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Abstract 

The locus coeruleus (LC) is a key brain structure implicated in cognitive function and 

neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-

invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for 

training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., 

neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, 

are not readily applicable to existing datasets with conventional MRI sequences. In this work, we 

evaluate the feasibility of using non-contrast neuroanatomical information to geometrically 

approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human 

Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two 

automatic localization methods, the Expected Label Value and the U-Net. We also test the hypothesis 

that using the phase image as input can improve the robustness of out-of-sample segmentation. We 

then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging 

variables and structural connectivity with demographic and clinical data. This report contributes and 

provides an evaluation of two computational methods estimating neural structure. 

1 Introduction 

The locus coeruleus (LC) is a small elongated hyperpigmented nucleus in the rostral pontine brainstem 

(1). It synthesizes most of the brain’s norepinephrine (2) and is involved in various cognitive functions 

(3). The LC undergoes neuron loss in the early stages of many neurodegenerative diseases (4-6), such 

as Alzheimer’s disease (7-9) and Parkinson’s disease (10, 11) through the accumulation of tau 

pathology (12, 13) and α-synuclein (14), respectively. Non-invasive assessment of the LC integrity in 

vivo, namely via magnetic resonance imaging (MRI), helps to elucidate how LC degeneration relates 

to the progression and symptoms of neurodegenerative diseases (4-6). Patterns of structural 

connectivity of the LC to other brain regions – quantified via diffusion MRI (dMRI) (15, 16) – may 

further inform us about the pathology distribution in the brain, particularly in the context of 

Alzheimer’s disease, where some hypothesize that tau protein may transmit neuron to neuron from the 

LC to other areas (17). 
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Quantitative analysis of the LC from MRI requires knowledge of the LC location. Manual annotation 

of the LC in a large dataset not only necessitates significant expert effort, but yields a precision limited 

by moderate inter- and intra-rater variability (18). Automatic LC localization (19-22), which is not yet 

widely available in conventional neuroimaging toolboxes, is therefore highly desirable, as it can 

facilitate large-scale imaging studies that would have the power to detect subtle changes in the LC in 

health and disease. 

To enhance the contrast of the LC in the MR image, the high concentration of neuromelanin in the LC 

(23) has been exploited. To that end, several neuromelanin-sensitive MRI sequences (24) have been 

successfully employed, including the T₁-weighted (T₁W) Turbo Spin Echo (TSE) (18, 20, 25-27) and 

the magnetization transfer (13, 22, 28-31) sequences. The enhanced LC contrast on images acquired 

with such sequences allows for manual delineation of the LC and the creation of datasets that include 

gold-standard LC labels. Using a dataset like this for training, a supervised automatic segmentation 

algorithm can segment the LC on a new similar-contrast image. 

Neuromelanin-sensitive MRI, however, typically has a high specific absorption rate (5, 32, 33), and 

may also be suboptimal for younger adults due to their lower neuromelanin levels (6, 30, 34). 

Consequently, such a sequence is often not included in large open-access MRI databases of healthy or 

diseased populations. As for standard MR images (e.g., T₁W images included in almost all MRI 

databases), the boundaries of the LC cannot be delineated on these images due to the lack of contrast; 

therefore, the location of the LC can only be approximated at best relative to its surrounding structures 

using prior neuroanatomical information. Such geometrical localization of the LC might still be useful 

for some subsequent analyses not requiring high label accuracy. For instance, deep neural networks 

trained on silver-standard labels have shown to be capable of producing more reliable segmentation 

results than the labels they were trained on (35). 

Several LC atlases are publicly available (16, 18, 26, 27, 30, 31, 36, 37), which can be employed to 

automatize the localization of the LC via atlas alignment and label propagation. The original datasets 

used to create these public atlases, however, are not generally available. As a result, users cannot apply 

other supervised segmentation methods to localize the LC, such as those based on modern deep neural 

networks (38). A public database of approximate LC region masks accompanied with corresponding 

MR images with standard (e.g., T₁W, rather than neuromelanin-sensitive) contrasts is thus desirable. 

Such a database could help the research community to use existing or new methods to develop 

automatic LC localization tools that are applicable to many available databases, thereby facilitating 

large-scale retrospective and prospective analyses involving the LC. 

Our contributions in this work are as follows: 

 We first manually approximate the LC region on the 3T T₁W images of 20 subjects of the open-

access Human Connectome Project (HCP) (39), sharing the geometrically annotated masks 

with the research community (see Section 8). To our knowledge, other publicly available 

datasets with manual LC labels instead contain 3T-TSE/7T T₁W images (33) or functional MR 

images (40). Our geometrical estimation is based on dimensional (instead of contrast) 

information and emphasizes the sensitivity of the detection, thereby resulting in LC masks 

slightly larger than the LC (i.e., encompassing the LC and some surrounding area). 

 We then train two automatic segmentation methods of Expected Label Value (ELV) (41) and 

U-Net (38) on the abovementioned dataset, evaluating the LC localization ability internally as 

well as on an external dataset (33). 
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 Inspired by a previous observation (41), we test the hypothesis that using the phase image (i.e., 

discarding the magnitude Fourier data) would improve the performance of the above models 

on external datasets (data from different sources). 

 We finally apply a trained model to one hundred HCP subjects and analyze the volume, image 

intensity, and dMRI structural connectivity of the LC masks, correlating them with non-MRI 

variables. 

In the following, we will describe our methods (Section 2), provide our results (Section 3), and discuss 

them (Section 4). 

2 Method 

2.1 Manual LC Region Estimation 

The human LC is a thin and long column of neurons that extends through multiple levels of the 

brainstem (1, 5). Located in the rostral pons, the LC is on average 14.5 mm long and 2-2.5 mm wide 

(1). Due to the lack of LC contrast on T₁W images, we instead used these dimensional landmarks 

collectively to approximate the LC location: 3 mm lateral from the midline, 1 mm rostral to the fourth 

ventricle, and 16-20 mm above the pontomedullary junction. 

We used Freeview of FreeSurfer (42) to manually create masks of the areas containing each of the left 

and right LCs on preprocessed 3T T₁W MPRAGE images 

(T1w_acpc_dc_restore_brain.nii.gz) of the first 20 subjects of the “100 Unrelated 

Subjects” group of the HCP (39), which had the isotropic voxel size of (0.7 mm)³. Our localization 

approach prioritizes sensitivity to specificity (i.e., includes more voxels than the LC alone), producing 

masks that are somewhat inflated compared to the actual LC boundaries. 

2.2 Automatic LC Region Estimation 

2.2.1 Approaches 

We trained two supervised image segmentation methods, both implemented in MATLAB, on our 20-

subject dataset to automatically approximate the presumptive left or right LC areas (separately), as 

described below. We binarized the output soft mask and retained the largest connected component. 

We used the ELV supervised segmentation (41) (see Section 8 for toolbox) as our first method, which 

creates a fuzzy map from a combination of labels suggested by all atlas-to-image transformations, 

weighted by a measure of transformation validity (without explicit deformable registration). The ELV 

method inherently uses phase images as input (obtained by computing the Fourier transform of the 

image, discarding the magnitude data, and computing the inverse Fourier transform), which we call 

“ELV [phase]”. The map can also be modulated by an image intensity prior (41), i.e. “ELV [phase + 

image]”, to benefit from the image intensity information initially excluded from the phase data. 

The second method we used was the U-Net neural network architecture (38), which is a convolutional 

neural network consisting of a contracting path to capture context, a symmetric expanding path for 

precise localization, and cross connections. We employed a U-Net with 2 down-sampling layers and 

16 initial filters (at the first convolutional layer), with the Dice coefficient as the objective function. 

We used the Adam optimizer to train the network for 20 epochs on 3D sample patches of size 

132×132×132 with a mini-batch size of 8. We initialized the learning rate as 0.002 and dropped it by 
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95% every 5 epochs. The test subject’s LC region was then predicted by averaging the label scores of 

overlapping patches (stride 10). 

2.2.2 Validation 

For performance evaluation, we first internally assessed the automatic localization via leave-one-out 

cross-validation (i.e., trained on 19 images and tested on the remaining image, repeating it for 20 test 

images). We compared the automatically generated mask with the manual one using the Dice similarity 

coefficient as the evaluation metric. 

For external (out-of-sample) validation, we then applied our models (that had been pretrained on the 

20 HCP subjects) to 12 7T T₁W images from the previously unseen dataset by Tona et al (33), which 

had LC labels manually delineated from 3T T₁W TSE images. The images from the latter dataset had 

the voxel size of 0.70 × 0.64 × 0.64 mm³, thereby requiring resampling to match the HCP resolution 

of (0.7 mm)³. Since we trained our models on brain-masked HCP data, we extracted the brain in the 

new dataset using the SPM12 software package (43). 

Note that our geometrical LC approximation produces a generous area containing the LC, and, as such, 

comparing it to the specific label of the actual LC in external validation results in a suboptimal Dice 

score. For instance, if our localized area has a volume � times larger than that of the LC label, then the 

Dice will be no higher than 2 �1 + ��⁄ . Nonetheless, this comparison can still help to assess how much 

our automatic inflated LC neighborhood overlaps with the LC. 

2.2.3 Phase Image as Input 

We have previously observed that ELV [phase + image] outperformed ELV [phase] in internal cross-

validation, but not in external out-of-sample validation (41). We hypothesized that, being less sensitive 

to inter-dataset variation in image intensity, the phase image might be more robust to domain shift, 

resulting in better model performance than the image itself would in external validation. We tested this 

by comparing the two abovementioned ELV variations, as well as comparing the original U-Net (“U-

Net [image]”) to a variation of it that received the phase image as input (“U-Net [phase]”) and a two-

channel-input variation that received both the image and the phase as input (“U-Net [image + phase]”). 

Prompted by the different image intensity distributions of our two datasets, we also experimented with 

normalizing the input image by its intensity standard deviation during both training and testing 

(denoting the normalized image with “nmz”), which led to additional variations such as “ELV [phase 

+ nmz]”, “U-Net [nmz]”, and “U-Net [nmz + phase]”. For the latter two U-Net variations, the input 

layer also performs patch-wise zero-meaning and normalization. 

2.3 Analysis of HCP Data 

We applied the default implementation of the U-Net to the “100 Unrelated Subjects” group of the HCP. 

We used the resulting left and right LC masks to compute their volumes as well as the mean T₁W and 

T₂W image intensities inside them. We then propagated the masks to the dMRI space, and similarly 

computed the mean fractional anisotropy (FA) and the mean apparent diffusion coefficient (ADC), 

resulting in a total of 10 LC (regional) imaging variables. 

Next, we performed an exploratory analysis to correlate the imaging variables with 504 non-MRI 

variables (demographics, medical history, family history, dementia/cognitive exam scores, 

personality/emotion tests, motor/sensory tests, task performance, etc.). We Bonferroni-corrected the 

Pearson’s correlation p-values for multiple comparisons through multiplication by the numbers of 
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imaging and non-MRI variables, i.e., pB = p × 10 × 504. We visually inspected relationships with 

pB < 0.05 to exclude any spurious correlations due to outliers (e.g., avoiding situations with most data 

points clustered together with no obvious relationship), reporting the surviving significant correlations. 

Finally, we examined the associations between the connectivity pattern of LC and non-MRI variables 

by quantifying dMRI-derived structural connectivity of the LC area to the rest of the brain. We used 

our open-source toolbox (see Section 8) to reconstruct the diffusion orientation distribution function in 

constant solid angle (44), perform Hough-transform global probabilistic tractography (45), compute a 

symmetric structural connectivity matrix between the two LC areas and 85 other brain regions 

segmented by FreeSurfer (42), and augment the raw matrices with indirect connections (46). We have 

previously described this pipeline in detail (47). 

3 Results 

3.1 Manual LC Region Estimation 

We have provided our geometrically annotated (enlarged) LC masks for the 20 HCP subjects to the 

public (Section 8). As expected, we did not observe any LC contrast on T₁W images to guide the 

manual delineation of the LC region. Figure 1 shows the approximated LC masks (in green/yellow) for 

a representative subject. 

The volume of the left and right LC regions had a cross-subject mean ± standard error of the mean 

(SEM) of 19.5 ± 0.8 mm³ and 19.8 ± 0.8 mm³, respectively. We also measured this for the manual 

labels in the external (Tona et al (33)) dataset; the cross-subject average volumes of the left and right 

LC labels were 6.9 ± 0.7 mm³ and 7.4 ± 0.8 mm³, respectively. Two-sided paired t-tests between the 

left and right volumes did not reveal a statistically significant difference between them in either dataset. 

3.2 Automatic LC Region Estimation 

We assessed our variations of the ELV and the U-Net methods (Section 2.2) via leave-one-out cross-

validation on the 20-subject subset of the HCP as well as on the external dataset by Tona et al (33). 

Table 1 summarizes the median, mean, and SEM of the Dice scores. 

By assessing the left and right LC together, the highest cross-validation Dice scores were achieved by 

ELV [phase + image] in terms of the mean (0.63 ± 0.01) and by U-Net [image + phase] in terms of the 

median (0.64). Figure 1 shows the labels generated by both methods for the representative subject with 

median ELV Dice score. For either ELV or U-Net, the best cross-validation results involved the use of 

the non-normalized image. 

The external validation Dice scores were considerably lower, with the best mean (0.24 ± 0.03) and 

median (0.27) scores obtained by U-Net [nmz + phase]. Image normalization (nmz) improved the 

external validation Dice in all cases. The best input for either ELV or U-Net included the phase image, 

i.e., ELV [phase] and U-Net [nmz + phase]. 

Left and right LC Dice scores were significantly correlated with each other in most cross-validation 

results by both methods (ELV [phase + image]: r = 0.53, p = 0.02; U-Net [image]: r = 0.61, p = 0.004) 

and in the external validation results by ELV (ELV [phase]: r = 0.88, p = 0.0001). 
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3.3 Findings from HCP 

Next, we trained a U-Net (with the default implementation, which receives the image and normalizes 

the patches at its first layer) on the 20 subjects and applied it to 100 HCP subjects. After correlating 

non-MRI variables with imaging variables (Section 2.3), only some correlations with the mean FA 

survived the Bonferroni correction, all of which passed the visual inspection. Table 2 lists these 

significant relationships, mainly with body weight and memory, and Figure 2 shows two examples. 

Adjusting for the intracranial volume (ICV) improved the correlation significance with the memory 

task accuracy, but reduced that with the body weight. 

We lastly computed the strength of connectivity between each LC area and 86 other brain regions (85 

+ contralateral LC). After Bonferroni correction for all possible structural connections to the LC and 

for all non-MRI variables, none of the few significant correlations between the two passed the visual 

inspection (see Section 2.3). 

4 Discussion 

We have presented a new dataset of high-resolution (isotropic 0.7 mm voxel) LC areas manually 

approximated for 20 subjects of the HCP. This dataset is publicly available to the research community 

(Section 8), allowing the development of supervised tools applicable to standard 3T T₁W MPRAGE 

(rather than neuromelanin-sensitive) MRI for quantitative analysis using large existing or future MRI 

databases. Given the lack of LC contrast on standard T₁W images, we used dimensional information 

instead to estimate the region that approximately included the LC. We emphasized sensitivity for this 

task and created masks that were slightly larger than and contained the LC (which, if desired, could be 

shrunk in post-processing via the erosion operation). The masks had a bilateral mean volume of 19.7 

± 0.6 mm³, expectedly larger than the LC volume reported in the literature, such as 6.6 mm³ (20), 7.2 

mm³ (that we computed from the dataset) (33), 9.5 mm³ (18), 12.8 mm³ (48), and 16.7 mm³ (49). 

Our internal evaluation of (the optimal variations of) the ELV and U-Net automatic segmentation 

approaches on our data resulted in a similar cross-validation Dice score of 0.63~0.64 for both methods. 

In comparison, the LC label Dice scores reported in the literature for inter-rater reliability are 0.50 (20), 

0.54~0.64 (18), 0.64 (33), and 0.68 (19), for scan-rescan reliability are 0.24~0.48 (21) and 0.63 (50), 

and for automatic segmentation are 0.40 (20), 0.54~0.64 (21), and 0.60~0.71 (19). 

Our external validation resulted in lower mean Dice scores (ELV: 0.09, U-Net: 0.24). Several reasons 

could account for this. Given that the average volume of our presumptive LC areas was � = 2.7 times 

larger than that of the LC labels in the test (Tona et al (33)) dataset, the Dice score between the two 

was capped at 0.54 (see Section 2.2.2). The cap was possibly even lower due to inter-rater variability 

between the two datasets, especially since our LC areas were based on dimensional information 

whereas the labels in the external dataset were delineated based on the LC contrast seen on 

neuromelanin-sensitive (3T T₁W TSE) images. Another factor contributing to the lower Dice value 

may have been the domain shift, particularly caused by the different MRI field strengths of the input 

training (3T) and test (7T) images, which are known to reveal different MRI tissue properties (51). 

We tested the hypothesis that using phase images could enhance out-of-sample segmentation. In line 

with our previous finding (41), the phase-only ELV map yielded a higher external-validation Dice 

value without additional modulation with the image intensity prior. The U-Net also achieved the 

highest accuracy in both internal and external validation when the input included the phase image. The 

different field strengths and acquisition protocols of the training (HCP) and test (Tona et al (33)) 

datasets may have caused inconsistencies in their image intensities. The phase image improved our 
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external validation results by ignoring the Fourier-domain magnitude information, which possibly 

alleviated such inter-database inconsistencies to some extent. 

The Dice scores corresponding to the approximated left and right LC regions were often significantly 

correlated with each other, perhaps due to their correlation with the image quality and variance of the 

test subject. 

Following image segmentation of 100 unrelated HCP subjects and an exploratory analysis, we found 

significant correlations with the mean FA inside the LC region, mainly negative correlations with body 

weight and a positive correlation with working memory. In a similar analysis, LC connectivity was 

found not to be significantly correlated with non-MRI variables, possibly due to the homogeneity and 

narrow age range (22 – 36 years old) of the healthy HCP cohort (47). Our stringent Bonferroni 

correction for all compared variables and LC connections may additionally have led to type II errors 

(false negatives). In most related HCP studies, the LC connectivity has been measured to predefined 

ipsilateral target regions pertinent to disease, such as the transentorhinal cortex (15) and limbic regions 

(16). In contrast, we ran whole-brain tractography to explore all regions’ potential connectivity to the 

LC, which is especially important considering the LC’s extensive axonal branching innervating diverse 

remote areas throughout the brain (3). 

This report has some limitations. First, the LC masks were not based on anatomical contrast and the 

location is approximate. Second, the LC is difficult to model given its small size. Third, partial 

voluming effects can introduce noticeable error in the imaging quantity derived from the LC. Should 

a non-MRI variable and the error in an imaging variable happen to be related to each other (e.g., by 

both being correlated to a third factor such as the ICV), a spurious relationship might appear in the 

correlation analysis. Thorough investigation of the automatically misclassified voxels to identify any 

potential bias is a subject of our ongoing research. For the above reasons, we do not imply our LC 

masks to be anatomically accurate LC labels, and caution their use where specific and accurate labels 

are required. 

Quantitative MRI studies of the LC – requiring automatic LC region estimation – have the potential to 

generate imaging biomarkers for early diagnosis of neurodegenerative diseases and patient 

stratification (6). Making our LC neighborhood localization algorithm more specific and integrating it 

into FreeSurfer (42) are subjects of our future work. 
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Tabel 1.  Median, mean, and standard error of the mean (SEM) of the Dice score, measuring the overlap 

of the automatic and manual LC regions. 

Method Input 

Cross-validation Dice score 

(median) 

(mean ± SEM) 

External validation Dice score 

(median) 

(mean ± SEM) 

Left LC Right LC Left LC Right LC 

ELV 

phase 
0.61 

0.61 ± 0.02 

0.64 

0.63 ± 0.02 

0.02 

0.08 ± 0.04 

0.10 

0.10 ± 0.03 

phase + image 
0.61 

0.61 ± 0.02 

0.64 

0.63 ± 0.02 

0.00 

0.00 ± 0.00 

0.00 

0.004 ± 0.004 

phase + nmz 
0.60 

0.61 ± 0.02 

0.64 

0.63 ± 0.02 

0.00 

0.07 ± 0.04 

0.00 

0.07 ± 0.03 

U-Net 

image 
0.58 

0.57 ± 0.03 

0.64 

0.60 ± 0.03 

0.00 

0.00 ± 0.00 

0.00 

0.00 ± 0.00 

nmz 
0.66 

0.61 ± 0.02 

0.56 

0.55 ± 0.04 

0.14 

0.15 ± 0.03 

0.27 

0.24 ± 0.03 

phase 
0.63 

0.61 ± 0.02 

0.62 

0.60 ± 0.02 

0.00 

0.03 ± 0.02 

0.11 

0.13 ± 0.04 

image + phase 
0.62 

0.60 ± 0.02 

0.64 

0.60 ± 0.04 

0.00 

0.00 ± 0.00 

0.00 

0.00 ± 0.00 

nmz + phase 
0.62 

0.61 ± 0.02 

0.62 

0.62 ± 0.02 

0.24 

0.24 ± 0.04 

0.27 

0.23 ± 0.03 
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Tabel 2.  Pearson’s correlation coefficient (r) and Bonferroni-corrected p-value (pB) of the significant 

correlations of the mean fractional anisotropy (FA) inside the computed LC area with non-MRI 

variables, without and with intracranial volume (ICV) adjustment. 

Non-MRI Variable 
No ICV adjustment Adjusted for ICV 

Left LC Right LC Left LC Right LC 

Body weight 
r = -0.52 

pB = 0.0002 

r = -0.52 

pB = 0.0002 

r = -0.44 

pB = 0.03 

r = -0.44 

pB = 0.02 

Body mass index 

(BMI) 
- 

r = -0.44 

pB = 0.02 
- 

r = -0.43 

pB = 0.04 

Body mass index 

(BMI) at heaviest time 
- 

r = -0.43 

pB = 0.04 
- 

r = -0.43 

pB = 0.046 

Working memory task 

accuracy: 2-back place 
- 

r = 0.44 

pB = 0.02 
- 

r = 0.46 

pB = 0.009 
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Figure 1.  Manually annotated presumptive LC areas (green), automatic localization of LC using the 

ELV (top) and U-Net (bottom) methods (red), and their overlap (yellow), are shown on the coronal 

slice with the largest intersection with the manual LC areas for the representative HCP subject (with 

the median ELV Dice score).  
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Figure 2.  Significant relationships between the mean fractional anisotropy (FA) inside the 
automatically estimated LC region and non-MRI variables (corresponding to Table 2, unadjusted for 
ICV). 
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