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Memory processes in complex behaviors like social commu-
nication require forming representations of the past that grow
with time. The neural mechanisms that support such continu-
ally growing memory remain unknown. We address this gap in
the context of fly courtship, a natural social behavior involving
the production and perception of long, complex song sequences.
To study female memory for male song history in unrestrained
courtship, we present ‘Natural Continuation’ (NC)—a general,
simulation-based model comparison procedure to evaluate can-
didate neural codes for complex stimuli using naturalistic be-
havioral data. Applying NC to fly courtship revealed strong evi-
dence for an adaptive population mechanism for how female au-
ditory neural dynamics could convert long song histories into a
rich mnemonic format. Song temporal patterning is continually
transformed by heterogeneous nonlinear adaptation dynamics,
then integrated into persistent activity, enabling common neu-
ral mechanisms to retain continuously unfolding information
over long periods and yielding state-of-the-art predictions of
female courtship behavior. At a population level this coding
model produces multi-dimensional advection-diffusion-like re-
sponses that separate songs over a continuum of timescales and
can be linearly transformed into flexible output signals, illus-
trating its potential to create a generic, scalable mnemonic for-
mat for extended input signals poised to drive complex behav-
ioral responses. This work thus shows how naturalistic behavior
can directly inform neural population coding models, revealing
here a novel process for memory formation.

Many fundamental behaviors depend on the ability to form
and update memories of a continually growing past. Re-
sponding appropriately in conversation, for instance, may
require remembering the history of the conversation over
multiple timescales, while efficiently updating one’s internal
representation of this history as it unfolds. Such memory-
dependent tasks are faced by a variety of flexible intelligent
systems (1, 2) and mediate important phenomena like infor-
mation transmission through social networks (3)—yet how
the brain solves this is unknown. While a number of theo-
ries can explain a variety of controlled memory experiments
(4–8), they do not generalize to more natural settings like
uncontrolled social communication. As a result, how bio-
logical neural algorithms encode natural input histories like
those in communication, what neural processes support such
encoding, how representations evolve online to continually
incorporate new information, how these encoding processes
advantage computation, and whether such processes can be
described by general principles, are not understood.

Natural social behaviors represent an excellent system for
addressing these questions. During fly (D. melanogaster)

courtship, males sing complex and variable song sequences
to females. Songs are composed of two main syllables or
“song modes” called sine and pulse for their acoustic wave-
form, and are interleaved with silences (Fig 1A-C) (9–11).
Fly courtship song shares key features with more complex
signals like speech or language. First, like phonemes, song
elements rapidly fluctuate over time; second, songs can ex-
tend over timescales much larger (minutes) than their con-
stituent elements (∼30 ms); third, sufficiently long sequences
of song elements rarely repeat, similar to how sentences
rarely repeat in say, a news story. Thus, understanding song
processing in the fly brain may shed light on how extended,
fluctuating input signals are processed and stored in more
complex neural systems as well.

Here we ask how female neural dynamics encode the his-
tory of courtship song to guide memory-dependent locomo-
tor responses. Previous work found that female slowing dur-
ing courtship could be predicted by the average duration of
preceding song bouts (contiguous singing periods), with pre-
dictability plateauing at an averaging window of one minute
into the past (12). This suggests that the female may remem-
ber song features over timescales on the order of minutes,
in contrast with the much faster timescales (seconds or less)
typically studied in flies (11, 13–16). More recently, it was
additionally found that female auditory neural responses to
simplified song stimuli are diverse and widespread across her
brain (17, 18), suggesting that the memory of song history
may be mediated by a rich, multi-dimensional population
code. Yet how female auditory neural responses collectively
process and possibly store in memory the diverse temporal
patterns of natural song to guide her behavior is unknown.

Addressing this question in naturalistic courtship begets a
crucial challenge: recording neural activity in animals in-
terferes with their behavior. In flies, for instance, neural
activity is recorded only in head-fixed preparations, which
may not reflect brain function in natural settings. Recent
efforts have therefore focused on analyzing pure-behavioral
data with models governed by neurobiological constraints
(12, 19), producing models of neural function directly appli-
cable in natural settings. To synthesize and extend these ap-
proaches here we elaborate a general procedure—which we
term Natural Continuation (NC)—for systematically assess-
ing neural encoding models according to how well they gen-
eralize to account for natural behavior. Although we focus
on fly courtship, this method can be widely applied to link
neural and naturalistic behavioral data to interrogate neural
computation in a variety of systems.
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Here we apply NC to neural recordings and naturalistic
fly courtship data to discover a novel biologically plausi-
ble model for female encoding of song history in memory.
Song is first processed by a bank of fast nonlinear adapta-
tion processes then integrated into slowly decaying persis-
tent activity. This produces a multi-dimensional neural rep-
resentation that yields state-of-the-art predictions of female
locomotion during courtship via a novel, neurally informed
“basis” of interpretable song patterns that predict slowing.
We demonstrate the dynamical and functional advantages
of this coding model, including near optimal compression
of song history by single neurons, together with advection-
diffusion-like population dynamics that separate songs over
multiple timescales and can be linearly transformed into flex-
ible outputs. Thus, naturalistic behavior data can strongly
inform neural coding models for complex stimuli, which im-
prove behavioral predictions, admit sensible mechanistic in-
terpretations, and suggest generalizable algorithms for flexi-
ble computation.

Results
Natural Continuation. Natural Continuation is a general
protocol for testing neural coding models of complex stim-
uli against naturalistic behavior data. This makes it a widely
applicable method for quantitatively combining existing neu-
ral recordings with separate behavioral data to infer neural
computations in natural settings. Below we describe NC gen-
erally, then apply it to fly courtship.

NC comprises 4 key steps (Fig 1G): (1) Using the existing
neural data, select a set of candidate neural encoding mod-
els mapping stimulus history to neural activity. (2) Choose a
naturalistic behavioral dataset from which the stimulus time-
series experienced by the animal can be estimated, as well as
a behavioral “output” expected to be modulated by the stimu-
lus. (3) Apply each encoding model to the estimated stimulus
history at each timepoint to produce a complete artificial neu-
ral population recording (one per encoding model) alongside
the behavioral data. (4) Score each neural encoding model by
the ability of its corresponding artificial recordings to predict
the next-timestep behavioral output through a readout.

Iteratively applying NC to specific model classes produces
increasingly refined neural encoding models maximally con-
sistent with the behavioral data. Under fairly generous con-
ditions (see Discussion), this yields a moment-to-moment
stimulus-to-behavior model mediated by realistic neural pop-
ulation dynamics, together with artificial neural population
recordings that can be studied in their own right to shed light
on how neural dynamics processes stimuli in natural settings.

Two neural encoding models for song history. We ap-
plied NC to understand how female flies neurally encode
male song history during courtship. To implement step (1)
we examined auditory neural recordings (18) from head-fixed
female flies in response to restricted "block-song" stimuli, i.e.
10-second blocks of either pure sine or pure pulse song (Fig
1E). Recordings from 50 cell types were performed via two-
photon imaging of calcium sensor GCaMP6s (20) in response

to the block-song stimuli (randomized and interleaved with
quiet blocks). Trial-averaged responses from different neu-
rons exhibited diverse temporal profiles (Fig 1E, S1), varying
in their song-mode preference and integration and adaptation
timescales. A related pan-neuronal imaging experiment (17)
at a lower frame rate (2 Hz in (17) vs 8.5 Hz in (18)) yielded
a similar response diversity (Fig S1). The neural data thus
suggest specific constraints on the shapes of neural responses
to simple song stimuli. However, the block-song stimuli pre-
sented in these experiments do not reflect natural song, which
contains much shorter song modes interleaved in highly vari-
able temporal patterns (Fig 1A-C).

To gain insight into how female neural dynamics encode
natural song we considered two types of models for mapping
generic song history to female neural activity (Fig 1D). In
the linear-nonlinear (LN) model, the response r(t) of a single
model neuron was given by:

r(t) = g (hs ∗ Is(t)+hp ∗ Ip(t)) (1)

where Is and Ip are binarized representations of sine and
pulse song; hs and hp neuron-specific linear filters for sine
and pulse song, ∗ represents convolution, and g is a signed-
rectification rectifying nonlinearity. The LN model reflects a
canonical feature-detection computation used to model neu-
ral responses in a variety of sensory systems (21–23).

In the "multiplicative adaptation" (MA) model, inspired by
models of adaptive neural coding (24–27), a single model
neuron’s response r(t) was given by a simple 4-parameter
dynamical system. Specifically:

τint
dr

dt
= −r +xs(1−as)Is(t)+xp(1−ap)Ip(t)

τa
das

dt
= −as + Is(t) τa

dap

dt
= −ap + Ip(t)

(2)

where τint and τa are integration and adaptation timescales
of the neuron and xs and xp are its selectivities for sine and
pulse song. Intuitively, when either sine or pulse persists for
∼ τa, its adaptation variable as or ap rises, temporarily di-
minishing the effect of that song mode input. A notable fea-
ture of the MA model useful for memory is that when τint is
large, this encoding model integrates a nonlinear function of
song. At a population level, this geometrically separates song
temporal patterns before effectively storing them in persistent
activity—this is in contrast to the LN model, in which the
nonlinearity is applied only after linear filtering/integration.

We fit each of the two models to each neural recording. To
ensure a fair comparison between the two models we derived
an analytical formula allowing us to exactly parameterize the
LN model with the same 4 parameters as the MA model (See
Supplement).

We found that both encoding models were expressive
enough to reproduce most of the neural responses to the
block-song responses (Fig 1E-F, S2). The LN and MA mod-
els differed by less than 1% in the amount of total neural vari-
ability they were able to explain across the population. The
only neurons poorly fit were those exhibiting “sine-offset” re-
sponses (Fig S3), which we discuss later. Thus, the LN and
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Fig. 1. Testing neural encoding models of song history against naturalistic fly courtship data. A. Schematic of Drosophila acoustic communication, with example song
and locomotion trace. Song comprises two main modes termed ’sine’ and ’pulse’. B. Song feature distributions. C. Additional song segment examples from unrestrained
courtship. D. Schematic of LN and MA encoding models. E. Example neural responses measured during calcium imaging experiments (18) in response to a 10s block of
either pure sine or pure pulse song, alongside fits with the LN or MA encoding models. Each row shows an example neural recording from one experiment. The calcium
responses in the last two columns are a copy of the responses in the first two columns, except overlaid with the MA instead of LN fits. (The last row shows an example neuron
whose fluorescence decreased in response to block song.) F. R2 distributions of LN vs MA fits, with mean across recordings indicated by dashed lines. G. Schematic of
applying Naturalistic Continuation to fly courtship. H. Example responses to naturalistic song of either the LN or MA neuron models fit to the block-song responses in E. I.
Example prediction of female walking speed from a linear readout of the artificial activity produced by either the LN (top) or MA (bottom) model population (224 model neurons
total); trace shown is on a held-out courtship session not used to fit the linear readout. J. Encoding model scores, computed over held-out sessions across 30 training/test
(80/20%) splits of 87 courtship sessions, as well as predictions from the timestamp alone, time-averaged bout duration (averaged over 2 minutes of song history, Fig S14),
and a pair of linear filters directly on sine and pulse inputs. Female walking speed was forward-averaged over a 1-second window prior to prediction. “Pop” denotes the entire
artificial population was used in fitting the readout; “best” denotes that only the single most behaviorally predictive neuron was used. MA (shuffled) shows the walking speed
variance explained from artificial neural activity in response to songs that were shuffled across courtship sessions. Error bars indicate standard error. Stars shown denote P
< .0005 (LN (pop) vs MA (pop)) and P < 10−8 (MA (pop) vs bout duration) (2-sided t-test).

MA models, representing two competing hypotheses for en-
coding song history, both fit the neural data well and could
not be distinguished from the neural data alone.

The MA encoding best predicts female locomotion. To
apply step (2) of NC—in order to compare the LN vs MA en-
codings of natural song—we used a pure behavioral dataset
of naturalistic courtship interactions (11). We used male
song as the stimulus and female walking speed as the out-
put. This allowed us to apply step (3) of NC, in which we
used the LN and MA encoding models to generate artificial
recordings of song-evoked female neural population activity
alongside the courtship sessions. Although their block-song
responses were nearly indistinguishable, in general the LN
and MA responses to naturalistic songs differed, with the LN
responses fluctuating rapidly and the MA neurons often ex-
hibiting slower, accumulator-like activity (Fig 1H). Finally,
we applied step (4) of NC, scoring the encoding models by
how well their neural representations of song history (up till

time t) could predict female walking speed (time-averaged
from t till t+1s) through a linear readout, quantified by walk-
ing speed variance explained in held-out courtship sessions.

The LN and MA population encoding models yielded dif-
ferent predictions of female locomotion during courtship (Fig
1I), with the MA model significantly outperforming the LN
code (Fig 1J). The MA population also outperformed pre-
dictions from time-averaged song bout duration—the best
previously conjectured predictor of female walking during
courtship (12). While (12) showed that average bout dura-
tion could also be computed by single neurons via an adap-
tive neural mechanism, the collective coding of song by a
heterogeneous population had not been probed. Indeed, us-
ing only the single best MA neuron yielded similar perfor-
mance to bout duration, but both were less predictive than the
full MA population (Fig 1J). Shuffling songs across courtship
sessions strongly degraded performance, indicating that the
model-generated activity was predicting locomotion by en-
coding song history. The same qualitative patterns also held
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when we predicted female walking speed averaged from t to
t + 1 minute, and when predicting forward or lateral veloc-
ity (though these were slightly less predictable than walking
speed) (Fig S4), hence our results were largely invariant to
the behavioral observables used to score the encoding mod-
els. Thus, the naturalistic courtship data is most consistent
with an MA population code for song history.

The MA code is supported by fast adaptation and slow
integration. A central feature of robust memory is the abil-
ity to keep track of input history over the entire course of a
behavior. To assess whether and how the female fly retained
song history information over long timescales we iteratively
applied NC to perturbed versions of the MA population. For
each perturbation we re-simulated neural population activity
throughout the courtship sessions, then recomputed female
walking speed variance explained by a linear readout (Fig
2A, S4). This first revealed the necessity of pulse selectivity
(xp > 0) and adaptation (τa < ∞), as removing either from
the population model substantially decreased female walking
speed variance explained. The lack of necessity of sine selec-
tivity may reflect redundancy in the population code caused
by the high sine-pulse correlation in song (Fig S5).

To address the question of memory specifically, we asked
which timescales within the MA responses were needed to
predict locomotion. Resampling each model neuron’s τint

and τa to take on either exclusively “fast” (100 ms - 2 s),
“medium” (2 - 20 s), or “slow” (20 - 120 s) values across the
population revealed the necessity of medium or slow integra-
tion and fast or medium adaptation. When adaptation was
removed or integration timescales were fast, slow changes in
walking speed were not well captured, whereas slow integra-
tion together with fast adaptation yielded predictions captur-
ing both slow and fast changes in walking (Fig 2B-D). Of
note, while medium integration and fast/medium integration
could also explain a large amount of total walking speed vari-
ance (Fig 2A), this model yielded a poorer prediction of the
low-frequency walking speed components (Fig S6A), a key
component of female locomotion during courtship. Thus, the
MA population’s ability to predict behavior by remembering
song history is supported by slow integration dynamics and
fast/medium adaptation. This reflects not all, but a sizeable
fraction of the measured neural responses to sine/pulse block
song stimuli (Fig S6B).

The MA code for song history is multi-dimensional.
How many model neurons and activity dimensions are
needed by the “fast-adapt/slow-integrate” MA population?
When we randomly generated variable-size MA populations
in this regime, walking speed predictability plateaued near
15-20 model neurons (Fig 2E), suggesting the sufficiency a
small collection of MA model neurons. As our model is
noiseless, the improved prediction arises not through averag-
ing but through heterogeneity of the population code. Curi-
ously, although principal components (PC) analysis revealed
the population responses to lie within a nearly 1-dimensional
subspace, around 4-5 PCs were still needed to maximize
walking speed predictions (Fig 2F-H), suggesting some low

variance neural PCs in this code contain crucial behavioral
information.

We found that the top PCs of these MA responses were
highly interpretable. The top PC encoded the total amount of
singing, the 2nd PC whether or not there was a recent period
of relative quiet, the 3rd PC the sine-pulse ratio, and the 4th
PC the mean duration of individual song modes (Fig 2J-K,
S7-8). As we defined each PC to have a negative weight on
the walking speed regressor (fit to the PC projections), an in-
crease in the value of any of these features predicts female
slowing, which may be a sign of “interest” in gathering more
information from the male. Thus, the MA code we derived
through NC automatically organizes interpretable song fea-
tures along its top PCs. Extending previous work that pre-
dicted female slowing from bout duration and song amount
(12), and sexual receptivity exclusively from pulse song (16),
these results suggest that female responses to song are medi-
ated by a rich space of sequential patterns, encoded in mem-
ory by multi-dimensional neural activity.

Finally, we asked whether heterogeneity in the adaptation
vs integration time constants was more important. Using a
population of 20 random MA neurons with either heteroge-
neous τa (uniform between 100 ms and 2s) and fixed τint,
or heterogeneous τint (uniform between 20-120s) and fixed
τa, we re-generated the artificial recordings to predict female
walking speed. We found that fixing τint but retaining het-
erogeneous τa explained significantly more walking speed
variance than the reverse (Fig 2L,M). Thus, heterogeneous
adaptation dynamics are more fundamental to representing
song history than heterogeneous integration timescales. This
suggests a computational advantage of heterogeneous non-
linear pre-processing of song through adaptation—increasing
the dimensionality of the input to achieve richer sensitivity to
recent temporal patterning—prior to integration.

In sum, female walking speed can be predicted from a neu-
ral memory of song history created as follows. Song is passed
through a heterogeneous bank of nonlinear (multiplicative)
adaptation processes, then integrated over slower timescales
into persistent (slowly decaying) neural population activity.
This produces a highly correlated but fundamentally multi-
dimensional population code capable of accumulating song
features over timescales up to minutes. We note that while
NC has allowed us to rule out many encoding models, mul-
tiple solutions can still exist. For instance, one arrives at a
slightly different MA population when building it up greedily
(one neuron at a time), rather than randomly sampling from
a fixed parameter regime, although the greedily built popu-
lation is still organized around a backbone of heterogeneous
MA responses with slow integration time constants (Fig S9).
While in principle it may have been possible to identify this
coding model and its influence on locomotion from head-
fixed recordings in a rich virtual reality setup, the above val-
idates NC as a drastically accelerated alternative process for
generating quantitative evidence for and against different en-
coding models. Moreover, despite the clear limitation of only
treating neural activity that can be predicted from behavioral
observables, NC produces models directly refined on, hence
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Fig. 2. Key features of the MA code for song history. A. Predictions of female walking speed from artificial neural recordings generated by perturbed MA population
encoding models. Error bars are as in Fig 1J. Here and elsewhere “fast” corresponds to 100ms ≤ τ < 2s, “medium” to 2s ≤ τ < 20s, and “slow” to 20s ≤ τ < 120s.
B. Female walking speed trace and prediction from an artificial MA population recording with no adaptation. C. As in B but from a population with only fast integration and
adaptation timescales. D. As in B,C except from a population with only slow integration and fast adaptation. E. Female walking speed variance explained in held-out sessions
from activity produced by a small population of MA neurons with parameters randomly sampled from the fast-adapt/slow-integrate regime, averaged over 30 training/test
splits, as a function of the number of neurons included in the population. Shading indicates standard deviation across 30 random instantiations of this MA population. F.
Left: total neural variance explained (for a population of 20 fast-adapt/slow-integrate MA neurons) vs number of neural PCs kept. Right: female walking speed variance
explained vs number of neural PCs kept from the same 20-neuron population. G. 10 neural responses out of a 20-neuron population of fast-adapt/slow-integrate MA neurons
to example song. H. Projection of population activity in G onto top 3 neural PCs (scaled for visualization). I. Example prediction of female walking speed from top PCs of a
20-neuron fast-adapt/slow-integrate MA population (averaged over 30 random instantiations of the population). J. Top: schematic showing song-evoked neural activity and
walking speed regressor in neural PC space. Bottom: weights of each PC on the walking speed regressor, scaled by the square root of the total neural variance explained by
each PC. K. Example 2-minute song segments driving neural activity either strongly (top) or weakly/negatively (bottom) for the top 4 neural PCs. L-M. Female walking speed
variance explained from a 20-neuron fast-adapt/slow-integrate MA population either fixing τa and allowing τint to vary uniformly between 20 and 120 s (L) or fixing τint and
allowing τa to vary uniformly between 100 ms and 2 s (M). (P < .005 between maximum walking speed variance explained with heterogeneous τa vs with heterogeneous
τint; 2-sided t-test).

immediately applicable to naturalistic behavior.

Having identified a candidate neural coding mechanism
from the data through NC, we now turn to characterizing the
coding dynamics and capabilities of MA model neuron re-
sponses to song sequences. In Fig 3 we investigate how sin-
gle MA neurons respond to and compress song history. In
Fig 4 we study the dynamics and computational advantages

of a fast-adapt/slow-integrate population—although other re-
sponse types (which in fact represent the majority of the
whole-brain responses [Fig S6]) likely also play an important
role in song coding, we focus our analysis on fast-adapt/slow-
integrate neurons for the purposes of both simplicity and in-
terpretability, and due to their central importance in predict-
ing behavior.
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Song history compression by MA neurons. We next
sought to understand how the features of the MA neuron
model shape the mnemonic encoding of song history. A nat-
ural question to ask is how much of the past is retained in the
present—specifically, how much information about the his-
tory of song is stored in the momentary activity levels of our
model neurons? To this end we asked how well a single MA
neuron compresses song history into an instantaneous activ-
ity level r, quantified by the mutual information:

MI[r;song] = H[r]− Esong[H[r|song]] (3)

where H[r] and H[r|song] are the prior and conditional en-
tropies of the activity of neuron (28). Because the MA neu-
rons are deterministic, we have that H[r|song] = 0, hence

MI[r;song] = H[r] (4)

which can be estimated simply from the 1-D histogram of
a model neuron’s activity r in response to the songs in the
courtship dataset (aggregated over sessions and timepoints).

In general, different MA neurons had different response
distributions, hence retained different levels of song informa-
tion (Fig 3A, S10). For instance, model neurons with fast
integration and no adaptation exhibited a bimodal activity
distribution (Fig 3A, top), leading to a small entropy H[r]
hence little song information. Model neurons with slower
integration timescales yield a more heterogeneous activity
distribution (Fig 3A, middle), as activity does not immedi-
ately decay during quiet periods. Model neurons with both
slow integration and fast-to-medium adaptation exhibited ac-
tivity distributions spread nearly uniformly across their to-
tal dynamic range (Fig 3A, bottom), suggesting these model
neurons perform a near-optimal single-neuron compression
of song. When these model neurons were presented with
“scrambled” songs (breaking temporal correlations in song),
their activity distribution became non-uniform (Fig 3A)–the
high-entropy response distribution of these MA neurons is
thus at least partly specific to naturalistic song, suggesting
their response properties may be “matched” to song statistics.
Overall, single MA neurons with high predictive power of
behavior also contained high song information (Fig 3B)—in
particular neurons with slow integration time constants (Fig
S11). This suggests that these neurons are transmitting high-
entropy song features, rather than arbitrary features buried in
noise, and that they do so by remembering song history for
long periods.

Accumulator-like responses to natural song. To gain a
deeper mechanistic understanding of how fast-adapt/slow-
integrate MA neurons encode song history we re-examined
the dynamics of their song-evoked responses. Reflecting
our initial observations, the activity of these model neurons
quickly plateaued in response to block sine or pulse song,
due to the rapid adaptation (Fig 3C). The same neurons, how-
ever, produced a strikingly increased response to naturalistic
song with a clear accumulator-like dynamic. This resembles
neural correlates of evidence accumulation in other systems
(29, 30), except here extending over minutes and crucially

dependent on temporal patterns present in the song stimulus.
Intuitively, the gaps and mode transitions in natural song al-
low adaptation to recover, with the slow integration allowing
ongoing inputs to increment the current activity level.

Song accumulation dynamics occurred only in MA neu-
rons and not in their LN equivalents (Fig 3C). Function-
ally, the initial nonlinearity of the MA neurons provides a
means for distinguishing block from natural song in a man-
ner that is not present in the LN neurons. Song-accumulation
dynamics occurred for multiple MA parameter sets in the
fast-adapt/slow-integrate regime, although the same song was
represented slightly differently by different neurons. Varia-
tion of a single model neuron’s response to different songs
typically increased over time (Fig 3D); and both song den-
sity and transition rates correlated with accumulation rate
(Fig 3E), with stronger song-density correlations occurring
for neurons with slower adaptation timescales and stronger
transition-rate correlations for those with faster adaptation
timescales (Fig 3F).

Thus, our model suggests that single neurons may encode
naturalistic song history in memory via an accumulation pro-
cess. Together with our information-theoretic analysis, this
result suggests that adaptation and accumulation may interact
with temporal statistics of natural social communication to
efficiently transmit continuously unfolding information from
the past into momentary neural activity levels.

Advection-diffusion-like population dynamics. Next,
we asked how the MA population model encodes the memory
of song history collectively. To favor interpretability we ex-
amined a 20-neuron MA population with a fixed integration
timescale τint = 120s and random fast adaptation timescales
(100ms < τa < 2s), which accounted for most of the female
locomotion variance explained by the original MA popula-
tion (Fig 2M). Responses of this population to naturalistic
song segments were confined to a cone-like region of the to-
tal neural response space, with the dominant axis (roughly
the top PC) encoding total song amount and other dimen-
sions higher order accumulated song features (Fig 4A-B, Fig
2K). Thus, the population responses to naturalistic song ex-
hibit clear, multi-dimensional geometric structure.

Song-evoked neural population trajectories followed a
striking advection-diffusion-like dynamic (Fig 4C). Classi-
cally, such dynamics describe the trajectory of a particle in
a fluid flow subject to molecular or turbulent diffusion, serv-
ing, for instance, as an important model for odor plumes (31).
Here the “advection” component, in analogy with downwind
displacement, corresponds to the correlated accumulator-like
response of all fast-adapt/slow-integrate neurons to song, re-
flecting the total amount of song heard. The diffusion com-
ponent, arising in plumes from the accumulation of random
collisions or turbulence, arises here from the highly fluctuat-
ing song inputs, with the heterogeneous adaptation dynamics
transforming these into multi-dimensional signals that pro-
duce a Brownian-like dynamic upon integration. Note that
the diffusion-like dynamics here are not noise but rather re-
flect deterministic transformations of song.
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Fig. 3. Compression and dynamical properties of single MA neurons in response to natural song. A. Histogram of normalized activity for three example neurons
(top: τint = 0.5s,τa = ∞,xs = xp = 0.5, middle: τint = 120s,τa = ∞,xs = xp = 0.5, bottom: τint = 60s,τa = 10s,xs = 1,xp = 0) in response to 87
courtship songs (16 bins). Song information (given by response entropy [Eq. 4]) is reported relative to the entropy of a uniform distribution. Black line in bottom panel shows
activity distribution in response to temporally scrambled songs (song information ≈ .943 for the scrambled song). B. Walking speed variance explained by single MA neuron
responses to song vs song information retained in the MA neuron response (each point corresponds to one set of MA neuron parameters). C. Responses of 2 model MA
neurons and their LN equivalents to a pure-sine block, a pure pulse-block, and 2 natural song segments. Thick trace: τint = 60s,τa = 2s,xs = xp = 0.5, thin trace:
τint = 120s,τa = 0.5s,xs = 0,xp = 1. D. Responses of 4 example mixed-selectivity (xs = xp = 0.5) MA and equivalent LN neurons with different time constants to
108 different 1-minute song segments. E. Correlation of final neural activation after 1-minute natural song segment with two basic song features for the upper left neuron in
D. Each black point corresponds to a different natural song segment. F. Correlations in E vs τint for three different values of τa, with xs = xp = .5.

Functionally, these population dynamics continually sepa-
rated neural representations of songs over a wide continuum
of timescales. This means that early portions of song are not
forgotten but rather contribute to the representation of song
history up to minutes after they have passed. Indeed, the
distance between song-evoked neural trajectories followed
an approximate power law in time over nearly four decades
(Fig 4D), with a scaling exponent of γ ≈ .72, suggesting a
scale-invariant structure of the neural trajectories. Present-
ing scrambled songs with i.i.d. timepoints to the model also
yielded advection-diffusion-like dynamics (with an exponent
of γ ≈ .5, since we added no explicit heterogeneity across
songs, which is likely present in the real data), indicating
the scale invariance was not inherited from multi-scale song
structure but is rather an emergent property of integrating
adapted inputs. Multi-scale song separation occurred along
many PCs of the population code (Fig 4E-G), recapitulat-
ing the multi-dimensional nature of these dynamics. Natural
songs also evoked a larger response variance in higher PCs
than scrambled i.i.d. songs (Fig 4F), suggesting that song
temporal patterning may specifically engage MA neural dy-
namics to transmit more information into the female’s evolv-
ing neural code for song history.

Together, these results suggest (1) there exists a large,

multi-dimensional space of persistent female neural states
representing many different possible song histories (as op-
posed to, say, a few fixed-point attractors (32) visited in re-
sponse to different song patterns); (2) the longer the song
the more information is transmitted to the female, since rep-
resentations of longer songs are further apart than shorter
songs (a similar principle as has been observed in dynamic
coding of olfactory stimuli, although over shorter timescales
[seconds] (33, 34)); (3) the neural dynamics of encoding
song history can in fact be partially understood as a variation
of a well-known multi-scale physical process—advection-
diffusion. Thus, the MA representation of song history not
only improves behavioral predictions but reflects a rich, dy-
namic, information-dense, and interpretable mnemonic code.

Flexible transformation of song trajectories. Finally, we
asked whether the MA population coding algorithm, un-
covered by studying song representations in the fly brain,
could reflect a memory representation for general-purpose
flexible computation. Despite the strong correlations, the
multi-dimensional nature of the MA song code suggests that
generic dynamical patterns might be extractable from the
neural trajectory, similar to a reservoir computer—in which
computations are performed via linear readouts of fixed ran-
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Fig. 4. Advection-diffusion-like population trajectories as a general-purpose mnemonic representation. A. Schematic of population song representation from a fast-
adapt/slow-integrate MA population. B. Responses of example 20-neuron MA population to randomly selected song segments spanning a range of durations, projected onto
top 3 PCs of the song responses. In B-I parameters were set to be τint = 120s for all neurons, τa uniformly distributed between 100ms and 2s, and xs,xp uniformly
distributed between 0 and 1. C. Advection-diffusion-like population neural trajectories evoked by two example 30-second song segments. D. Euclidean distance in neural
space between trajectories evoked by randomly selected 5-minute songs as a function of elapsed time (black). 57 5-minute songs were used (the full set was not used
as many sessions ended before 5 minutes). Error bars show standard deviation across song pairs (100 pairs). Gray traces show same results for artificial i.i.d. songs 25
minutes long, using the same 20-neuron MA population except with τint = 106 (with τint → ∞ representing an idealized version of this neural code). γ indicates mean
and standard deviation of slope of best fit line on log-log plot (computed over 30 random selections of 100 song pairs). E. Example natural-song-evoked trajectories projected
onto top PCs. F. Projections of song-evoked population responses (endpoints of trajectories) onto PCs 3 and 4, and comparison with scrambled songs. G. As in D but after
projecting trajectories onto each of the top 4 PCs. H. Linear projections of song-evoked MA or equivalent LN population trajectories trained (Ridge Regression; α = 10−15)
to reproduce three sine waves of varying frequency. Gray trace corresponds to target approximation directly from linear weighting of song inputs (binary sine and pulse
inputs). I. Root-mean-squared error between target and prediction for 320s song segments at varying target periods using either MA or equivalent LN model. Error bars
show standard deviation across 54 songs. J. As in I, except predicting targets from MA, LN trajectories generated by song segments of varying duration, with each target
corresponding to a sine wave with half-period equal to the song segment duration. Dashed lines are populations with 20s ≤ τint ≤ 120s. Error bars as in I.

dom nonlinear transformations of time-series inputs (35, 36).
To test this we trained linear readouts of the 20-dimensional
neural trajectory evoked by a single example song segment
to generate target output time-series with three different
timescales (Fig 4H). We found that all three targets could be
reproduced with reasonable accuracy from linear projections
of the MA neural trajectory alone, but not from the matched
LN trajectory, or from song itself. As all three targets are gen-
erated from the same song trajectory, a single song can hence
be transformed via the MA code into a multi-dimensional be-
havioral signal, with different dimensions evolving at differ-
ent timescales.

Across songs, the MA code outperformed the matched
LN code over a range of target frequencies, although both
failed at very high frequencies, likely due to the many periods
present over a fixed-duration song (Fig 4I). However, faster
target variations could be reproduced well by the MA code
when short songs were used (Fig 4J). Further, when τint was

allowed to be heterogeneous (20 < τint < 120s), rather than
fixed, linear projections of the MA code could accurately re-
produce the target sine wave output over several scales (Fig
4J). (Note that although a bank of non-adapting LN integra-
tors can also be linearly transformed into very slow outputs,
this occurs at the expense of being able to remember local
temporal structure; Fig S12). Thus, the MA code reflects a
reservoir-like memory mechanism that converts song history
into multi-dimensional neural trajectories that can be linearly
combined to produce flexible, scalable, multi-dimensional
output signals, which could generically be used to drive com-
plex behavior modulation.

Discussion
We have shown how pure behavioral data can be used to
test neural encoding models in naturalistic settings to iden-
tify novel coding principles underlying the neural basis of
memory. Applied to fly acoustic communication (11, 12), our
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method revealed a candidate algorithm for creating and up-
dating a continually growing representation of song history.
Although the functional role of song memory in courtship re-
mains unknown, our results that longer songs produce more
unique (further apart) neural representations over multiple
timescales suggests that longer songs transmit more infor-
mation from the male into the female’s neural state, which
would allow her to make a more informed mating decision.

Our work suggests a simple, general, and biologically
plausible mnemonic coding algorithm—transforming input
signals into slow, advection-diffusion-like neural trajecto-
ries via heterogeneous adaptation and slow integration—that
could be applied in other systems that must process long,
richly patterned input sequences (Fig 5). Such an advection-
diffusion-like process also bears some resemblance to recent
observations in mice performing a complex decision-making
task, in which neural population activity traversed a nearly
1-dimensional “epoch”-ordered manifold (analogous to our
first PC) in each trial, with trial-to-trial behavioral variability
encoded in relatively small fluctuations within this manifold
(37), producing new evidence that small neural fluctuations
with rich dynamics may play an important role in processing
information and guiding behavior.

Generality and limitations of Natural Continuation. NC
is an approach for quantitatively evaluating neural coding
models using unrestrained behavior data. This serves as a
powerful complement to methods for decomposing naturalis-
tic behavior into motifs and their transitions in order to guide
subsequent neural experiments (38–42). By capitalizing on
naturalistic behavior, NC overcomes restrictions imposed by
limited neural recordings, providing a widely applicable ap-
proach for extending insights from the existing body of neural
data and models to the rapidly growing collection of natural-
istic behavioral data. One exciting direction, for instance,
would be to use NC to resolve dynamic neural computations
during naturalistic odor-tracking, by combining the rich liter-
ature on olfactory neural responses (13, 25, 34, 43, 44) with
behavioral recordings of flies following turbulent plumes
(45, 46).

Nevertheless, NC’s ability to augment discrimination
power over neural encoding models is subject to important
limitations. First, the behavior of interest must be present and
resolvable in the behavioral data. Second, mechanistic in-
sight is limited by the set of neural encoding models selected.
Third, all results are mediated by the encompassing behav-
ioral model in which the hypothesized neural dynamics are
embedded. In general, both the neural and behavioral mod-
els should be chosen in accordance with the question to be
investigated, i.e. with a “scientist-in-the-loop”. Finally, even
given a rich behavioral time-series, multiple neural models
may predict the behavioral data equally well—ultimately, the
power of NC is instead to rule out possible models, in order to
guide the search for neurally plausible solutions to complex
problems faced in natural settings.

Process memory. The MA model for song history we have
studied here falls within the framework of process memory

(47). In contrast to searching for specific neural circuits that
allow animals to maintain stimulus information through a de-
lay period (48–50), process memory posits that most neural
circuits have intrinsic mnemonic capabilities that are continu-
ally engaged and fundamentally entangled with online infor-
mation processing. While better suited for studying memory-
dependent behaviors without explicit storage, maintenance,
and retrieval periods, the lack of separation between memory
and information processing in this framework introduces sub-
stantial complexity. Our analysis of fly courtship, however,
reveals that process memory in this and potentially other sys-
tems may be supported by relatively simple mechanisms that
nonetheless have rich mnemonic capabilities.

Connection to diffusion models in neuroscience and
machine learning. The most well-studied role of diffusion
dynamics in neuroscience is in drift-diffusion models (DDM)
of evidence accumulation (29, 51). While our model shares
the core principle of integrating its inputs, it differs in three
key ways: (1) it takes place over a much longer timescale
(minutes) then typical DDM experiments (seconds); (2) in-
stead of directly receiving two competing input streams, the
model converts a single ternary input stream into a multi-
dimensional format via the bank of adaptation processes
(note also that each adaptation variable does not encodes a
specific “feature” of song—rather the heterogeneous pop-
ulation collectively encodes something closer to a multi-
dimensional continuum of song features); (3) our model here
is noiseless, hence the diffusion dynamics are pure signal,
unlike classic DDM in which much of the diffusion is due
to noise. In our model such diffusion-like encoding leads to
multi-scale separation of songs and produces a neural trajec-
tory that can be linearly transformed into flexible multi-scale
outputs.

The diffusion-like component of our model may in fact
be more similar to diffusion models of image generation in
machine learning (52, 53), where diffusion-like dynamics
are key to generating meaningful outputs. Ongoing efforts
have sought to apply the benefits of diffusion to tokenized
language processing (54), which is currently dominated by
transformer architectures (55), with most approaches focus-
ing on iteratively refining an entire text. Our work suggests
a different relationship between diffusion and tokenized in-
puts in the fly brain: the sequential presentation of token-like
inputs (song elements) deterministically drives a diffusion-
like neural trajectory to encode the input history. In fact,
the MA population model is strikingly similar to a recently
explored simple but powerful scheme for sentence embed-
dings, in which the constituent word embeddings (analogous
to our nonlinear transformation of recent song patterning) are
simply weighted and summed to represent the sentence (56).
Our model can also be interpreted as a locality-sensitive hash-
ing operation (57) for transforming variable-length input his-
tories into advantageous fixed-dimensional vector codes, in
our case retaining rich mnemonic information. Incorporating
such a process into a language model may provide a simple
means for representing unbounded input histories.
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Fig. 5. General neural principle for storing extended natural input sequences. Input sequences are passed through a bank of heterogeneous nonlinear adaptation
processes, then integrated. This produces a multi-dimensional, multi-scale population trajectory that can be linearly projected to produce flexible signals to modulate
behavior.

Network and cellular mechanisms. We have focused on
neural encoding, building on a long line of sensory neuro-
science research (23, 30, 58–60). Neural responses to song,
however, emerge at a mechanistic level from physical net-
work and/or cellular processes (18, 61, 62). Our work points
to the necessity of adaptation and integration, which could
each arise via either network or cellular mechanisms. For in-
stance, although identifying robust network mechanisms for
integration remains an open challenge in neuroscience (63),
inputs may also get integrated by intracellular mechanisms
such as calcium-sensitive cation currents (64, 65) or intrin-
sic excitability changes (66), which would make the mecha-
nism robust against network variability and obviate any need
for fine-tuning connectivity. Adaptation could also arise ei-
ther at a network level or locally; the fact that adaptation pa-
rameters are generated randomly in our model suggests this
process would also be robust to network variability. In gen-
eral, understanding network interactions in this system would
also help constrain models for spontaneous activity variabil-
ity unrelated to song history, refining predictions of response
variability over time or individuals. Although we focused on
memory via persistent neural activity, our results also do not
rule out the role of plasticity in the preservation of song mem-
ories beyond the minutes-long timescale. Plasticity in the
mushroom body, a canonical insect memory center (67, 68)
that also exhibits auditory responses (17), in principle could
reformat song representations into a synaptic code to persist
information after activity decays.

Role of other song-responsive neurons. Our work fo-
cused on fast-adapt/slow-integrating MA neurons, but neural
responses with faster integration time constants are clearly
visible in the head-fixed recordings (Fig 1E, S1) (17, 18).
While we found that these features were not needed to pre-
dict female walking speed in the courtship dataset we stud-
ied, they may be relevant for other purposes, for instance
integrating song memory with ongoing multi-sensory infor-
mation, mediating vaginal plate opening or ovipositor extru-
sion (16, 69) or responding to interactions between compet-
ing males (70). Functionally, shorter-timescale responses,
along with neurons exhibiting sine-offset responses (Fig S3),
may also help extend neural dynamics through quiet peri-
ods in song. These could then be used to generate song-
dependent dynamical behavioral modulation that continues
even when singing has ceased. Shorter timescale song re-
sponses may also reflect network processes used to form the
fast-adapt/slow-integrate responses.

Importance of song structure. Our work reveals several
functionally relevant ways in which song temporal structure
may interact with the dynamical responses of fly auditory
neurons. First, gaps and transitions in song allow the adap-
tation variables of the model to recover, enabling naturalistic
song to drive model neural responses much more strongly
than single-mode song blocks (Fig 3C), in which adapta-
tion causes responses to quickly plateau. Second, natural-
istic temporal correlations cause behaviorally predictive MA
neurons to more evenly explore their full dynamic range, sug-
gesting an efficient single-neuron code for song history (Fig
3A). Third, naturalistic song structure drove increased explo-
ration along the 3rd and 4th PCs of the population neural code
over scrambled song, i.e. “spreading out” the representation
(Fig 4F). Although adaptation has long been theorized to en-
hance neural coding by modulating responses to changing
stimulus statistics (71–75), here we have shown how adapta-
tion can support the efficient encoding of the stimulus tempo-
ral structure itself, potentially serving to efficiently encode an
entire input history. Our work also further refines a hypothe-
sis for the functional role of the complex temporal structures
of courtship song: whereas a white-noise-like song could in
principle carry more information than structured song (28),
if song must be processed by a neural dynamical system lim-
ited by biophysical responses, one will generally expect the
optimal information-transmitting song to have more structure
than white noise, which may be the case in fly courtship.

Predictions. Our model yields testable predictions about
neural coding during both fly social communication and
memory-dependent behaviors in other animals. First, a pop-
ulation of neurons in the female fly brain should exhibit an
increased response to natural over block song, since the gaps
and transitions in natural song allow the adaptation variables
mediating song responses to recover. Second, single neurons
in the fly brain, or potentially single dimensions of the popu-
lation response, should exhibit an accumulator-like dynamic
in response to natural song that roughly encodes how much
total song has transpired. Third, typical pairs of natural songs
should become more discriminable in their population code
over multiple timescales (Fig 4D). Fourth, natural songs, and
potentially other natural inputs that must be integrated over
long periods, should evoke multi-scale advection-diffusion-
like dynamics in the brain. We additionally predict that such
multi-scale dynamics may be a generic neural correlate of
fluctuating language-like inputs that must be remembered
over long timescales, e.g. in acoustic communication in mice
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(76), or narrative processing in humans or language models
(2). This could be used, for instance, to inform the search
for neuroimaging biomarkers for memory disorders (77). We
note that in general we may also expect these dynamics to be
multiplexed with other neural processes.

Origin of multi-scale behavior. A pervasive characteris-
tic and challenge of naturalistic animal behavior is that it
unfolds over multiple timescales (39, 78, 79). How these
timescales are organized and emerge from the many compo-
nents of the nervous system and the animal’s interaction with
its environment remains a basic open challenge. One central
hypothesis is that multi-timescale neural dynamics, which
could in turn drive multi-timescale behavior, emerge from
a hierarchy of brain areas with different recurrent process-
ing dynamics (47, 80). Our model, however, suggests that
multiple timescales can also emerge from a distinct, comple-
mentary mechanism: nonlinear expansion and transforma-
tion of a stream of rapidly fluctuating inputs, followed by in-
tegration, producing a multi-dimensional Brownian-like tra-
jectory. This represents an alternative source of multi-scale
neural dynamics, with rich mnemonic structure, which could
be engaged for general behavioral modulation or potentially
for complex tasks such as language processing.

Methods
Neural and behavioral data. We used 224 calcium record-
ings (GCaMP6s indicator, sampled at 8Hz) distributed across
50 different cell lines (multiple flies per cell line) in re-
sponse to 10-second blocks of pure sine or pure pulse song
presented through a speaker. Details can be found in (18).
Responses analyzed in Fig S1B,D and S6B were from pan-
neuronal imaging experiments in (17). We note that although
GCaMP6s has a time constant of ∼ 1s, in contrast to faster
indicators, it is unlikely that this influenced our findings be-
cause (1) the integration timescales we have studied are much
longer (up to minutes), and (2) NC enables the general com-
parison of encoding models informed by neural data, which
would rule out any encoding models fit to possibly con-
founded neural data if they don’t generalize to predict behav-
ior. Courtship sessions were collected and described in detail
in (11). Females were blind and pheromone-insensitive to in-
crease their auditory responses; otherwise both flies were free
to court in the arena. Songs were recorded with microphones
on the arena floor, then segmented into sine/pulse timepoints;
locomotion was recorded via overhead cameras then manu-
ally/automatically tracked.

Neural encoding models. For each neuron we fit the
MA model using gradient descent over its 4 parameters:
τint, τa,xs,xp, minimizing the squared error between the
model’s response and the trial-averaged calcium responses to
the sine and pulse blocks (including the 10-second stimulus
and a 10-second post-stimulus period). To fit the LN model
we derived an analytical relationship allowing us to parame-
terize the filters hs,hp by the same 4 parameters as the MA
model, such that the LN and MA model had the same step

response to sine and pulse input. We then performed gradient
descent over these 4 parameters to adjust the filters to capture
the offset response as well. The nonlinearity was signed rec-
tification (based on the sign of the calcium responses). We
fit linear readouts from song-evoked activity in the courtship
sessions to female walking speed using Ridge Regression.

Further methods details can be found in the Supplement.
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