of age at cancer diagnosis. While the distributions were relatively

normal in both datasets, there were visibly less outliers in the synthetic dataset; the resulting

histogram has a slight left-sided skew (Fig 1A). The only other difference noted between the

two cohorts was the timing of when recurrent stroke occurred: the synthetic cohort reported a

median of 25.4 days (18.8–25.4), while the original cohort found a median of 30.3 days (20.5–

76.6), although this was not statistically significant (p = 0.078).

Using the synthetic dataset produced by MDClone, we identified 5 predictors of the pri-

mary outcome “recurrent ischemic stroke after the reference event” with a binary logistic

regression model. Older age, a history of ischemic stroke, and dyslipidemia were found to be

positive predictors of the outcome, while atrial fibrillation and a history of venous thromboem-

bolism were negative predictors (Table 3). Using the original dataset, we identified 3 predictors

of recurrent stroke: atrial fibrillation and venous thromboembolism were consistently found

Table 1. Baseline demographics, treatment characteristics, and outcomes for cancer patients diagnosed with ischemic stroke within a 2-year period compared to

patients with ischemic stroke and no history of malignancy. Data is synthetic and generated from MDClone.

Cancer Patients with ischemic stroke Non-Cancer Patients with ischemic stroke P-Vaues

Number of patients N = 1275 N = 9625

Age: cancer diagnosis (mean ±SD) 72.9±12.0 N/A —

Age: stroke diagnosis (mean ±SD) 73.1±12.0 73.6±12.6 0.18

Male sex (n, %) 704 (55.2%) 4304 (44.7%) <0.0001

Hypertension 663 (52.0%) 5556 (57.7%) <0.0001

Diabetes 354 (27.8%) 2787 (29.0%) 0.38

Hyperlipidemia 61 (4.8%) 584 (6.1%) 0.068

COPD 108 (8.5%) 455 (4.7%) <0.0001

Ischemic Stroke 22 (1.7%) 13 (0.1%) <0.0001

Hemorrhagic Stroke 23 (1.8%) 234 (2.4%) 0.17

Atrial Fibrillation 289 (22.7%) 1945 (20.2%) 0.041

Coronary Artery Disease 157 (12.3%) 1434 (14.9%) 0.014

Previous Venous Thromboembolism 105 (8.2%) 143 (1.5%) <0.0001

Charlson Comorbidity Index (median, IQR) 1.0 (0.0–2.0) 1.0 (1.0–1.0) 0.97

Initial Glucose (mmol/L) (median, IQR) 6.4 (5.7–7.8) 6.8 (5.6–8.6) 0.022

Received Intravenous tPA 17 (1.4%) 162 (1.7%) 0.36

Received Thrombectomy 25 (2.0%) 244 (2.5%) 0.21

Length of stay (days; median, IQR) 7.65 (3.11–15.86) 6.09 (2.81–12.75) 0.011

Total cost of encounter (CAD; median, IQR) $11,497.78 (4439.85–20,668.41) $8084.24 (3947.40–16,706.04) 0.0061

Outcomes

Recurrent ischemic stroke after 14 days 152 (11.9%) 1163 (12.1%) 0.86

Timing of recurrent IS after 14d (days; median, IQR) 25.4 (18.8–48.2) 26.4 (18.5–64.5) 0.49

Deaths 465 (36.5%) 1313 (13.6%) <0.0001

https://doi.org/10.1371/journal.pone.0295921.t001
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to be negative predictors of the outcome, with similar adjusted odds ratios compared to syn-

thetic data (aOR 0.67 [95%CI 0.49–0.91] from synthetic data compared to 0.71 [95%CI 0.52–

0.97] from original data for atrial fibrillation; aOR 0.51 [95%CI 0.31–0.85] from synthetic data

compared to 0.43 [95%CI 0.25–0.72] from original data for venous thromboembolism). Dysli-

pidemia was similarly identified as a positive predictor of the outcome (aOR 1.89 [95%CI

1.09–3.27] from synthetic data compared to 1.82 [95%CI 1.06–3.13] for original data). There

was no significant association between age or prior ischemic stroke with the outcome–in

exploratory analyses, the p-values from their likelihood ratio tests were >0.1, and therefore

they were not included in the final regression model. The Cox & Snell R2 value for both final

logistic regression models were low: 0.026 for the synthetic dataset and 0.017 for the original

dataset; suggesting that only approximately 2.6% of the variation in our primary outcome can

be attributed to the predictors in our model.

Discussion

Using synthetic data, we were able to demonstrate that cancer patients with ischemic stroke

have a lower prevalence of hypertension, and a higher prevalence of baseline COPD, previous

ischemic stroke, and prior venous thromboembolism (VTE) than non-cancer patients. While

their rates of receiving acute reperfusion therapies were similar compared to non-cancer

patients with ischemic stroke, the cancer and stroke cohort had a significantly longer length of

stay and higher costs than non-cancer individuals with stroke. The accuracy of these findings

Table 2. A comparison of the baseline characteristics and outcomes between the synthetic dataset generated from MDClone and real patient dataset for a cohort of

stroke patients with a diagnosis of cancer at the Ottawa Hospital.

Cancer patients with ischemic stroke

(Synthetic)

Cancer patients with ischemic stroke (Original

dataset)

P-Value

Number of patients N = 1275 N = 1246

Age: cancer diagnosis (mean ±SD) 72.9±12.0 72.4±12.1 0.30

Age: stroke diagnosis (mean ±SD) 73.0±12.0 72.6±12.0 0.40

Male sex 704 (55.2%) 688 (55.2%) 1.00

Hypertension 663 (52.0%) 654 (52.5%) 0.81

Diabetes 354 (27.8%) 347 (27.9%) 0.96

Hyperlipidemia 61 (4.8%) 61 (4.9%) 0.90

COPD 108 (8.5%) 105 (8.4%) 0.97

Ischemic Stroke 22 (1.7%) 22 (1.8%) 0.94

Hemorrhagic Stroke 23 (1.8%) 23 (1.9%) 0.94

Atrial Fibrillation 289 (22.7%) 283 (22.7%) 0.98

Coronary Artery Disease 157 (12.3%) 155 (12.4%) 0.92

Previous Venous Thromboembolism 105 (8.2%) 104 (8.4%) 0.92

Charlson Comorbidity Index (median, IQR) 1.0 (0.0–2.0) 1 (0–2) 0.39

Initial Glucose (mmol/L) (median, IQR) 6.4 (5.7–7.8) 6.4 (5.5–8.2) 0.86

Received Intravenous tPA 17 (1.4%) 17 (1.4%) 0.95

Received Thrombectomy 25 (2.0%) 23 (1.8%) 0.83

Length of stay (days; median, IQR) 7.7 (3.1–15.9) 7.6 (3.6–15.9) 0.88

Total cost of encounter (CAD; median, IQR) $11,498 ($4,440 –$20,668) $11,426 ($4,361–21,939) 0.95

Outcomes

Recurrent ischemic stroke after 14 days 152 (11.9%) 147 (11.8%) 0.92

Timing of recurrent IS after 14d (days; median,

IQR)

25.4 (18.8–48.2) 30.3 (20.5–76.7) 0.078

Deaths 465 (36.5%) 449 (36.0%) 0.82

https://doi.org/10.1371/journal.pone.0295921.t002
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was confirmed via a comparison of the synthetic cancer cohort to the original patient data

from TOH Data Repositories. No differences were noted in summary statistics between syn-

thetic and real patient datasets other than minor differences in the distribution of synthetic

data to real-patient data. Our prediction model for recurrent ischemic stroke in cancer patients

with stroke had similarly poor performances using synthetic and original data, with low R2 for

both final models. Five predictors were identified using synthetic data, three of which were

Fig 1. Histograms of the distribution of age at cancer diagnosis in the synthetic dataset (A) and the original dataset (B).

https://doi.org/10.1371/journal.pone.0295921.g001
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also identified using original data and all had similar adjusted odds ratios. Overall, synthetic

data produced similar patterns and results compared to the original data, and supports the use

of synthetic data in cerebrovascular and cancer health research.

Objective 1: Stroke in cancer patients vs stroke in non-cancer patients

There is conflicting evidence regarding the prevalence of traditional vascular risk factors in

cancer vs non-cancer patients with ischemic stroke, with some studies reporting a higher prev-

alence in non-cancer patients, and others not finding a difference [18–20]. We believe that

these differences may reflect the effect modification of age on the relationship between cancer

and stroke and the variations in age across these study populations. In a large cross-sectional

study of 86,809 adult patients, we demonstrated that the association between cancer and stroke

was only significant in younger adults (defined as<40 years of age), and the association was

stronger in those without conventional risk factors such as hypertension [21]. In this current

study, the prevalence of hypertension was again found to be lower in cancer patients than

non-cancer patients, which may suggest unique relationship between hypertension and stroke

in cancer patients specifically. The average age at time of stroke diagnosis was 73 for both the

cancer and non-cancer cohorts, with similar proportions of other vascular risk factors

reported, likely reflecting the increased prevalence of these conditions with age.

The rates of reperfusion therapy provided in Ontario were reported to be 15% in 2019/

2020: 12% of ischemic stroke patients received IV thrombolysis with tissue plasminogen acti-

vator (tPA) and 5% underwent endovascular thrombectomy (EVT) [22]. The higher propor-

tion of patients receiving acute reperfusion therapies compared to our study period (i.e. 2001–

2019) is likely a reflection of the recently implemented guidelines for endovascular thrombect-

omy and the extended time window for reperfusion [23–26]. Evidence for thrombectomy did

not come out until 2015, when five randomized controlled trials demonstrated overwhelming

efficacy of thrombectomy for large vessel occlusions [25]. In the current study, we did not find

a difference in the rates of acute reperfusion therapies provided between the cancer and non-

cancer cohorts, and this is disparate from previously published studies that found cancer

patients are less likely to get reperfusion therapies than non-cancer patients [27, 28]. We

believe our results should be interpreted cautiously given the low number of patients receiving

reperfusion therapies, particularly in the cancer cohort.

Overall, costs were significantly higher for the cancer cohort compared to the non-cancer

cohort; this was true for both direct and indirect costs associated with the stroke encounter.

For patients with known cancer, this increased cost may be related to more investigations pur-

sued for the purpose of cancer staging, which may guide conversations around goals of care

and prognosis. It is also possible that cancer was diagnosed during the workup for stroke,

which may also contribute to higher costs in this cohort. In patients with embolic stroke of

Table 3. Final logistic regression model for the association between covariates and recurrent stroke in the cancer

and stroke cohort using synthetic and real patient datasets. Only covariates meeting requirement for inclusion with

likelihood ratio test (p<0.10) are included. Measures of association are reported as adjusted Odds Ratios (aOR) with

95% confidence intervals (95%CI).

Predictors Synthetic Dataset Real Patient Dataset

Age by decade (reference: <50 years) 1.16 (95%CI 1.04–1.30) ---

Ischemic stroke 2.57 (95%CI 1.07–6.18) ---

Atrial fibrillation 0.67 (95%CI 0.49–0.91) 0.71 (95%CI 0.52–0.97)

Venous thromboembolism 0.51 (95%CI 0.31–0.85) 0.43 (95%CI 0.26–0.72)

Dyslipidemia 1.89 (95%CI 1.09–3.27) 1.82 (95%CI 1.06–3.13)

https://doi.org/10.1371/journal.pone.0295921.t003
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undetermined significance (ESUS), between 5–10% of patients go on to receive a diagnosis of

cancer from their workup [29–31]. Cancer patients are also at higher risk for in-hospital com-

plications, including bleeding, development of venous thromboembolism, and infections [32,

33]. Furthermore, those with limited life expectancies related to their cancer diagnosis may not

be a candidate for rehabilitation services related to their stroke, which may also contribute to a

longer length of stay and higher costs.

Objective 2: Use of synthetic data

We demonstrated that variables derived from synthetic data were comparable to real-patient

data in terms of basic statistical properties, other than slight differences in the distributions of

frequencies for numeric data, likely due to MDClone’s automatic removal of outliers from the

synthetic dataset. In the multivariable model, 3/5 predictors were identified with similar odds

ratios but two were not identified in the real patient dataset. Several studies have been pub-

lished using synthetic data produced by MDClone, suggesting the growing recognition and

support for its use amongst the scientific community [8, 34]. We were able to find three previ-

ous studies that compared synthetic data produced by MDClone to original data [7, 9, 35]. All

three studies found that results derived from synthetic data were representative of real data in

terms of basic descriptive statistical properties. For variables with large patient numbers, there

were highly accurate and strongly consistent results observed compared to original data, but in

the context of large missingness of data or small patient numbers, the results of synthetic data

were less reliable [7, 35]. One study found that for smaller population studies that evaluated

confounders and effect modifiers in multivariable regression models, clear trends were still

correctly observed with synthetic data, although the predictions were of moderate accuracy

compared to original data [35]. This is in line with the findings from our current study–we

believe that the reason previous ischemic stroke was found to be a predictor with synthetic

data but not the real dataset is related to the low proportion of patients with this diagnosis:

only 22 patients were identified to have a history of ischemic stroke in both the synthetic and

original datasets. The high missingness of data would render this covariate unreliable, which is

further supported by the wide confidence interval for its adjusted odds ratio (aOR 2.57, 95%CI

1.07–6.18). The other covariate that was identified with the synthetic dataset but not original

was age categorized by decades, which may be related to skewing of data related to the auto-

matic removal of outliers by MDClone (Fig 1) and the proximity of the lower 95% CI to 1. A

previous study also found that low sample size, highly irregular distributions, and high sparsity

of data can all affect the data synthesis process and the interpretability of synthetic data [7].

We believe that MDClone is a useful adjunctive tool for clinical research using administra-

tive databases. The advantages to this synthetic data platform are particularly evident during

the early stages of a research inquiry, as it allows the investigator to easily explore project feasi-

bility. This includes being able to predict the scope of a study population, generating hypothe-

ses, and exploring relationships between covariates before applying for ethics approvals. Its

deidentified nature also allows for data sharing between institutions, without concern for

patient privacy breaches. However, this platform is not without limitations. We were able to

demonstrate that while most properties of descriptive statistics were maintained between origi-

nal and synthetic data, significant proportions of missing data and automatic elimination of

outliers may affect results. There were also some automatically calculated variables (i.e. the

Charlson Comorbidity Index), where the individual components of the score could not be

individually analyzed. Categorical variables may be subject to censoring if an indirect request

for numeric values cannot be made, rendering statistical analysis challenging due to a high

proportion of missing data. Therefore, the utility of MDClone may be during the early,
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hypothesis-generating stage of a research project; a robust and complete dataset with reliable

variable derivation methods may require access to original data. Lastly, the accuracy of syn-

thetic data is only as reliable as the administrative database it derives its information from. Pit-

falls related to the use of administrative data for healthcare research are beyond the scope of

this report, but common criticisms pertaining its use include misclassification bias, coding

inaccuracies, lack of reliable, timed follow-up, and lack of quality control of data [6, 36, 37].

Conclusion

Using synthetic data, we were able to demonstrate that cancer patients with ischemic stroke

differ from non-cancer patients with ischemic stroke in terms of baseline demographics, lon-

ger average lengths of stay, and higher average costs associated with their stroke encounter.

These results were confirmed by comparing synthetic data to original administrative data. Syn-

thetic data is a powerful tool that can allow researchers to easily explore hypothesis generation,

enable data sharing without privacy breaches, and ensure broad access to big data in a rapid,

safe, and reliable fashion.
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