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Self-Supervised Learning Improves Accuracy and
Data Efficiency for IMU-Based Ground Reaction

Force Estimation
Tian Tan, Peter B. Shull*, Member, IEEE, Jenifer L. Hicks, Scott D. Uhlrich, and Akshay S. Chaudhari

Abstract—Objective: Recent deep learning techniques hold
promise to enable IMU-driven kinetic assessment; however, they
require large extents of ground reaction force (GRF) data to serve
as labels for supervised model training. We thus propose using
existing self-supervised learning (SSL) techniques to leverage
large IMU datasets to pre-train deep learning models, which
can improve the accuracy and data efficiency of IMU-based
GRF estimation. Methods: We performed SSL by masking a
random portion of the input IMU data and training a transformer
model to reconstruct the masked portion. We systematically
compared a series of masking ratios across three pre-training
datasets that included real IMU data, synthetic IMU data, or
a combination of the two. Finally, we built models that used
pre-training and labeled data to estimate GRF during three
prediction tasks: overground walking, treadmill walking, and
drop landing. Results: When using the same amount of labeled
data, SSL pre-training significantly improved the accuracy of
3-axis GRF estimation during walking compared to baseline
models trained by conventional supervised learning. Fine-tuning
SSL model with 1–10% of walking data yielded comparable
accuracy to training baseline model with 100% of walking data.
The optimal masking ratio for SSL is 6.25–12.5%. Conclusion:
SSL leveraged large real and synthetic IMU datasets to increase
the accuracy and data efficiency of deep-learning-based GRF
estimation, reducing the need for labeled data. Significance: This
work, with its open-source code and models, may unlock broader
use cases of IMU-driven kinetic assessment by mitigating the
scarcity of GRF measurements in practical applications.

Index Terms—Inertial measurement unit, machine learning,
SSL, wearable sensing, kinetics.

I. INTRODUCTION

B IOMECHANICAL assessment of human movement is
important for ascertaining human health. Kinetics during

locomotion can be used to predict injury risk and assess
rehabilitation outcomes. For example, ground reaction forces
(GRF) during a sit-to-stand task can provide insights into
rehabilitation outcomes after hip injury [1], and knee adduction
and flexion moments during walking have been associated with
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knee osteoarthritis [2]–[4]. Additionally, GRF patterns during
drop landing, where participants step off an elevated platform
and land on the ground, are associated with several lower-
extremity injuries [5], [6].

Despite the value of estimating kinetics, measurement of
GRF and joint moments typically requires gold standard
measurements from force plates and marker-based motion
capture. However, these devices are expensive, require trained
personnel to operate, and confine the measurement environ-
ment. Consequently, such challenges associated with acquiring
kinetic data limit the accessibility of biomechanical assessment
and prevent translation of biomechanical studies to larger and
diverse populations.

Using wearable sensors to monitor kinetic parameters in
natural environments represents a promising opportunity for
moving disease characterization, prevention, and rehabilitation
assessment into real-world settings [7]. Inertial measurement
units (IMUs) are a practical choice for out-of-lab assessment
due to their low cost and small form factor. IMUs typically
measure acceleration and angular velocity (and magnetic field
in some scenarios), which can directly be used to derive body
segment orientation for subsequent kinematic estimation.

Prior studies have combined physics-based models and
optimization methods to estimate kinetics from IMU data
[8]–[10]. However, optimization methods require a relatively
high computation time and depend on task-specific movement
objectives (e.g., minimizing energy, maximizing speed) [11],
[12]. Apart from physics-based models, other studies have
attempted to employ deep learning models that directly map
IMU data to kinetic parameters in an end-to-end manner [13]–
[15]. To train these models, previous studies have collected
synchronized IMU, GRF, and marker-based motion capture
data during hundreds of minutes of walking and running on
treadmills equipped with force plates. The GRF and marker
data then serve as “labels” to train models using conventional
supervised learning. However, collecting these “labels” in
large quantities to train accurate deep learning models is
not always feasible for motions beyond treadmill gait. For
overground walking, since GRF data is typically collected
via one to three floor-embedded force plates, each trial often
yields only one or several steps with “labels”. The scarcity of
data also holds true for a variety of other motions including
sprinting, cutting, and jumping [16].

Self-supervised learning (SSL) may be used to pre-train
deep learning models to mitigate the challenge of data scarcity
[17]–[19]. It may also improve models’ robustness to noisy

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2024. ; https://doi.org/10.1101/2023.10.25.564057doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.25.564057
http://creativecommons.org/licenses/by/4.0/


IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2

TABLE I
TWO DATASETS FOR SSL PRE-TRAINING AND THREE DATASETS FOR DOWNSTREAM EVALUATION.

Type Ref. (name) Motion # of Participantsa # of Windows a, b

Pre-training Datasets [23] (MoVi) 21 motions including walking 90 14,418
[24] (AMASS) 100+ motions including walking 500 713,828

Downstream Datasets
[25] Overground walking 19 510
[26] Treadmill walking 17 23,481
[27] Drop landing 15 509

a The pre-training datasets have more participants as well as comparable or more windows than downstream evaluation datasets.
b Each window is a model input segmented from original trials.

data [20] and distribution shifts where the distribution of model
training data differs from that of testing data [21]. SSL aims
to pre-train deep learning models by designing model pre-
training tasks that are solely based on “unlabeled” data. One
widely used pre-training task is masking and reconstruction,
where a random portion of the input data is masked and
the model is trained to learn the data representation by
reconstructing the masked portion. When limited “labeled”
data is available for a downstream prediction task of interest,
representations learned from pre-trained models can enhance
the training process, and lead to better performance than
conventional supervised learning with randomly initialized
parameters. SSL with masking and reconstruction has facil-
itated the training of powerful language models [17], [22],
vision models [18], and multi-modal models [19]. However,
it is unknown whether SSL with masking and reconstruction
can learn IMU representations that improve performance on
downstream tasks of estimating kinetics. Additionally, unlike
the fields of natural language and vision, the optimal pre-
training dataset and strategy for this IMU-based application
remain unclear.

The aim of this paper is to use existing SSL techniques to
improve the accuracy and data efficiency of an IMU-driven
deep learning model, and open source it on GitHub. We first
investigated the optimal SSL strategy using a large “unlabeled”
dataset of 500 participants with real and synthetic IMU data.
We then compared the performance and data efficiency of SSL
pre-trained models on estimating GRF compared to baseline
models whose parameters are randomly initialized following
conventional supervised learning. We first estimated GRF on
overground and treadmill walking datasets, which was within
the distribution of the SSL pre-training datasets. Then, we
estimated GRF on a drop landing dataset, which is not present
in the pre-training dataset. To facilitate broader usage and
reproduction of work, we make our framework broadly usable
by releasing our source code and trained models.

II. METHODS

A. Pre-training Datasets

We used three datasets for our SSL pre-training: real IMU
data [23], synthetic IMU data [24], and a fused dataset
combining them both (Table I). The real IMU dataset has 17
IMUs, and we used eight of them that were placed on the trunk
and pelvis, as well as both thighs, shanks, and feet. For the
synthetic IMU dataset, we generated data on the same eight

Fig. 1. Locations and orientations of eight synthetic IMUs generated from
the AMASS dataset. Red arrows, green arrows, and blue dots represent x-,
y-, and z-axes of IMUs, respectively.

body segments. Each IMU has a 3-axis accelerometer and a
3-axis gyroscope. The z-axes of the IMUs were aligned with
the segment surface normal, x-axes were pointing left during
standing, and y-axes were perpendicular to the x- and z-axes
following the right-hand rule (Fig. 1).

1) Real IMU: This dataset is based on MoVi, a public
human motion dataset with 90 participants who performed a
collection of 21 everyday actions and sports movements such
as walking, vertical jumping, and throwing [23]. Participants
wore a 17-IMU suit that operated at 120Hz (Noitom, China).
We linearly resampled each trial from 120Hz to 100Hz and
then segmented it into windows of 128 time steps (1.28s each)
with 50% overlap (0.64s) between successive windows. We
excluded 18,760 (56.5%) windows in which participants were
standing or sitting still, when the average standard deviation
of all accelerometer axes was smaller than 0.2m/s2. In total,
we obtained 14,418 windows and randomized their order for
pre-training.

2) Synthetic IMU: This dataset is based on AMASS, a
large-scale, public human motion archive involving 500 par-
ticipants [24]. AMASS unifies 23 existing motion capture
datasets that have different marker sets, sampling frequencies
ranging from 59–120Hz, and a variety of motions, with walk-
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ing being one of the most common motions. Using kinematics
to generate synthetic IMU data is a widely-used method for
augmenting the volume of training data [28]–[31]. To generate
synthetic IMU data, we low-pass filtered the joint angles and
positions of each trial at 15Hz using a zero-lag, fourth-order
Butterworth filter and resampled the filtered data to 100Hz.
Subsequently, for each trial, we placed eight synthetic IMUs
on their corresponding body segments (Fig. 1) five times
with five different randomly generated orientation variations.
Specifically, for each orientation variation, each of the eight
IMUs is rotated by three random angles (within ±10deg)
along the x, y, and z axes, respectively. Then, we generated
synthetic IMUs’ positions and orientations via forward kine-
matics using a prior pipeline [32]. Synthetic angular velocities
were computed by taking the first derivative of orientation,
whereas synthetic accelerations were computed by taking
the second derivative of positions and incorporating gravity.
Similar to the MoVi dataset pre-processing, we segmented
the synthetic IMU data into windows of 128 time steps with
50% window overlap. We excluded 853,139 (54.0%) windows
whose average acceleration was smaller than 0.2m/s2. We
also excluded 12,408 (0.8%) windows that contained abnor-
mally large synthetic acceleration or angular velocity with
thresholds of 160m/s2 and 2000deg/s, respectively, which
were determined based on measurement ranges of typical
IMUs (MPU-9250, Invensense, USA and BHI-160, Bosch
Sensortec, Germany). In total, we obtained 713,828 windows
and randomized their order for SSL.

3) Real and Synthetic IMU: This dataset combines real
IMU data and synthetic IMU data described above, resulting
in a total of 728,246 windows. Such a data dataset has the
potential to leverage the benefits of a substantial data scale as
well as authentic sensor noise representations.

B. Downstream Datasets
We evaluated the performance of IMU representations from

SSL pre-training in estimating GRFs for three different tasks,
with corresponding datasets of synchronized IMU and GRF
data: overground walking [25], treadmill walking [26], and
drop landing [27]. The medial-lateral GRF (mlGRF), anterior-
posterior GRF (apGRF), and vertical GRF (vGRF) of the right
leg were used as the estimation target for all three tasks.

The IMU-to-segment position placements of downstream
datasets do not need to be identical to those of the pre-
training dataset (Fig. 1), as a prior study found that posi-
tion variations within 100 mm may not substantially influ-
ence the accuracy of machine-learning-based GRF estimation
models [29]. Meanwhile, for orientation placement, the real
IMU dataset for pre-training has natural human-introduced
placement variation while the synthetic IMU dataset for pre-
training has ±10deg orientation variations. Still, we assumed
the following orientation placement convention: one of their
surfaces aligned to the body surface and one of their edges
aligned with the segment’s long axis. We manually verified
whether the orientation placement conventions of each dataset
are consistent with the assumed alignment. If not, we rotated
IMUs along axes by multiples of 90 deg to match the assumed
alignment.

1) Overground Walking [25]: The original dataset contains
19 participants walking on stairs, ramps, treadmills, and level
ground at various speeds, but we only used level-ground
walking data to build the model to estimate GRF. The input
IMU data are collected at 200Hz from four IMUs (Yost, USA)
placed on the torso and right thigh, shank, and foot. GRF
was measured by force plates (Bertec, USA) at 1,000Hz and
low-pass filtered at 15Hz. We downsampled the synchronized
IMU and GRF data to 100Hz to match that of the pre-
training datasets. Each trial has three gait cycles with gold-
standard GRF measurements. We extracted these gait cycles
using windows of 128 time steps, starting at 40 samples before
the stance phases. In total, there are 510 windows available for
model training and evaluation.

2) Treadmill Walking [26]: This dataset includes 17 par-
ticipants walking on an instrumented treadmill with various
speeds, foot progression angles, trunk sway angles, and step
widths. Eight 8 IMUs (SageMotion, USA) were placed on
the trunk, pelvis, and both thighs, shanks, and feet to collect
data at 100Hz. The GRF of the right leg is measured by an
instrumented treadmill (Bertec, USA) at 1,000Hz, low-pass
filtered at 15Hz, and downsampled to 100Hz. For each trial,
continuous walking data were segmented into windows of 128
time steps with 50% overlap. We retained all data windows
because GRF is measured by treadmill-embedded force plates
throughout the entire trial. In total, there were 23,481 windows
available for model training and evaluation.

3) Drop Landing [27]: This dataset includes 15 participants
performing double-leg drop landing trials from a 30-cm-high
box with various toe-out angles. Eight IMUs (Xsens, The
Netherlands) were placed on the trunk, pelvis, and both thighs,
shanks, and feet to collect data at 100Hz. The GRF of the right
leg was measured by a floor-embedded force plate (AMTI,
USA) at 1,000Hz, low-pass filtered at 15Hz, and downsampled
to 100Hz. Each trial contains 0.8s of data starting at the
moment of jumping, corresponding to 80 time steps. We
appended zeros to the end of each trial to match the input
length of our transformer. We retained all the trials that were
successfully collected. In total, we obtained 509 windows from
509 drop landing trials for model training and evaluation.

C. Model Architecture

We built a transformer model to learn IMU representations
during pre-training (Fig. 2(a)). The transformer’s input is a
window of IMU data with 128 samples and 48 IMU axes
(eight 3-axis accelerometers and eight 3-axis gyroscopes). We
first normalized each IMU axis by removing the mean and
scaling to unit variance. Then, the 128 samples were sliced
into patches and the values of each patch were flattened.
We randomly masked a portion of patches with a trainable
masking patch that is updated during the training process. The
masking ratio is a critical parameter in SSL, and it depends on
the patch length of transformers. We performed a grid search
to jointly optimize the masking ratio (6.25%, 12.5%, 12.5%,
25%, 37.5%, 50%, and 62.5%) and the patch length (1, 2,
4, and 8). After masking, we linearly mapped each patch
to a vector of length 192 and added sinusoidal positional
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Fig. 2. Self-supervised IMU representation learning to boost downstream prediction tasks. (a) Continuous IMU data are segmented into windows, sliced into
patches, randomly masked, and finally fed into a transformer model to reconstruct the original data window. (b) The weights and biases of the self-supervised
transformer were copied to initialize those of the transformer for downstream evaluation. A linear layer was appended to the transformer to map the transformer
outputs to the final model outputs. During fine-tuning, we optimized the linear layer first and then fine-tuned the entire model to prevent distortion of pre-trained
IMU representations [33], [34]. The fine-tuning data preprocessing steps are identical to those used in SSL, except for the exclusion of masking.

encoding [35]. Then, the data was fed into the transformer
model, generating an output with dimensions identical to the
input. Each output patch was linearly mapped to the original
patch size (patch length × 48 IMU axes) to reconstruct the
unmasked input data. The transformer was trained to minimize
the mean squared error between the reconstructed data and the
unmasked input data over the masked patches. The transformer
has six self-attention blocks, with a per-block configuration of
8 attention heads, 512 feedforward units, 10% dropout, 10−5

layer normalization, and rectified linear unit (ReLU) activation
function. The total number of trainable parameters is 2 million.

The model for downstream prediction tasks (i.e., estimating
3-axis GRF) has the same architecture as the one used in pre-
training (Fig. 2(b)). Both IMU and GRF data are normalized
along each axis by removing the mean and scaling to unit
variance. The output of each patch was linearly mapped to
GRF. The data pre-processing steps are identical to those
in pre-training except that no patch is masked. For each
downstream task, we investigated the performance of three
pre-trained models whose parameters are inherited from SSL
pre-training on the three different pre-training datasets.

The proposed model uses data from eight IMUs as input
(Fig. 1). For downstream tasks that used a smaller IMU set
(e.g., overground walking [25]), we substituted each omitted

IMU with a randomly initialized, trainable data patch that is
updated during the training process. Prior studies reported high
GRF estimation accuracy using a single foot-worn IMU [36],
[37]. Thus, we trained additional models using solely the IMU
data from the right foot, in addition to the models trained with
data from all IMUs.

D. Baseline and Other Pre-trained Models

The following baseline and pre-trained models have an
identical model architecture to the proposed SSL model. Also,
for downstream evaluation, the same fine-tuning protocol was
applied to all the models.

1) Baseline (No Pre-Training): Parameters of this model
are randomly initialized following conventional supervised
learning with PyTorch’s default settings. Specifically, we set
linear layer weights following the Kaiming uniform method
[38], attention layer weights following the Xavier uniform
method [39], and model biases to zeros.

2) Motion Transfer Pre-training: This baseline model is
pre-trained on a running dataset with real IMU data as input
and 3-axis GRF data as output. The distribution shift between
this pre-training and downstream dataset is predominantly
from the motion. The data were collected from 15 participants
running on an instrumented treadmill with various speeds,
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footwear, strike patterns, and step rates [14]. The GRF is
measured by an instrumented treadmill (Bertec, USA) at
1,000Hz and low-pass filtered at 15Hz. Five IMUs (MTi-300,
Xsens Technologies B.V., the Netherlands) were placed on the
trunk, pelvis, and left thigh, shank, and foot to collect data at
200Hz. We directly used the left thigh, shank, and foot IMU
data to substitute the absent right thigh, shank, and foot IMU.
We downsampled IMU and GRF data to 100Hz and segmented
each trial into windows of 128 time steps (1.28s each) with
50% overlap (0.64s) to match those of downstream datasets.
Both IMU and GRF data are normalized along each axis by
removing the mean and scaling to unit variance. In total, there
were 21,099 windows available for model pre-training.

3) Task Transfer Pre-training: This baseline model is pre-
trained on the AMASS dataset (Section II-A2) with synthetic
IMU data as input and 3-axis body center acceleration in the
global frame as output. The body center acceleration, which
is measured by marker-based motion capture, is selected due
to its association with GRF according to Newton’s second
law. Both synthetic IMU data and body center acceleration
are normalized along each axis by removing the mean and
scaling to unit variance.

E. Training Protocols
Models were implemented in Python 3.9 with PyTorch

1.13 and Numpy 1.23. One Nvidia RTX 2080 Ti graphics
card was used to train and test all the models. For the
proposed SSL pre-training, Motion Transfer Pre-training, and
Task Transfer Pre-training, we used the AdamW optimizer
[40] to minimize the mean squared error with a learning rate
of 10−4, a weight decay of 0.01, and a minibatch size of
64 for 5× 104 backpropagation steps without early stopping.
We used a linear warmup of the learning rate for the first
20% of steps, and decayed the learning rate with a cosine
decay schedule without restarts [41]. We used the entire dataset
for pre-training without splitting a test set because the model
evaluation was performed based on downstream datasets that
are different from pre-training datasets.

For downstream evaluation, we implemented a two-step
fine-tuning strategy for pre-trained models, which optimizes
the linear layer first and then fine-tunes the entire model to
prevent distortion of pre-trained IMU representations [33],
[34]. For the first step where the linear layer was trained,
we used AdamW optimizer with a minibatch size of 64,
a learning rate of 10−3, and a weight decay of 0.01 for
300 backpropagation steps. For the second step where the
entire model is fine-tuned, we used AdamW optimizer with
a minibatch size of 64, a learning rate of 10−4, and a weight
decay of 0.01 for 300 backpropagation steps. For both steps,
we used the mean squared error loss function, linearly warmed
up the learning rate for the first 20% of backpropagation steps,
and decayed the learning rate with a cosine decay schedule
without restarts [41]. We trained and tested models with data
from different participants for each dataset using a five-fold
cross-validation approach, where participants were randomly
split into five groups. Four groups were combined as the
training set for each of the five iterations, and the remaining
group was used as the test set.

F. Performance Evaluation

We compared different models using Pearson’s correlation
(ρ) and root mean square error (RMSE) between the estimated
and gold-standard GRF across all the stance phases and
landing phases of each participant. Swing phases of walking
and flight phases of drop landing where vGRF is lower than
2% of the body weight are excluded from the analysis. In
addition to RMSE, we compared the relative RMSE (rRMSE)
of peak vGRF because its magnitude is larger during drop
landing than walking. The rRMSE is defined as:

rRMSE =
RMSE

max
1≤i≤N

(vGRFgold(i))−min (vGRFgold(i))
× 100%

where N denotes the number of windows of a participant and
vGRFgold denotes gold-standard vGRF measurement. A one-
way analysis of variance (ANOVA) was used to determine
if estimation accuracy would be significantly affected by
pre-training settings, i.e., baseline, using real IMU, using
synthetic IMU, and using real and synthetic IMU. If signifi-
cant differences were detected, paired t-tests with Bonferroni
corrections were used to compare pairs of models. The level
of significance was set to 0.05.

Beyond overall GRF measures, we also quantified the error
of our pre-trained models across a spectrum and compared it
to that of baseline models. We performed spectrum analysis
using Fast Fourier Transform (FFT) on the GRF measured by
the force plate as well as on the GRF estimated by models
for each window. Then, we computed the differences in FFT
results and averaged the differences across all the windows.

In addition, we investigated scaling law curves for model
performance by varying the downstream dataset sizes. For each
fold of cross-validation, we randomly sampled a subset of the
training set for model training, while used the entire test set for
evaluation. We linearly reduced the sizes (100%, 90%, 80%,
..., 10%) for GRF estimation during overground walking and
drop landing, whereas exponentially reduced the sizes (100 ×
100%, 10−0.2 × 100%, 10−0.4 × 100%, ..., 10−2 × 100%) for
GRF estimation during treadmill walking due to its larger base
size.

III. RESULTS

SSL pre-trained models achieved higher accuracy in esti-
mating vGRF during overground walking and treadmill walk-
ing across various downstream dataset sizes compared to
baseline models that have an identical model architecture (Fig.
3). The models pre-trained on synthetic IMU data and on a
combination of the real and synthetic IMU data were both
significantly more accurate than the baseline models when
using the entire overground or treadmill walking dataset for
fine-tuning. No differences were observed between pre-trained
and baseline models in estimating mlGRF, apGRF, or vGRF
during drop landing. Using 10% of overground walking data
to fine-tune the SSL pre-trained models yielded comparable
accuracy to the baseline model trained on 100% of overground
walking data, indicating a 10x data efficiency improvement.
Similarly, using 1% of treadmill walking data to fine-tune
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Fig. 3. Correlation coefficient between gold-standard and estimated vGRF for SSL pre-trained and baseline models when using a range of reduced downstream
datasets for training. The sizes of overground walking and drop landing datasets for model fine-tuning were reduced linearly whereas the size of treadmill
walking dataset was reduced exponentially due to a significantly larger dataset size. Black arrows in task 1 - overground walking and task 2 - treadmill walking
indicate improvements in data efficiency.

TABLE II
CORRELATION COEFFICIENT BETWEEN THE GOLD-STANDARD AND ESTIMATED GRF FOR THE BASELINE AND A VARIETY OF PRE-TRAINED MODELS.

Dataset Model Correlation Coefficient

mlGRFa apGRFa vGRFa

Overground Walking Supervised Learning Baseline 0.94 ± 0.03 0.93 ± 0.02 0.92 ± 0.03
Motion Transfer Pre-training 0.95 ± 0.02 0.93 ± 0.02 0.93 ± 0.03
Task Transfer Pre-training 0.96 ± 0.01 0.94 ± 0.02 0.94 ± 0.02
Proposed SSL Pre-trainingb 0.96 ± 0.02 0.94 ± 0.02 0.94 ± 0.03

Treadmill Walking Supervised Learning Baseline 0.89 ± 0.02 0.96 ± 0.01 0.93 ± 0.03
Motion Transfer Pre-training 0.92 ± 0.01 0.97 ± 0.01 0.96 ± 0.02
Task Transfer Pre-training 0.93 ± 0.01 0.98 ± 0.01 0.97 ± 0.01
Proposed SSL Pre-trainingb 0.94 ± 0.02 0.98 ± 0.01 0.97 ± 0.02

Drop Landing Supervised Learning Baseline 0.74 ± 0.12 0.88 ± 0.08 0.93 ± 0.05
Motion Transfer Pre-training 0.75 ± 0.12 0.87 ± 0.09 0.93 ± 0.04
Task Transfer Pre-training 0.75 ± 0.13 0.90 ± 0.08 0.93 ± 0.05
Proposed SSL Pre-trainingb 0.75 ± 0.12 0.90 ± 0.08 0.92 ± 0.06

a ml: medial-lateral; ap: anterior-posterior; v: vertical
b The model is pre-trained on the synthetic IMU dataset.

the pre-trained models yielded comparable accuracy to the
baseline models that are trained on 100% of treadmill walking
data, indicating a 100x data efficiency improvement. There
was no statistical difference between the three SSL pre-trained
models for all three prediction tasks except that the model
pre-trained on the synthetic IMU dataset was significantly
more accurate than the model pre-trained on the real IMU
dataset for treadmill walking. Apart from the baseline model,
the proposed SSL achieved slightly better results than Motion
Transfer, which pre-trained the model using running GRF
(Table II-F). The proposed SSL achieved comparable results to
Task Transfer, which pre-trained the model using body center
acceleration measured by marker-based motion capture.

When evaluating performance on vGRF peaks, the SSL
pre-trained models also outperformed the baseline model
for overground and treadmill walking (Fig. 4). SSL pre-
training increased the correlation of peak vGRF estimation
from 0.59 to 0.64 for overground walking and from 0.69

to 0.90 for treadmill walking. SSL pre-training reduced the
correlation of peak vGRF estimation from 0.70 to 0.68 for
drop landing. The RMSEs and rRMSE of pre-trained models
are 0.11±0.03N/kg and 8.2±2.4% for overground walking,
0.07 ± 0.02N/kg and 4.5 ± 1.0% for treadmill walking, and
0.20±0.06N/kg and 7.9±2.8% for drop landing, respectively.

When using the right foot IMU data as model input, SSL
pre-trained models consistently achieved higher accuracy than
the baseline model across mlGRF, apGRF, and vGRF during
overground walking, treadmill walking, and drop landing
(Table III). Also, using a single foot-worn IMU resulted in
lower correlation coefficients compared to using all the IMUs.
Additionally, consistently smaller errors were observed in SSL
pre-trained models compared to the baseline models across the
spectrum for overground and treadmill walking (Fig. 5). For
drop landing, the SSL pre-trained model exhibited comparable
error to the baseline model across the spectrum. A masking
ratio of 6.25–12.5% with shorter patch lengths achieved the
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Fig. 4. Scatter plot and regression line showing gold-standard and estimated vGRF peaks for SSL pre-trained and baseline models. All the windows are
shown for task 1 (overground walking) and task 3 (drop landing), whereas 500 windows were randomly selected from 23,481 windows for task 2 (treadmill
walking).

Fig. 5. The error between gold-standard measurements and model estimations across the spectrum. Pre-trained models (blue) exhibited smaller errors compared
to baseline models (gray) for overground and treadmill walking.

Fig. 6. Correlation coefficient between the gold-standard and estimated vGRF for a variety of models trained with patch lengths of 1–8 and with 6.25–62.5%
masking during pre-traing. Patch lengths of 1–2 and 6.25–12.5% masking have the highest accuracy.
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TABLE III
CORRELATION COEFFICIENT BETWEEN THE GOLD-STANDARD AND

ESTIMATED GRF WITH A SINGLE FOOT IMU DATA AS MODEL INPUT.

Dataset Model Correlation Coefficient

mlGRFa apGRFa vGRFa

Overground
Walking

Baseline 0.93±0.03 0.91±0.02 0.90±0.04

Proposed SSLb 0.94±0.03 0.93±0.03 0.93±0.03

Treadmill
Walking

Baseline 0.84±0.04 0.93±0.02 0.87±0.03

Proposed SSLb 0.90±0.03 0.97±0.01 0.94±0.02

Drop
Landing

Baseline 0.70±0.12 0.86±0.07 0.88±0.06

Proposed SSLb 0.72±0.12 0.87±0.06 0.89±0.06

a ml: medial-lateral; ap: anterior-posterior; v: vertical
b The model is pre-trained on the synthetic IMU dataset.

best performance across all three prediction tasks (Fig. 6).
Thus, we implemented our self-supervised transformer models
with a patch length of 1 (equivalent to 10 ms at 100Hz
sampling frequency) and 12.5% masking, and all the above
results are reported based on these models.

IV. DISCUSSION

This work shows that using SSL to pre-train deep learning
models that predict walking GRF from IMUs can improve
data efficiency. Prior deep learning models for biomechanical
estimation are predominantly trained on proprietary datasets
with a small number of participants. In contrast, we used open-
source motion datasets with hundreds of participants to pre-
train our models. Three key outcomes of this work are:

• Compared to conventional supervised learning, using SSL
and large “unlabeled” IMU datasets to pre-train deep
learning models can improve data efficiency by 10–100x
for IMU-based walking vGRF estimation. It can also
improve correlation coefficient by 0.02-0.04 when using
the same amount of labeled data for training.

• Low masking ratios (6.25-12.5%) are optimal for IMU-
based SSL, indicating that IMU data have high informa-
tion redundancy (Fig. 6).

• This code and pre-trained model have been made publicly
available, potentially facilitating researchers to improve
the results of their customized downstream prediction
tasks (Appendix A).

In the absence of large-scale real IMU datasets, we utilized
a large-scale motion dataset (AMASS) to generate synthetic
IMU data for SSL. Its combined window duration is equivalent
to 56 hours of data, substantially exceeding prior kinetic
estimation studies that used 1.2–6 hours of real IMU data [13]–
[15] and 0.2–2 hours of synthetic IMU data [42], [43]. Models
pre-trained on a relatively smaller real IMU dataset and a
larger synthetic IMU dataset achieved similar performance.
This suggests that the size of the synthetic dataset compensated
for the distribution shift between real and synthetic data
that arise from soft tissue artifacts, sensor noise, and human
model simplification [28]. The other two pre-training methods,
Motion Transfer and Task Transfer, achieved slightly lower or
comparable results to the proposed SSL pre-training. Their

non-inferior performance might be attributed to the usage of
gold-standard measurements from force plates and marker-
based motion capture systems. The proposed SSL only relies
on “unlabeled” IMU data. Thus, the results can potentially
be improved and generalized to broader use cases by using
“unlabeled” IMU data collected in real-life or sports envi-
ronments. Ideally, the dataset should involve a wide range of
motions that are related to clinical assessments and of interest
to biomechanists, such as jumping, landing, and cutting.

SSL trains models to learn IMU representations specific to
pre-training data. As a result, it improved GRF estimation dur-
ing walking, which is one of the most common motions in both
two pre-training datasets (MoVi and AMASS). In contrast,
neither dataset has instances of drop landing. Consequently,
the model cannot learn IMU representations of drop land-
ing during pre-training, resulting in no enhancement during
subsequent downstream evaluation. Tailoring the distribution
of datasets for specific estimation tasks is a commonly used
strategy for improving the performance of deep learning [44]–
[46]. To apply SSL, future researchers may need to increase
the similarity between the distribution of pre-training and
downstream datasets. This can be achieved by adjusting the
weights of instances or by collecting additional pre-training
data for the motions of the downstream datasets.

The RMSE of peak vGRF estimation of the pre-trained
models were 0.56–0.88N/kg during treadmill and overground
walking, which are comparable to the smallest detectable
change of peak vGRF during walking in patients with stroke
or knee osteoarthritis (0.56–0.61N/kg) [47], [48]. The RMSE
of peak vGRF estimation of the pre-trained models was
3.53N/kg during drop landing, which is higher than the
smallest detectable change of peak vGRF during drop landing
(0.55–0.63N/kg) [49]. Also, the performance of our pre-
trained models is comparable to or slightly higher than those
reported in prior studies that used the same downstream
datasets for vGRF estimation. Specifically, a prior deep learn-
ing model achieved a correlation coefficient of 0.96 ± 0.01
for overground walking and 0.96± 0.01 for treadmill walking
[50], while our models achieved 0.95± 0.02 and 0.97± 0.01,
respectively. Another prior deep learning model achieved a
correlation coefficient of 0.92±0.11 [27] for vGRF estimation
during drop landing, while our model achieved 0.93 ± 0.04.
Unlike prior studies, we excluded swing phase of walking and
flight phases of drop landing for performance evaluation. The
swing and flight phases have substantially smaller RMSE than
stance and landing phases across three GRF axes, possibly
because the prediction of zero GRF is inherently easier than
that of positive and modulating GRF (Supplementary Table I).
Thus, excluding swing and flight phases reduced correlations
and increased RMSE of our models. Another reason for
excluding swing phases is that prior studies used one IMU
placed on foot for segmenting walking and running gait phases
with less than 25 ms errors [51]–[53]. Integration of such gait
phase segmentation models into the GRF estimation model
may obviate the need for GRF estimation during swing phase.
Additionally, prior studies tailored their model architectures
and hyperparameters for specific prediction tasks, and thus
they might not be reused for other prediction tasks. In contrast,
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we demonstrated that our unified model architecture can be
generalized to multiple downstream prediction tasks.

The optimal mask ratio is related to the information density
of the input data. Previous language models used low masking
ratios for natural language that is information-dense (e.g.,
15% [22]), whereas vision models used high mask ratios
for images that have high information redundancy (e.g., 75%
[18], [19]). We observed that 6.26–12.5% masking ratios have
the best performance (Fig. 6), indicating that IMU data are
information-dense. Nevertheless, the optimal masking may
increase when the IMU sampling frequencies are substantially
higher than 100Hz due to increased information redundancy.
Our proposed model used a window length of 128 samples
(1.28s), which is longer than the typical duration of a walking
gait cycle or a drop landing trial. However, we acknowledge
that such a window length may limit the model performance
on other tasks such as GRF estimation during balancing, which
needs a longer window length to extend the temporal scope
of the model.

Our code, pre-trained models, and tutorials are publicly
available for researchers who are interested in using them for
their downstream prediction tasks. Our models were trained
with eight IMUs; however, they are robust to the distribution
shift caused by a smaller IMU set. When using four IMUs
for overground walking GRF estimation (Table II-F) or using
one foot-worn IMU for both walking and drop landing GRF
estimation (Table III), SSL pre-training improved accuracy
across mlGRF, apGRF, and vGRF compared to no pre-training.
Thus, the proposed SSL model can be used for sparse IMU
configurations that are more practical for real-world measure-
ments [31], [54], [55]. We recommend placing IMUs with
their z-axes aligned with the segment surface normal, x-axes
pointing left during standing, and y-axes perpendicular to the
x- and z-axes following the right-hand rule (Fig. 1). For a
different IMU-to-segment orientation placement configuration,
the recommended configuration can typically be achieved
through a post-hoc rotation of the IMU data.

V. CONCLUSION

SSL with large IMU datasets for model pre-training can im-
prove data efficiency and accuracy compared to conventional
supervised learning when the distribution of the downstream
dataset is within that of pre-training datasets. Future studies
may collect “unlabeled” IMU data under real-life or sports
environments to expand the scale and distribution of pre-
training datasets, thus potentially unlocking newer and broader
use cases of IMU-driven kinetic assessment where only limited
gold-standard GRF measurements are available.

APPENDIX A
CODE AND DATA AVAILABILITY

The trained models are available on
https://github.com/StanfordMIMI/SSL IMU. The source
code is also provided in the repository for researchers who
are interested in applying SSL for pre-training specialized
deep learning model architectures.
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