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Abstract

RNA modifications shape gene expression through a smorgasbord of chemical changes to
canonical RNA bases. Although numbering in the hundreds, only a few RNA modifications are
well characterized, in part due to the absence of methods to identify modification sites. Antibodies
remain a common tool to identify modified RNA and infer modification sites through
straightforward applications. However, specificity issues can result in off-target binding and
confound conclusions. This work utilizes in silico A-dynamics to efficiently estimate binding free
energy differences of modification-targeting antibodies between a variety of naturally occurring
RNA modifications. Crystal structures of inosine and N6-methyladenosine (mPA) targeting
antibodies bound to their modified ribonucleosides were determined and served as structural
starting points. A-Dynamics was utilized to predict RNA modifications that permit or inhibit binding
to these antibodies. In vitro RNA-antibody binding assays supported the accuracy of these in silico
results. High agreement between experimental and computed binding propensities demonstrated
that A-dynamics can serve as a predictive screen for antibody specificity against libraries of RNA
modifications. More importantly, this strategy is an innovative way to elucidate how hundreds of
known RNA modifications interact with biological molecules without the limitations imposed by in
vitro or in vivo methodologies.

Introduction

Biology has an RNA complexity problem. Cells must make sense of a vast sea of RNAs that
function as protein code, regulatory molecules, enzymes, scaffolds, and other biological tools.
Furthermore, the 4 canonical RNA bases can be enzymatically modified into new chemical
structures that change their ability to base pair, form secondary structure, and interact with RNA-
binding proteins (1). These chemical additions can be as small as a single methyl group or as
large as a sugar moiety. Over 140 RNA modifications have been identified across all three
kingdoms of life (1). RNA modifications are prevalent in biology and function as an epigenetic
code to regulate development (2), respond to infectious diseases (3), and are involved in cancer
progression (4). Their combinatorial complexity highlights how individual or collections of RNA
modifications may alter an RNA’s fate or function. A current challenge is the development of
methods to identify all modification sites to decipher the roles of these RNA modifications in
biology.

A variety of methods can identify a few RNA modification sites. For example, chemical treatment
can identify mPA (e.g. GLORI (5)) and pseudouridine (e.g. pseudo-seq (6)) by taking advantage
of chemistries that affect a modified base differently than an unmodified base. Direct RNA
nanopore sequencing can also identify specific modifications like m°A (7-17) through differences
in electrical current perturbations as the modified RNA transverses the sequencing pore. Both
strategies, however, require tailor-made approaches to accommodate each RNA modification’s
unique biochemical characteristics. Furthermore, without employing enrichment strategies, low
abundance modifications remain difficult to detect. Adaptable methods are needed to elucidate
the full breadth of modified RNAs found in living organisms.

A common, versatile identification strategy uses antibodies to immunoprecipitate modified RNAs
(18). These enriched RNAs are then sequenced to identify RNA targets and infer modification
sites. Immunoprecipitation and sequencing methods are well established with straightforward
workflows, and enrichment permits identification of less prevalent modification sites. Indeed,
much of the work determining the modification sites of N6-methyladenosine (m°A, e.g. (19,20)),
N1-methyladenosine (m'A, e.g. (21-24)), 5-methylcytosine (m°C, e.g. (25,26)), and others have
relied on antibodies.

Antibodies can become de novo RNA-binding proteins through adaptive immunity.
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87  Immunoglobulin G (IgG) antibodies are comprised of two heavy and two light polypeptide chains
88 that assemble a pair of six hypervariable complementary-determining region (CDR) loops at their
89 antigen recognition interface (27-29). Antibodies recognize a variety of antigens through CDRs
90 thatvary in amino acid length and composition. How antibodies recognize proteins is well studied
91  (30), but how antibodies recognize modified RNAs is less clear. A polyinosine-antibody crystal
92  structure was determined bound to various nucleotides (31). Closer inspection of the structure
93 reveals a large, suitably configured pocket adjacent to the bound nucleotide (Fig S1), suggesting
94 that the antibody may have specificity toward nucleic acid, not single bases. Regardless, the lack
95 of antibody structures targeting other modified bases limits insights into how antibodies recognize
96 RNA modifications.
97
98  The success of using antibodies for RNA modification site identification depends on the quality of
99 the antibody (32,33). Antibodies with low specificity have assigned erroneous biochemical
100 functions to RNA modifications. For example, published studies reached differing conclusions
101  regarding the mechanism of the m'A modification. Two studies found m'A prevalent in the 5’ ends
102 of mRNA (23,24), suggesting that the modification enhances translation (24), while contrasting
103  studies reported it as rare in mMRNA (21,22). In the former studies, it was later discovered that the
104  antibody used for m'A RNA enrichment also had affinity towards 7-methylguanosine (m’G, (21)),
105 an abundant mRNA &' cap modification crucial for cap-dependent translation (34). These false
106  positive site identifications led to incorrect conclusions regarding m'A function. Because the
107 identification of RNA targets and their specific modification sites gives insight into their biological
108 and biochemical mechanisms, the development of antibodies with high affinity and high specificity
109 s a key to successfully discovering the biological roles of the many RNA modifications. However,
110  given the large number of RNA modifications and the subtle chemical differences between them,
111 off-targets of RNA modification antibodies will be a continuous, inevitable problem. The current
112  state of RNA chemistry prevents in vitro testing of all known RNA modifications, and thus new
113  methods are required to predict the specificity of RNA modification-targeting antibodies.
114
115 Computational approaches have the potential to screen antibodies for their predicted ability to
116  bind modified RNA bases. Physics-based, alchemical free energy calculations are an accurate,
117  rigorous, and cost-effective means to quantify chemical probe interactions with protein structures
118 insilico (35-37). These calculations compute relative binding free energies (AAGying) between two
119  or more molecules by transforming between alternate chemical groups in silico. Because they are
120  atthe heart of molecular dynamics simulations, these calculations also provide dynamic structural
121  characterization of macromolecular complexes. With these methods, changes in RNA-protein
122 binding affinities can be monitored as a function of the chemical differences between modified or
123 unmodified RNAs. Hence, modeling different RNA modifications can predict binding selectivity.
124
125 A-Dynamics is an efficient alchemical free energy method that can accurately and rapidly screen
126  hundreds of modified RNAs bound to a protein host. This method holds a key advantage over
127  other in silico strategies in that it can model multiple chemical variations simultaneously within a
128  single simulation (38,39), making it more efficient and higher throughput. In a A-dynamics
129  calculation, a variable A parameter allows chemical groups to dynamically scale between “on” and
130 “off” states during a molecular dynamics simulation. Akin to selection in an in vitro competitive
131  binding assay, this dynamic behavior effectively differentiates the varying affinities of target
132 molecules, providing insights into their binding characteristics. Thus, A-dynamics can rapidly
133  select for the best binders from a library of chemical modifications (40,41). To date, A-dynamics
134  has accurately measured the relative binding free energy differences of large chemical inhibitor
135 libraries targeting the HIV reverse transcriptase (42-44) and -secretase 1 (45,46), of mutations
136  at various protein-protein interfaces (47,48), as well as of the folding free energies of mutant T4
137  lysozyme proteins (49). Notably, chemical probe binding studies with A-dynamics demonstrated
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138 8- to 30-fold efficiency gains over other conventional free energy calculations (42,45). This
139  equates to months of computational time savings.

140

141  The following investigation tested whether A-dynamics could accurately predict how RNA
142  modifications affected RNA-protein interactions. This work determined the structures of two
143  modified RNA-targeting antibodies bound to inosine and m°A, revealing that these antibodies
144  recognize their target ligands similar to other modified RNA binding proteins. The structural
145 models permitted the use of A-dynamics to perform a computational screen of RNA base
146  modifications bound to inosine and m°®A antibodies to predict their binding specificities. These in
147  silico binding predictions were verified with in vitro binding assays. Collectively, the results
148 demonstrate how structural biology can be combined with A-dynamics to predict modified RNA-
149  protein interactions without the limitations imposed by biochemical experiment methodologies.
150

151 Results

152  The goal was to test whether A-dynamics could be used as an in silico strategy to accurately probe
153  modified RNA-protein interactions. Antibodies can serve as modified RNA-binding proteins. They
154  are commonly used as reagents to enrich for modified RNAs and determine modification sites in
155  biology (18). Currently, RNA modification targeting antibodies are relatively few in number, have
156 modest affinity toward their targets (32,33), and can have specificity issues that confound
157  biological conclusions (21). An antibody specificity screening method for known RNA
158 modifications will enable a comprehensive view of the RNAs enriched and provide insight into
159  how to improve antibody design.

160

161  High-resolution structures of antibodies targeting single modified RNA bases have not been
162  published. An inosine-targeting antibody structure is available (31), but an open pocket adjacent
163 to the nucleoside binding site potentiates the chance of the antibody binding to a dinucleotide
164  substrate (Fig S1). To avoid this confounder, additional antibody structures bound to modified
165 ribonucleosides were pursued. The protein sequences of available antibodies were predicted by
166 mass spectrometry and sequencing (see Methods). Recombinant antibodies were produced in
167 cell culture and used to generate antibody fragments (Fabs). Fabs were screened in crystallizing
168 conditions, and crystals were soaked or grown with target nucleoside ligands (see Methods).
169 These efforts lead to the determination of three modified RNA-targeting antibody crystal structures
170  (Table S1): one targeting inosine at 1.94 A and two targeting m®A at 2.02 A and 3.06 A.

171

172  1gG antibodies are composed of heavy and light protein chains, forming 6 variable loops on each
173  arm, or antibody binding fragment (Fab), that typically dictate binding affinity to its target substrate
174  (27-29). In the 1.94 A inosine and 3.06 A m°A antibody structures, a large, discontinous density
175 was observed at these variable loop regions where a modified purine target nucleoside could be
176  adequately modeled (Fig 1A,B). Rather than binding to loops on the periphery, the modified
177 nucleosides bound to a central cavity created by the 6 variable loops between the heavy and light
178 chains (Fig 1A,B). Binding of small molecules at this location has been observed in other antibody
179  structures (50). In the third 2.02 A mPA targeting antibody structure, density in this binding pocket
180 was not observed (Fig S2). Thus, two structures yielded high-resolution models of how purine
181 modified bases bind to antibodies.

182

183  Small molecule antibodies are selected through adaptive immunity to target a particular hapten
184  (51). Thus, antibodies become RNA-binding proteins through adaptation and can inform on how
185  biology designs a protein to bind an RNA modification de novo. Modified RNA-binding proteins
186 provide exemplary examples of potential binding architecture. For example, the YTH domains
187  bind to mPA with high specificity (52). This domain arranges its side chains to 1) create a specificity
188  pocket for the parent base and modification, 2) bind the nucleobase through -1 stacking, and 3)
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189 line the pocket periphery with positively charged side chains to accommodate the negatively
190 charged RNA phosphate backbone (Fig 1C). Antibodies targeting modified RNAs might also
191  mimic this strategy. Alternatively, they might use a collection of novel binding strategies, each
192  selected randomly through adaptive immune selection.

193

194  The inosine and m°A antibody structures both bound to their modified ribonucleoside ligands
195 similarly to other RNA-binding proteins. To specify the modified base, the inosine targeting
196 antibody used an asparagine to select for the O6 oxygen and N1 nitrogen of the inosine
197  nucleobase (Fig 1A). The m°A-targeting antibody created a hydrophobic pocket to accommodate
198 the methyl group (Fig 1B) and a glutamate side chain to hydrogen bond with the adenosine
199 nucleobase N1 nitrogen (Fig 1B). Interestingly, glutamate side chain coordination is also
200 observed in some YTH domains that bind m°A (Fig 1C, (53)). Both antibodies used paired
201 tryptophans to create a slot for favorable 11-11 stacking and a tyrosine for ribose ring interactions
202  (Fig 1A,B). However, these tryptophans and tyrosine came from differing variable loops in each
203  antibody and are organized differently in their central antibody binding pocket (Fig 1A,B). The
204  difference in binding pocket organization potentially reflects how these two antibodies were
205 isolated from different animals with separate adaptive immune responses. In sum, the antibody-
206 ligand structures revealed that these two antibodies use similar strategies to bind their modified
207  base targets that may permit differentiation between unmodified base counterparts.

208

209  The quality of the structures enabled predicting in silico how these antibodies may interact with
210 other RNA nucleobases. There are over 140 different RNA modifications identified in biology,
211 many of which are not available as commercial reagents or lack protocols to synthesize in vitro.
212 A library of 44 modified and 4 unmodified nucleobases was selected based on published
213  thermodynamic parameters for RNA modifications in the CHARMM force field (54) and their
214  commercial availability for experimental testing in vitro (Fig $3). A-Dynamics was used to assess
215 differences in relative binding free energies between inosine or m°®A versus each library
216  nucleobase when bound to their respective antibodies (see Methods, Fig 2, and Fig S4). During
217 the simulations, some of the modified nucleosides unbound from the antibody (Fig S5),
218  presumably due to having poor binding affinity or steric clashes, and were removed from further
219  study (Table S2 and S3). Similar to previously performed studies (42-44,47-49), relative binding
220 free energies (AAGuing) Were calculated for the nucleosides that remained antibody bound.
221  Examples of the results obtained are shown (Fig 3 and 4) with full results reported in the
222 Supplement (Table S2 and S3). A positive AAGying Value indicates poorer binding and a negative
223 value suggests enhanced binding when compared to the native inosine or m°A base. As a control,
224  inosine and m®A modified bases were perturbed into an identical but distinct copy of themselves
225  within their respective antibody complexes. These free energy differences were near zero (Fig
226  3A and 4), as expected of a base replacing itself, and indicated that the A-dynamics calculations
227  were working correctly.

228

229  A-Dynamics predicted differing specificities and off-targets for these two antibodies. The inosine
230 antibody had many predicted off-targets that included uridine (Fig 3A) and uridine modifications
231  (Fig 3B). Inspection of the models revealed that hydrogen bonding of the asparagine side chain
232 tothe O6 oxygen in inosine could be satisfied by the O4 oxygen in uridine (Fig S6A). Many uridine
233 modifications had an O4 oxygen available for hydrogen bonding, potentially explaining why
234  related molecules all had higher predicted binding affinities in the A-dynamics calculations. In
235  contrast, cytidine and adenosine were not predicted to enhance binding (Fig 3A and Table S2).
236  Both nucleosides have nitrogens at similar positions, potentially making the pocket less favorable
237  for these bases to interact by removing hydrogen bonding. Finally, a further inspection of the
238  structures revealed a larger binding pocket in the inosine versus the m®A antibody binding pocket
239 (Fig 1A,B). This larger pocket may accommodate a greater variety of shapes and sizes,
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240 increasing the propensity for off-targets. Thus, A-dynamics predicted the inosine antibody to have
241  many off-targets in this modestly sized ribonucleoside library.

242

243  In contrast to the inosine antibody, A-dynamics predicted that the m°®A antibody had relatively few
244  off-targets (Table S3). As discussed previously, the binding pocket was smaller (Fig 1A,B) and
245  required a N1 nitrogen on the nucleobase for hydrogen bonding (Fig 1B). Along with m°A, a few
246  adenosine bases were predicted to bind (Fig 4 and Table S3), including adenosine and N6,NG-
247  dimethyladenosine (m°®A), a dimethyl modification at the N6 nitrogen position (Fig S6B,C). Closer
248 inspection of the structure revealed that the hydrophobic pocket had enough space to
249  accommodate a second methyl group (Fig S6C). Similar to the inosine antibody, cytidine was
250 predicted to be a poor binder with a high, positive free energy difference (Fig 4). In summary, the
251  m°®A antibody had fewer off-targets compared to the inosine antibody but still was predicted to
252  bind to nucleosides other than m°®A.

253

254  While A-dynamics has demonstrated accuracy with modeling protein-protein and protein-small
255  molecule binding interactions (42-48), it has so far been untested with respect to reproducing
256  protein-RNA interactions. To evaluate our in silico predictions in vitro, Enzyme-Linked
257  Immunosorbent Assays (ELISAs) were used to probe the binding of inosine and m®A antibodies
258 to target and off-target RNA bases. RNAs were synthesized through solid-state chemistry (see
259  Methods) to create biotin-labeled oligomers of inosine, adenosine, uridine, and cytidine to test the
260 inosine antibody binding. Cytidine oligos with single base changes of adenosine, m°A, and m%A
261  were synthesized to test the m°®A antibody binding. The biotin-labeled oligos were bound to wells
262  coated with a streptavidin derivative. Wells without oligo served as a background control. After
263  oligo incubation and washing, the inosine and m°®A antibodies were incubated at varying
264  concentrations. Bound inosine and m°®A antibodies were detected with a secondary horseradish
265 peroxidase (HRP) conjugated antibody that targeted mouse IgG. No inosine or m°A antibody wells
266  were used to control for secondary antibody background. The presence of secondary antibody
267  was detected with an HRP chromogenic substrate, with the absorbance measured as an indirect
268  reading for inosine or mPA antibody binding.

269

270  The inosine and m®A antibody in vitro binding results agreed with the A-dynamics predictions (Fig
271  5). The inosine antibody bound to inosine and uridine oligos (Fig 5A), although inosine binding
272  was observed at much lower antibody concentrations. In contrast, the inosine antibody did not
273  bind to adenosine or cytosine oligos (Fig 5A). Likewise, the m°A antibody bound to m°A containing
274  cytidine oligos but bound poorly to cytidine only (Fig 5B), as expected. As A-dynamics predicted,
275  the m°A antibody bound to an m®A-containing oligo (Fig 5B). The antibody also bound to an
276  adenosine-containing oligo (Fig 5B) but to a lesser degree than m°A. Regardless, the in vitro
277  binding results matched the predictions of A-dynamics, supporting the accuracy of this in silico
278  method to identify modified RNA-protein interactions.

279

280 Discussion

281  With hundreds of RNA modifications identified in biology, new methods are required to determine
282  the sites of each of these chemical changes to determine their functions. Antibodies targeting
283 RNA modifications are a versatile tool to enrich and determine modification sites, but their
284  reliability hinges upon their accuracy. To this end, inosine and m°A antibody structures bound to
285  their modified ribonucleoside targets were determined to high resolution. These structures then
286 facilitated the use of A-dynamics, an in silico free energy calculation, to estimate how the
287  antibodies may bind other unmodified and modified RNA bases, with worsened, neutral, or
288 enhanced binding affinities. A-Dynamics predictions matched well with in vitro binding assay
289  results, supporting the accuracy of using this computational approach to measure untested RNA-
290 protein interactions. In its simplest application and as performed in this work, the method can be
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291 used to determine off-target RNA base interactions with antibodies used for modified RNA
292  enrichment and site identification. But the strategy holds greater promise to inject insight into the
293  biochemical mechanisms of RNA modifications by determining how any modified RNA,
294  commercially available for biochemical investigation or not, may interact with proteins and other
295  molecules (Fig 6).

296

297 The determined antibody structures targeting modified purines revealed identical binding
298  strategies toward their respective modified RNA bases, reminiscent of modified RNA-binding
299 proteins. Each antibody had a specificity pocket and used tryptophans to create a slot for - 1
300 stacking with the nucleobase. Only one of these tryptophans had a similar sequence position
301 between the two antibodies. The other came from a separate loop, leading to RNA binding in
302 completely different orientations. These antibodies were created through adaptive immunity,
303  supporting the notion that mimicking modified base RNA-binding proteins by creating a specificity
304 pocket and using -1 stacking for nucleobase interactions is a competent way to bind a modified
305 nucleobase. Thus, convergent adaption may have led both purine-targeting antibodies to follow
306 a similar binding strategy as modified RNA-binding proteins. The results lead to the speculation
307 that all modified RNA-targeting antibodies bind to their targets similarly. Examples of pyrimidine-
308 targeting antibody structures will be necessary to further probe this concept.

309

310 Antibodies are heavily used reagents to enrich modified RNA for sequencing and site
311  identification. This strategy has been used to identify sites of many different RNA modifications to
312  deduce their biological and biochemical mechanisms. Regardless of new methodologies to
313  determine RNA modification sites, antibodies will continue to be used to enrich for less abundant
314 modifications. Thus, antibody binding to off-target RNA modifications will continue to be a problem
315 inresearch. The chemical similarities between many RNA modifications make antibody specificity
316 an expected complication. This work demonstrates how A-dynamics is a viable in silico tool to
317 determine potential RNA off-targets of antibodies. The method does not require the availability of
318 modified nucleosides, RNA oligomers, or other in vitro reagents that are currently unavailable.
319  With an accurate, high-resolution structural model, A-dynamics can test the full breadth of RNA
320 modifications in biology. Additionally, A-dynamics has previously investigated the effects of protein
321  mutations on binding (47,48). The method can thus be used to rationally design antibodies for
322  improved binding specificity and affinity.

323

324  This is the first study to use A-dynamics to probe nucleic acid-protein interactions via nucleic base
325  perturbations. Other in silico molecular modeling and free energy methods have been employed
326  to study nucleic acid-protein interactions, including predictions of DNA binding to proteins (55)
327  and probing mutations in DNA-protein complexes (56,57). A-Dynamics has several key attributes
328 that make it advantageous over other in silico calculations. First, A-dynamics enables multiple
329 modified bases to be calculated within a single simulation. This can drastically improve efficiency
330 over other free energy methods that can only investigate a single perturbation at a time, therefore
331 requiring many simulations to study multiple perturbations. Second, A-dynamics can
332  simultaneously sample modifications at multiple sites within a chemical system. This enables
333 base changes at different RNA sequence positions to yield free energy results for multiple
334 modification combinations. There are limitations to A-dynamics as well. Many of the calculated
335 free energy differences, such as with uridine bound to the inosine antibody (Fig 3A) or with m®A
336 bound to the m°A antibody (Fig 4), predicted greater enhancement of binding than what was
337 observed in vitro (Fig 5). The starting models for the A-dynamics calculations were based on the
338 crystal structures of antibody fragments bound to nucleosides, but binding was tested in vitro with
339 RNA oligos. This omission of the RNA phosphate backbone from the model, as well as the
340 potential for sporadic self-associations or secondary structures in the unbound oligo, may have
341 impacted the true binding values. Additional work probing RNA-protein interactions with A-
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342  dynamics will undoubtedly improve the simulations. Moreover, the refinement of molecular
343  dynamics force fields, particularly with respect to nucleic acids, is a bustling area of research, and
344  future advancements promise to further enhance the accuracy of these classical simulations.
345

346  While hundreds of RNA modifications have been identified, only a few dozen are available for
347  experimental testing in vitro. Novel methods must be developed to examine how all modifications
348  affect molecular interactions to decipher their biological mechanisms. This study establishes a
349  workflow for using A-dynamics to probe nucleic acid-protein interactions in silico (Fig 6). The
350 combinatorial efficiency of A-dynamics enables rapid in silico examination of currently known and
351 newly discovered RNA modifications. With high-resolution structures of nucleic acid-protein
352 complexes, modified and unmodified nucleoside bases can be probed to explore how chemical
353 changes to RNA affect protein binding interactions. This computational approach can be used for
354 DNA or RNA and is not limited by available chemistry. The work presented demonstrates how
355 this strategy can probe for the specificity of antibodies. Future work can utilize this method to test
356 how hundreds of RNA modifications affect their molecular interactions with any RNA-binding
357  protein or other nucleic acids, delivering novel insights into their molecular functions.

358

359 Materials and Methods

360 Recombinant antibodies. Commercial antibodies targeting inosine and m°®A were sequenced by
361 Abterra Biosciences (San Diego, CA) (58-60). Briefly, the antibodies were fragmented and
362 submitted for MS/MS mass spectrometry. The data was then analyzed to predict the probable
363 antibody sequence. Full-length monoclonal antibodies (mAb) and antibody fragments (Fab) were
364 produced recombinantly in human cells by Sino Biological (Wayne, PA). Fabs were made from
365 mADbs by papain protease digestion, Fc removal by protein A, and size exclusion chromatography.
366 All mAbs and Fabs were shipped and stored in phosphate buffered saline (PBS; 137 mM NacCl,
367 2.7 mM KCI, 10 mM NazHPQO4, 1.8 mM KH2POy).

368

369 Crystallography. Recombinant Fabs were concentrated to approximately 3-5 mg/ml and sitting
370 drop crystal trays were set with an Oryx4 (Douglas Instruments; Hungerford, United Kingdom).
371  The mPA Fab was set up without and with 1 mM mPA nucleoside (MedChemExpress, HY-N0086).
372  Crystals were observed by 4 weeks in the following conditions: 1) the inosine Fab in 50 mM Tris
373  pH 8.3, 15% PEG 4000, 0.1 mM EDTA,; 2) the m°A Fab only in 20% (v/v) PEG 2K, 0.2 M MgCl2,
374 100 mM Tris pH 8.0; and 3) m®A Fab with 1 mM m°A nucleoside in 0.17 M ammonium sulfate,
375 25.5% (w/v) PEG 4000. The inosine and m°A Fab only crystals were incubated in freezing
376  conditions (inosine: 21% PEG 4K, 50 mM Tris pH 8.3, 0.1 mM EDTA, 20% glycerol, 0.2 mM
377 inosine nucleoside (Sigma, 14125-1G); m°A: 20% (v/v) PEG 2K, 0.2 M MgCl,, 100 mM Tris pH
378 8.0, 5-15% (v/v) glycerol, 1 mM m®A nucleoside) with addition of 10 mM inosine and 10 mM m°A
379 nucleoside for 30-60 minutes prior to freezing, respectively. X-ray diffraction data was collected
380 at Lilly Research Laboratories Collaborative Access Team (LRL-CAT; Argonne National
381 Laboratory; Argonne, IL) and ESRF ID30B (Life Sciences Collaborative Access Team (LS-CAT)
382  operating at the European Synchrotron Radiation Facility (ESRF); Grenoble, France). Data was
383 collected and processed by Lilly, UW-Madison Crystallography Core, and the authors. All data
384 was indexed, merged, and scaled in XDS/Aimless (61). Space groups were determined in
385  XDS/pointless (61). Model building and refinement were performed in Coot (62) and Phenix (63),
386 respectively. In some of the inosine and m°A Fab density maps, a large density was observed at
387 the Fab antigen binding site. The respective modified RNA nucleosides used in crystallization and
388 in freezing modeled well into these densities (Fig 1A,B). The final structures and merged
389 reflection files are deposited at wwPDB (wwpdb.org; PDB IDs: 8SIP, 8TCA, 8VEV). Unmerged
390 reflection data were deposited at Integrated Resource for Reproducibility in Macromolecular
391 Crystallography (proteindiffraction.org).

392


https://doi.org/10.1101/2024.01.26.577511
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.26.577511; this version posted January 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

393 System setup for molecular modeling. Coordinates for the inosine and m°A Fabs were
394  obtained from our Protein Data Bank (PDB) entries 8SIP and 8VEV. Residue flips for His, Glu,
395 and Asn were assessed using the MolProbity webserver (64). Protonation states of titratable
396 residues were assigned based on their predicted pKa values at pH 7.0 using PROPKA (65,66).
397 The protein-nucleoside complexes were then solvated using the CHARMM-GUI Solution Builder
398  (67), requiring a minimum of 10 A of solvent padding from each face. The resulting cubic water
399  box dimensions were 101 A per edge for the inosine system and 98 A per edge for the m°A
400 system. Sufficient K* or CI" ions were added to neutralize the net charge of each system.
401  Additional K* Mg**, and CI ions were then added to achieve a final ionic strength of 150 mM KClI
402  and 0-5 mM MgCl.. This process was repeated to solvate the individual nucleosides without their
403 respective Fabs, yielding unbound model systems with cubic box dimensions of 30 A per edge
404  for inosine and 32 A per edge for m°A.

405

406  All simulations were performed using the CHARMM molecular simulation package ((68,69),
407 developmental version c47a2) with the Basic A-Dynamics Engine (BLaDE) on graphics
408  processing units (GPUs) (70). Prior to running molecular dynamics, each system was subjected
409 to 250 steps of steepest descent minimization. Molecular dynamics (MD) simulations were then
410 run in the isothermal-isobaric (NPT) ensemble at 25°C and 1 atm using a Langevin thermostat
411  and Monte Carlo barostat (70-72). The g-BAOAB integrator was used with an integration timestep
412  of 2 fs and trajectory frames were saved every 1000 steps (70,73). Bond lengths between
413  hydrogens and heavy atoms were constrained using the SHAKE algorithm (74-77). Periodic
414  boundary conditions were employed in conjunction with Particle Mesh Ewald (PME) electrostatics
415 (78-80), to compute long-range electrostatic forces, and force-switched van der Waals (vdW)
416 interactions (81). Nonbonded cutoffs were set to 10 A, with force switching taking effect starting
417 at9A.

418

419  All explicit solvent calculations were conducted using the TIP3P water model (82). The
420 CHARMMS36 protein force field was used to represent the inosine and m°A Fabs, and the
421 CHARMMS36 nucleic acid force field was used to represent the RNA oligos (83-87). Modified
422  ribonucleobase parameters were used to model noncanonical bases in the ribonucleoside (54).
423  Forthe alchemical perturbations performed with A-dynamics, ribonucleoside base mutations were
424 represented using a hybrid multiple-topology approach (88). In the case of purine-to-purine
425  mutations, analogous atoms in the shared core were harmonically restrained to one another using
426  the Scaling of Constrained Atoms (SCAT) interface described previously (89).

427

428 A-Dynamics calculations. From 112 parameterized modified ribonucleobases available (54), a
429 library of 48 bases, comprising 44 modified and 4 unmodified base candidates, were selected for
430 in silico screening with A-dynamics. Those with charged functional groups, bulky side chains, or
431  modifications to the ribose sugar were excluded. Simulations were conducted for each of the 48
432  ribonucleosides with A-dynamics to alchemically transform wild-type nucleoside bases (inosine or
433  m°®A)into a corresponding mutant base and compute relative differences in binding affinities. Prior
434  toinitiating A-dynamics production sampling, appropriate biasing potentials must first be identified.
435  The Adaptive Landscape Flattening (ALF) (49,90) algorithm was used to identify optimal biasing
436  potentials to facilitate dynamic and frequent alchemical transitions between the perturbed bases.
437  For each perturbation, ALF identified initial biases by first conducting one hundred simulations of
438 100 ps MD sampling, followed by 13 simulations of 1 ns each. These biases were then further
439  refined via five replicate simulations of 5 ns each. With optimal biases identified, five independent
440  production simulations of 25 ns were conducted, with an initial 5 ns of sampling removed from
441  free energy determinations for equilibration. Ribonucleosides that unbound from the Fab binding
442  site during A-dynamics production sampling were labeled as unfavorable and were not pursued
443  further. In all other cases, final AAGying Values were calculated by Boltzmann reweighting the end-
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444  state populations to the original biases with WHAM (49,91). Uncertainties (o) were calculated by
445  bootstrapping the standard deviation of the mean across each of the five independent trials. From
446 these results, modified oligonucleotides were selected for synthesis based on commercial
447  availability.

448

449 RNA oligonucleotide preparation. RNA oligonucleotides used for binding affinity
450 measurements and crystallographic studies were synthesized on an ABI 394 DNA/RNA
451  synthesizer (Applied Biosystems (ABI); Waltham, MA). m°A (10-3005-90; Glen Research;
452  Sterline, VA), m®%A (ANP-8626; Chemgene; Wilmington, MA), and inosine (ANP-5680;
453  Chemgene) modified RNA phosphoramidites; Biotin phosphoramidite (CLP-1517; Chemgene);
454  and canonical RNA (A, ANP-5671; U, ANP-5674; C, ANP-6676; Chemgene) phosphoramidites
455  were purchased from commercial sources. The canonical and modified phosphoramidites were
456  concentrated to 0.1 M in acetonitrile. Coupling was carried out using a 5-benzylthio-1H-tetrazole
457  (5-BTT) solution (0.25 M) as the catalyst. The coupling time was 650 seconds. 3% trichloroacetic
458 acid in methylene chloride was used for the detritylation. Syntheses were performed on control
459  pore glass (CPG-1000) immobilized with the appropriate nucleosides. All L-oligonucleotides were
460 prepared with DMTr-on and in-house deprotected using AMA (1:1 v/v aqueous mixture of 30%
461  w/v ammonium hydroxide and 40% w/v methylamine) for 15 minutes at 65°C. The RNA strands
462  were additionally desilylated with EtsN*3HF solution to remove TBDMS groups. The 5-DMTr
463  deprotection was carried out using the commercial Glen-Pak purification cartridge (Glen
464  Research). Purification was initially performed by the commercial Glen-Pak purification cartridge,
465  followed by further purification with a 15% denaturing PAGE gel. The oligonucleotides were
466  collected, lyophilized, desalted, re-dissolved in water, and then concentrated as appropriate for
467  downstream experiments. Concentrations of the aqueous RNA samples were determined by their
468 UV absorption at 260 nm, using the Thermo Scientific Nanodrop One Spectrophotometer. The
469 theoretical molar extinction coefficients of these samples at 260 nm were provided by Integrated
470 DNA Technologies.

471

472  ELISA. Biotin-labeled, RNA oligos were diluted to 100 nM in ELISA blocking buffer (PBS, 0.05%
473  Tween-20, 0.2 mg/ml bovine serum albumin (BSA, BP9706100; Fisher Scientific; Hampton, NH)),
474  and 100 ul were incubated in clear, 96-well NeutrAvidin™ Coated Plates (PI15217; Pierce;
475  Waltham, MA) overnight at 4'C. Two technical replicates were set for each RNA oligo. ELISA
476  blocking buffer without oligo condition was used as a negative control. The plates were washed
477  with PBS-T (PBS with 0.05% Tween-20) 3 times, and varying concentrations of recombinant mAb
478  incubated in each well for 1 hour at room temperature (approximately 20°C). A no-mAb condition
479  was used as a no primary antibody control. Plates were washed 3 times again with PBS-T and
480 incubated with goat anti-mouse IgG conjugated to horseradish peroxidase (HRP, NBP2-30347H;
481  Novus Biologicals; Centennial, CO) at 0.05 pg/ml in ELISA blocking buffer for 1 hour at room
482  temperature (approximately 20°C). The plates were washed again with PBS-T and incubated with
483 50 ul of room temperature 1-Step Ultra TMB-ELISA Substrate Solution (P134028; Pierce). After
484 15 minutes, the reaction was stopped with 50 ul of 2M Sulfuric Acid (A300S-500, Fisher Scientific).
485 The plates were analyzed by 450 nm absorbance with a Synergy H1 microplate reader (BioTek
486 Instruments; Winooski, VT). All ELISA experiments were replicated at least 3 times. The 3
487  cleanest runs were reported. Averages, standard deviations, and graphs were performed and
488 made in GraphPad Prism version 10.1.1 for MacOS (GraphPad Software, Boston, MA).

489
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510 Figure Captions

511

512  Fig 1. Binding of inosine and m°®A targeting antibodies mimics RNA-binding proteins. (A) Crystal
513  structure of the inosine targeting antibody fragment to 1.94 A (PDB ID: 8SIP). Overview (left) and
514  magnified (right) rendition of the antibody bound to inosine nucleoside. 1F.F. density without
515 ligand in green mesh. Heavy chain (H) in dark blue, light chain (L) in light blue, and inosine in
516 orange. Interacting amino acids include heavy chain residues Asn35, Trp40, Trp50, Gly99,
517 Tyr104, and Leu106 and light chain residues Ser97 and Trp101. Those discussed in the main text
518 are labeled. (B) Crystal structure of the mPA-targeting antibody fragment to 3.06 A (PDB ID:
519  8VEV). Labeling same as in (A), except m°A nucleoside in orange. Interacting amino acids include
520 heavy chain residues Trp33, Asn35, Glu50, Tyr61, Trp101, and Phe105 and light chain residues
521  Tyr34, Trp93, and Leu98. Those discussed in the main text are labeled. (C) Structure of a YTH
522  bound to m®A (YTHF1, PDB ID: 4RCJ). Residues in dark blue. m°A in orange. Interacting amino
523  acids include Tyr397, Asp401, Trp411, Cys412, Asnd41, Trp465, Lys469, Trp470, and Asp507.
524  Those discussed in the main text are labeled.

525

526  Fig 2. In silico A-dynamics workflow for screening potential binders to the inosine and m°A
527 antibodies. A three-step process was used to filter candidates from a library of 48 ribonucleosides
528 for in vitro antibody binding validation. (1) For each mutant library candidate, a A-dynamics
529  simulation was conducted to calculate a relative binding free energy between the mutant and its
530 respective native ribonucleoside ligand (inosine or mPA). (2) All ribonucleosides that unbound
531 during these simulations were deemed unfavorable and excluded from further processing. (3)
532  Mutant bases with relative binding free energies deemed favorable (AAGying < -0.7 kcal/mol) were
533  selected for in vitro validation with binding assays based on commercial availability.

534

535  Fig 3. Highlighted binding trends from the inosine antibody A-dynamics screen. (A) A-Dynamics
536 predicts loss of binding (red) for cytidine (C), no change in binding (grey) for inosine and
537 adenosine (A), and enhancement of binding (green) for uridine (U). Estimated relative binding
538 free energies (AAGying) and uncertainties (o) are listed. (B) The predicted inosine antibody
539  promiscuity for U generalizes to many of its derivatives. Estimated relative binding free energies
540 and uncertainties are listed in green. The thickness of each equilibrium arrow is proportional to
541 the favorability of the corresponding transition. Seven other uridine derivatives (Ux7) showed
542  enhanced binding but are not depicted. See Table S2 for a complete list.

543

544  Fig 4. Highlighted binding trends from the m°A antibody A-dynamics screen. A-Dynamics predicts
545 loss of binding (red) for cytidine (C), no change in binding (grey) for m®A and adenosine (A), and
546  enhancement of binding (green) for m®A. Estimated relative binding free energies (AAGpind) and
547  uncertainties (o) are listed. See Table S3 for a complete list.

548

549  Fig 5. ELISA binding assay results confirmed A-dynamics predictions of antibody off-targets. (A)
550 Absorbance units reported by ELISA indicating the binding affinity of inosine antibody to inosine
551 (1), uridine (U), adenosine (A), and cytidine (C) over varying protein concentrations. Double
552  asterisks (**) denote a p-value < 0.01. Inosine serves as a positive control. In line with A-dynamics
553  predictions, U identified as an off-target while A and C demonstrated negligible binding. (B)
554  Absorbance units reported by ELISA indicating the binding affinity of m®A antibody to m®A, m%A,
555 adenosine (A), and cytidine (C) at varying protein concentrations. Double asterisks (**) denote a
556  p-value < 0.01. m°A serves as a positive control. Again, matching A-dynamics predictions, m®A
557 and A are identified as off-targets while C demonstrated negligible binding. All p-values calculated
558 are available in Fig S6D,E.

559
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560 Fig 6. Proposed strategy to predict how proteins bind canonical and modified RNA. (1) Starting
561  with an RNA-protein structural model, (2) an in silico A-dynamics screen can be conducted to
562  assess the favorability of the protein’s interactions with a complete range of RNA bases. (3) This
563 approach provides an economical and effective means to explore the full extent of a protein's
564  RNA-binding capabilities that can be tested further in vitro.

565

566  Supplemental Figure Captions

567 Table S1. Data collection and refinement statistics for the inosine and m°A antibody crystal
568  structures.

569

570 Table S2. Complete table of A-dynamics results for inosine antibody screening with the RNA
571 library. RNA chemical structures available in Fig S3. Relative binding free energy, AAGping.
572  Standard deviation, +o. Unbound, u.b. Not specified due to bad sampling, n.s. Entries
573  corresponding to favorable modifications (AAGuina < -0.7 kcal/mol) are emphasized in bold italics.
574  Patch name from Xu et al., 2016.

575

576  Table S3. Complete table of A-dynamics results for m°A antibody screening with the RNA library.
577 RNA chemical structures available in Fig S3. Relative binding free energy, AAGuind. Standard
578  deviation, +0. Unbound, u.b. Not specified due to bad sampling, n.s. Entries corresponding to
579  favorable modifications (AAGying < -0.7 kcal/mol) are emphasized in bold italics. Patch name from
580 Xuetal., 2016.

581

582  Fig S1. A previously published poly-inosine antibody has a large binding pocket that may
583 accommodate multiple nucleobases. Overview (left) and magnified image (right) of the poly-
584  inosine antibody fragment (PDB ID: 1MRD) binding pocket. An inosine mononucleotide (orange)
585 was modeled into the missing ligand density (green). Heavy chain residues (H) in dark blue and
586 light chain residues (L) in light blue. Water molecules substituting for the potential second
587 mononucleotide are depicted as red spheres, indicating the potential space to bind a second
588 nucleobase. Interacting amino acids include heavy chain residue Arg96 and light chain residues
589  Asn28, Asn30, Tyr32, Lys50, and Ser91. The extended binding pocket (red arrow) includes light
590 chain residue Arg96 and heavy chain residues GIn35, Trp47, Glu50, and Asn58.

591

592  Fig S2. Crystal structure of the m°A Fab apo- form to 2.05 A (PDB ID: 8TCA). Critical binding
593 pocket amino acids discussed in the main text are labeled. Heavy chain residues (H) are
594  represented in dark blue, light chain residues (L) in light blue, and waters as red spheres. Depicted
595  binding pocket amino acids match those of the m°A Fab holo- form (Fig 1A).

596

597 Fig S3. Chemical library of ribonucleoside bases. The library includes the 4 canonical
598 ribonucleobases (A, C, G, and U) and 44 naturally occurring modified derivatives (12 As, 6 Cs, 8
599 Gs, and 18 Us). Differences between each modification and its respective canonical base are
600 highlighted in green.

601

602 Fig S4. Molecular dynamics simulation movie example of the m°A antibody with a bound
603  nucleoside target. The m®°A Fab binds tightly to m°,A. Movie made in Pymol (Schrédinger, Inc.).

604

605 Fig S5. Molecular dynamics simulation movie example of the m®A antibody with an unbinding
606  nucleoside target. The m°A Fab unbinds from uridine. Movie made in Pymol (Schrédinger, Inc.).

607

608  Fig S6. Structural models of inosine and m®A antibodies bound to representative off-target RNAs.
609 (A) Magnified binding site of the inosine antibody fragment in complex with uridine. (B-C)
610  Magnified binding site of the m°A antibody fragment in complex with (B) m®A or (C) adenosine
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611 (A). Heavy chain residues (H) are represented in dark blue, light chain residues (L) in light blue,
612  and the off-target nucleoside in orange. Critical amino acid contacts labeled. (D-E) Table of t-test
613  p-value statistics for (D) inosine and (E) m°A antibody ELISA binding assay results reported in
614  Fig 5. p-values < 0.01 in bold.
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in refinement

30804 (2931)

31042 (2999)

31207 (3391)

Reflections used 1554 (154) 1543 (162) 1307 (142)
for R-free
R-work 0.2043 (0.2460) 0.1807 (0.3043) 0.2238 (0.3156)

R-free

0.2454 (0.2914)

0.2238 (0.3201)

0.2531 (0.3100)
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CC(free) 0.929 (0.494) 0.952 (0.735) 0.896 (0.865)
Number of non- 3531 3562 9807
hydrogen atoms
macromolecules 3277 3239 9649

ligands 19 36 108
solvent 235 287 50
Protein residues 426 425 1267
RMS(bonds) 0.008 0.009 0.002
RMS(angles) 1.10 1.18 0.56
Ramachandran 97.62 97.61 95.34
favored (%)
Ramachandran 2.38 2.39 4.58
allowed (%)
Ramachandran 0.00 0.00 0.08
outliers (%)
Rotamer outliers 0.80 0.54 0.09
(%)

Clashscore 6.46 1.70 2.09
Average B-factor 32.66 33.80 91.07
macromolecules 32.19 33.22 91.26

ligands 32.70 53.08 81.28
solvent 39.15 37.94 75.58

Number of TLS 1 9 6
groups

Statistics for the highest-resolution shell are shown in parentheses.
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Table S2: Relative binding free energies for inosine Fab screening. Table S2
Modified Base Patch Name AAGhind 0
A ADE -0.112 0.172
m2A 2MA u.b. u.b.
mfA 6MA 1.726 0.186
m®.A M6A 0.605 0.231
méA 8MA 2.721 0.389
m'l 1MI 0.783 0.138
/ INO 0.089 0.024
ms2m°A SMA -0.037 0.335
ac®A 6AA u.b. u.b.
i°A 6IA n.s. n.s.
msZi°A MIA 0.598 0.352
ms?ioA SIA u.b. u.b.
io®A HIA 1.868 0.389
G GUA -0.642 0.134
m'G 1MG u.b. u.b.
m?G 2MG 0.286 0.168
m?2G M2G 1.057 0.262
preQo DCG -1.737 0.187
imG-14 DWG -0.005 0.319
imG IMG u.b. u.b.
imG2 IWG -1.164 0.331
mimG MWG u.b. u.b.
U URA -0.926 0.145
D Ha2U u.b. u.b.
mo°U MOU -1.656 0.199
m°s2U 52U u.b. u.b.
m°D MDU 0.707 0.161
17 PSU -1.985 0.490
miy 3MP -1.174 0.446
m3U 3MU -0.146 0.320
s‘U 4su -1.702 0.181
méuU 5MU -1.340 0.159
ho®U 5HU -1.613 0.162
s2U 2suU -0.644 0.233
m'y 1MP -0.896 0.112
cnm®U CcYu -2.147 0.233
mem®s?U 70U -1.379 0.330
mchm®U CcMmuU -0.612 0.381
nem®U BCU -1.683 0.393
mem®U ocu -1.307 0.312
memo®U OEU -0.491 0.396
C CYT u.b. u.b.
m°C 5MC u.b. u.b.
ac*Cc 4AC u.b. u.b.
m*C 4MC u.b. u.b.
f°c 5FC 0.596 0.265
hm°C HMC u.b. u.b.
s°C 25C u.b. u.b.

"Patch Name" = 3-letter name assigned by Xu et al. (2016)
Modifications with AAG = -0.7 kcal/mol in bold italics.
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Table S3: Relative binding free energies for m°A Fab screening.

Modified Base Patch Name AAGhbind +0
A ADE 0.300 0.165
m2A 2MA 3.084 0.156
méA 6MA -0.034 0.032
m®,A M6A -2.091 0.052
méA 8MA 4.432 0.337
m'l 1Y n.s. n.s.
/ INO 6.247 0.301
ms2mPA SMA 2.634 0.209
ac®A 6AA -1.156 0.197
i°A 6IA 1.624 0.491
msZi°A MIA 3.587 0.434
msZ?ioA SIA n.s. n.s.
io®A HIA n.s. n.s.
G GUA 4.881 0.471
m'G 1MG 3.029 0.521
m?G 2MG u.b. u.b.
m?,G M2G n.s. n.s.
preQO DCG 4.229 0.283
imG-14 DWG u.b. u.b.
imG IMG n.s. n.s.
imG2 IWG u.b. u.b.
mimG MWG -2.437 0.441
U URA u.b. u.b.
D Hau 2.841 0.242
mo®U MOU 1.861 0.459
m°s2U 52U 3.817 0.504
m°D MDU 1.520 0.25
w PSU 3.564 0.531
m3y 3MP n.s. n.s.
miU 3MU n.s. n.s.
stU 4SU n.s. n.s.
méuU 5MU 1.270 0.519
ho®U 5HU 0.965 0.305
s2U 2su 2.830 0.705
m'y 1MP 3.044 0.663
cnm®U CYu 2.396 0.282
mem®s?U 70U n.s. n.s.
mchm®U CcMmuU 2.686 0.235
nem®U BCU n.s. n.s.
mem®U ocu 1.113 0.402
memo®U OEU 3.469 0.527
C CYT 5.033 0.708
m°C 5MC n.s. n.s.
ac’c 4AC -1.199 0.325
m*C 4MC 2.159 0.287
f°C 5FC 2.275 0.422
hm°C HMC u.b. u.b.
s°C 25C u.b. u.b.

"Patch Name" = 3-letter name assigned by Xu et al. (2016)
Modifications with AAG = -0.7 kcal/mol in bold italics.

Table S3
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Figure S1

M Heavy (H) | Light (L) " Ino
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Figure S1

meA antibody, apo

M Heavy (H) | Light (L)
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Figure S6

D Inosine antibody ELISA results, t-test p values. p < 0.01 in bold italics.
Concentration (ng/ml) lvs.C Uvs.C Avs.C lvs. U

1000 0.008176 0.000068 0.231657 0.022235
100 0.005824 0.000199 0.371234 0.006713

10 0.000112 0.079051 0.703358 0.000115

1 0.000376 0.828319 0.872158 0.000401
0.1000 0.030556 0.608653 0.650652 0.032961
0.0100 0.289681 0.795255 >0.999999 0.284906
0.0010 0.390739 0.366411 0.421648 0.507010
0 0.593139 0.350393 0.507644 0.440630

M Heavy (H) " Light (L) " U

E mPA antibody ELISA results, t-test p values. p <0.01 in bold italics.
Concentration (ng/ml)f mfAvs.C Avs.C m°Avs.C mfAvs.A
100 0.00007 0.001121 0.000043 0.004438
33.300 0.000017 0.000294 0.000005 0.001808
11.100 0.000034 0.000209 0.000024 0.005227
3.700 0.000009 0.000072 0.000017 0.002905
1.230 0.000055 0.001183 0.001946 0.000026
0.412 0.086944 0.342808 0.080748 0.239781
0.137 0.723367 0.72624 0.506021 0.974438
0 0.799706 0.959434 0.884815 0.781924

m®A Fab

M Heavy (H) | Light (L) A
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