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Abstract  

Lewy body dementia (LBD), a class of disorders comprising Parkinson’s disease dementia (PDD) 

and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with 

Alzheimer’s disease (AD). The identification of biomarkers unique to LBD pathophysiology 

could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass 

spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex 

(DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, 

Parkinson’s disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network 

protein alterations in those with LBD, validated these disease signatures in two independent LBD 

datasets, and compared these findings to those observed in network analyses of AD cases. The 

LBD network revealed numerous groups or “modules” of co-expressed proteins significantly 

altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. 

A comparison of validated LBD signatures to those of AD identified distinct differences between 

the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but 

decreased in AD relative to controls. We also found that glial-associated matrisome signatures 

consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD 

cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, 

unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD 

frontal cortex distinct from alterations in AD. These results highlight the LBD brain network 

proteome as a promising source of biomarkers that could enhance clinical recognition and 

management.  
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Introduction  

Lewy body dementia (LBD), a class of disorders comprising Parkinson’s disease dementia 

(PDD) and dementia with Lewy bodies (DLB), is the second most common cause of dementia 

worldwide and is currently without cure or effective mitigating therapies [1]. The identification 

of reliable biomarkers of its aggressive cognitive and neuropsychiatric symptoms is critical to 

advancing the clinical management of LBD. Yet, LBD biomarker discovery has proven 

challenging, in large part due to the complexity and often overlapping pathophysiology driving 

its dementia, psychosis, and mood disturbances. Pathological evidence has linked the cognitive 

and neuropsychiatric manifestations of LBD to the diffuse deposition of α-synuclein-rich Lewy 

bodies (LBs) throughout the limbic and neocortex [2-6]. However, a growing number of studies 

across multiple disciplines, including genetic, clinicopathological, imaging, and biofluid 

analyses, suggests LBD pathophysiology encompasses a diverse array of corticolimbic processes 

extending beyond synuclein accumulation and neuronal loss. Among these implicated 

mechanisms are mitochondrial dysfunction, neuroinflammation, aberrant cholinergic and other 

neurotransmitter activity, and synaptic dysregulation [1, 7-9]. This increasingly complex 

pathophysiological landscape indicates multiple molecular signatures may be necessary for 

effective LBD biomarker development.   

The genetic and molecular overlap LBD shares with Alzheimer’s disease (AD) and other 

neurodegenerative disorders further complicates the ability to unravel its key pathophysiological 

signatures. Genome-wide association studies (GWAS) have identified a significant amount of 

polygenic overlap between LBD and AD [7]. Meanwhile, according to certain clinicopathological 

estimates, over 50% of those with LBD feature concurrent accumulation of the extracellular 

amyloid-beta (Aβ) plaques and tau neurofibrillary tangles (NFTs) that comprise the core of AD 

neuropathology [10]. Furthermore, limbic-predominant TAR DNA-binding protein 43 (TDP-43) 

and other pathological inclusions are frequently detected in both LBD and AD [11]. This 

overlapping pathology has a marked impact on diagnostic accuracy, clinical trial stratification, 

disease prognosis, and therapeutic development [10-13]. Thus, research strategies designed to 

better define not only unique signatures of LBD pathophysiology but also its degree of overlap 

with other neurodegenerative diseases are critical to the discovery of biomarkers that 

meaningfully advance its diagnosis, monitoring, and treatment. 

Network-based proteomics, which quantifies global pathophysiological changes in 

complex biological samples [14], is a tool designed to address many of these challenges. This data-

driven approach organizes large proteomic datasets into groups or “modules” of proteins with 

similar expression patterns across individual samples. These co-expression modules are often 

enriched with markers specific to certain cell types, molecular functions, and organelles, 

providing insights into the diverse pathophysiological alterations reflected in the disease 

specimen. We have previously used this approach to define and characterize the network of 

complex protein pathophysiology within the brain tissues of those with pathologically defined 

AD [15-22]. These AD-associated modules and their hub proteins have proven highly 

reproducible across different tissue cohorts and brain regions, allowing us to generate a large 

consensus AD brain network across hundreds of corticolimbic tissues [17]. In sum, our consensus 

findings have 1) enhanced understanding of neuronal and non-neuronal pathophysiology in the 

AD brain; 2) provided a strong molecular framework for network-level comparison to other 
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neurodegenerative diseases, and 3) served as a strong foundation for panel-based biomarker 

discovery in cerebrospinal fluid and plasma [23, 24]. Furthermore, these proteomic networks 

have revealed significant disease-related alterations not reflected at the transcriptomic level [15-

17, 20].  

In the current study, we apply an unbiased co-expression network proteomic approach to 

the study of corticolimbic alterations in the brains of those with pathologically defined LBD, 

establishing a global systems-based framework of the protein-level changes underlying 

neurodegeneration in these tissues. In addition, we perform a network-level comparison of the 

LBD and AD brain proteomes. Our results reveal protein co-expression alterations throughout a 

diverse range of pathophysiological systems in the LBD brain, including presynaptic signatures 

distinct from those observed in the AD proteomic network. We also demonstrate how α-

synuclein (SNCA) plays a critical “bottleneck” role in the network-level communication among 

these synaptic signatures. Finally, we underscore the utility of proteomic network analysis in 

examining not only divergent changes but also overlapping features of LBD and AD, highlighting 

signatures capable of stratifying LBD cases with low versus high burdens of amyloid co-

pathology. Overall, this approach offers a systems-based foundation for the discovery of protein 

biomarkers that reflect the unique and complex pathophysiology of LBD.  

Results  

Differential expression analysis demonstrates robust protein alterations in the LBD brain  

The main objective of this study was to perform unbiased co-expression network analysis 

of LBD brain tissues to better define global pathophysiological alterations in cortical regions and 

compare these findings to the AD brain network proteome. All brain tissues were derived from 

a pathologically well-characterized autopsy collection within the University of Pennsylvania 

(UPenn) Alzheimer’s Disease Research Center (ADRC). Bulk tissue homogenates from the 

dorsolateral prefrontal cortex (DLPFC) of cases with neuropathologically confirmed diagnoses of 

healthy control (n=47), Parkinson’s disease (PD; n=33), PDD (n=47), and DLB (n=11) were included 

in our initial network analysis. The frontal cortex was examined as it is often affected in the diffuse 

corticolimbic LB accumulation found in LBD and is routinely scored in its neuropathological 

diagnosis [25]. In addition, frontal executive deficits are commonly among the first symptoms 

observed in LBD [26], suggesting this region is at the forefront of LB-mediated cognitive changes. 

The control cases were on average younger (65.4 +/- 8.9 years) than those with disease 

(PD=78.1 +/- 8.7; PDD=76.9 +/- 7.7; DLB=73.2 +/- 6.7 years) (Table S1). All four groups were 

predominantly male and featured similar post-mortem intervals (PMI). The limited number of 

MMSE scores available proximate to death revealed significant impairment among those with 

PDD and DLB. Pathological traits available for these brain tissues included levels of global Aβ 

neuritic plaque and tau NFT deposition as measured by the Consortium to Establish a Registry 

for Alzheimer’s Disease (CERAD) criteria and the Braak staging system, respectively [27, 28]. 

Severity levels of LB deposition in the frontal cortex were measured on a semi-quantitative 

severity scale of 0 to 3. Nearly all demented cases harbored LBs in the frontal cortex, ranging from 

mild to severe. Amyloid co-pathology was also common among the LBD cases, with half 

featuring moderate to severe neuritic plaque deposition (CERAD=2-3). In contrast, tau 

accumulation was sparser. Most LBD cases harbored only mild to moderate NFT levels (Braak I-
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IV). A small number of PDD and DLB cases (n=9) had severe NFT levels (Braak V-IV), increasing 

the likelihood of clinical symptoms attributable to both LBD and AD-associated 

neuropathological change [26].  

Tandem mass tag mass spectrometry (TMT-MS) quantified 9,661 proteins across all four 

groups (Fig. 1A), including only those proteins quantified in at least 50% of samples. Technical 

variance was minimized using a tunable median polish approach (TAMPOR), as previously 

described [29]. The data was then regressed for variability due to age, sex, and PMI. Prior to 

building a co-expression network, we examined the differential expression in each disease 

compared to controls. All three Lewy body disorders demonstrated a robust number of 

significantly altered proteins (p<0.05) (Fig. 1B, Table S2). PDD featured the greatest amount of 

differential expression with >3000 proteins significantly altered, including 1,542 increased and 

1,530 decreased in disease. DLB harbored nearly 2,000 and PD approximately 1,300 significantly 

altered proteins compared to controls. Amyloid precursor protein (APP), which has historically 

correlated strongly to Aβ accumulation in our proteomic datasets [20], was significantly elevated 

in both PDD and DLB but largely unaltered in PD, consistent with the moderate to severe CERAD 

scores among the demented cases. SNCA was notably increased in all three Lewy body disorders, 

reaching significance in PD and PDD and approaching significance in DLB (p=0.089). In contrast, 

microtubule associated protein tau (MAPT) levels were not significantly altered in any of the 

disease groups compared to controls. APP and SNCA levels correlated significantly with 

neuropathology measures of neuritic plaque and synuclein deposition, respectively (Fig. 1C).  

Proteins most highly increased in demented cases included the proteasome subunit 

PSMA7, calcium channel modulator ORAI2, and various muscarinic cholinergic receptors 

(CHRM1, CHRM3). Meanwhile, both dementia groups featured starkly decreased levels of 

known neuroprotective synapse-associated markers VGF and NPTX2, which are consistently 

decreased in the brains of those with neurodegeneration [30-38]. Neuritin 1 (NRN1), a synaptic 

protein linked to cognitive resilience in AD, was also significantly decreased in both PDD and 

DLB [39, 40]. Cholinergic disruption was evidenced by exceptional decreases in the ion channel 

transporter SLC5A7 across all three diseases, as large as 5-fold lower in DLB compared to 

controls. This protein, also known as CHT1, mediates presynaptic high-affinity choline uptake in 

cholinergic neurons for acetylcholine (ACh) synthesis [41], and its dysfunction has been linked to 

AD in animal models [42, 43]. Yet, several of the most decreased LBD markers had less well-

described links to neurodegeneration, such as the kinase regulator GAREM1 and the serotonin 

synthesizing enzyme TPH2. Overall, these results highlighted significant differential expression 

across numerous proteins in all three LB diseases, including changes in well-described markers 

of neurodegeneration.  

Network analysis of the LBD brain reveals alterations across diverse cell types and molecular 

functions 

To examine global systems-based alterations in LBD, we applied Weighted Gene Co-

Expression Network Analysis (WGCNA) as previously described [17, 18, 20], which organizes 

complex proteomic datasets into groups or modules (M) of proteins with similar expression 

patterns across individual cases [20]. Our resultant LBD co-expression network comprised 8,517 

of the total 9,661 proteins. Approximately 12% of the dataset (n=1,144 proteins) did not map 
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strongly to a particular module, consistent with the proportions of unassigned proteins we have 

encountered in previous network analyses [15-20]. These 8,517 proteins were clustered into 33 co-

expression modules, with M1 representing the largest module (n proteins=601) and M33 the 

smallest module (n proteins=39) (Fig. 1D, Table S3). The weighted expression profile, or 

eigenprotein, of each module was correlated to disease diagnosis and various clinicopathological 

traits (Fig. 1E). In addition, each module was further characterized by cell type enrichment and 

gene ontology (GO) analyses (Fig. 1E, Table S4), as previously described [16-18].  

Over two-thirds of the 33 modules correlated significantly to either PDD or DLB or both. 

These LBD-associated modules reflected a variety of cell type associations, biological ontologies, 

and cellular compartments. Modules with strongly negative correlations to disease included 

those linked to mitochondria (M1), Golgi transport (M15), ribosome biogenesis / function (M2, 

M25, M27, M33), and the postsynaptic density (M6, M8). In contrast, LBD-associated modules 

with highly positive disease correlations reflected myelination (M4), matrisome / cell adhesion 

(M10), telomere maintenance (M11), RNA binding / splicing (M13), presynaptic vesicular 

transport / signaling (M17, M19, M26), sugar metabolism (M18), and proteasome function (M21) 

(Fig. 1E). Module abundance plots across diagnostic groups supported these correlation analyses, 

with LBD displaying significantly increased levels of positively correlated modules and 

significantly decreased levels of negatively correlated modules (Fig. 2A-H). Most LBD-associated 

modules were also highly correlated to one or more of the core neuropathologies (Fig. 1E).  A few 

modules stood out for their selectively strong correlations to LB burden. For example, two 

synaptic modules (M17, M26) featured strong positive correlations to LB deposition over other 

neuropathological traits (Fig. 1E).  

These LB-associated synaptic modules (M17, M26), as well as a third synaptic module 

(M19), displayed particularly notable abundance trends. In our prior AD networks, synaptic 

modules were uniformly decreased in disease [17, 18, 20]. Yet, these three synaptic modules 

demonstrated significant increases in both PDD and DLB (Fig. 2A). The presynaptic compartment 

and related functions (vesicular signaling / transport, cell localization) were most strongly 

reflected among the top GO terms for these elevated modules (Table S4). Accordingly, M19 

contained SNCA among its module members, a protein that has been repeatedly linked to 

presynaptic signaling and membrane trafficking [44]. There was a fourth presynaptic module 

(M7) that was not significantly altered in LBD, suggesting some selectivity to the upregulation of 

presynaptic proteins. Meanwhile, neuronal modules more strongly associated with the 

postsynaptic compartment (M6, M8) were significantly decreased in PDD and DLB, aligning 

more with our previous observations in AD (Fig. 2A). These postsynaptic modules featured 

strong negative correlations to neuritic plaque, tau, and LB pathology levels (Fig. 1E). In sum, 

these results suggested that network-level changes among synuclein-associated presynaptic 

proteins may diverge between LBD and AD. 

LBD-associated modules are enriched in genetic risk targets 

To investigate causal relationships to disease among our LBD-associated modules, we 

analyzed each for enrichment of specific disease associated GWAS targets. This analysis was 

performed using a gene and gene-set analysis tool called MAGMA [45], as previously described 

[20]. Given LBD shares a significant number of genetic risk factors with both PD and AD [46, 47], 
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we utilized GWAS targets for these two disorders. Two LBD-associated modules (M17, M19) 

were significantly enriched in PD GWAS targets (Fig. 2I, Table S5). Both were presynaptic 

modules with significant elevations in disease and positive correlations to LB pathology. M16 

was also enriched in PD targets, but this axonal module was not significantly altered in our LBD 

network. Meanwhile, M8 was the only LBD-associated module enriched with AD GWAS targets 

(Fig. 2I, Table S6). This postsynaptic module with significant decreases in LBD stood in contrast 

to the presynaptic modules enriched in PD GWAS targets, which demonstrated significant 

increases in LBD. To complement this GWAS enrichment analysis, we also examined our 

modules for the inclusion of proteins identified in a recent integrative multi-omic analysis as 

maintaining a pleiotropic or causal role in neuropsychiatric disease, including PD and AD [48]. 

Of these 48 causal proteins, 27 mapped to a module in our LBD network (Fig. 2J). Again, synaptic 

modules were highly represented among those featuring causal proteins, most notably M17 

which harbored PD causal proteins calcium modulating ligand (CAMLG) and cyclin G associated 

kinase (GAK) and the AD causal protein angiotensin 1 converting enzyme (ACE). The remaining 

presynaptic modules (M7, M19, M26) each featured one causal protein each. Meanwhile, among 

postsynaptic modules, M6 harbored the PD causal protein ectopic P-granules 5 autophagy 

tethering factor (EPG5). Other LBD-associated modules linked to causal proteins included M1 

mitochondrion, M4 myelination, M11 telomere maintenance, and M12 unfolded protein 

response. In summary, these findings highlighted modules with potential causative relationships 

to disease with select synaptic modules once again emerging as interesting given their enrichment 

with genetic risk targets.  

Alpha-synuclein protein serves as a bottleneck to LBD-associated presynaptic modules 

In co-expression protein networks, there are two predominant categories of centrally 

important molecules: 1) hub proteins and 2) bottleneck proteins. A hub protein is critical to the 

structure of its assigned module, harboring large numbers of interactors within its community of 

co-expressed proteins. Thus, the deletion or removal of a hub from a network is often lethal to 

cells [49, 50]. In contrast, bottleneck proteins mediate the flow of information between modules, 

representing key connectors across different communities of co-expressed proteins. The 

disruption of a protein so critical to module communication could partition the network and 

similarly cause significant harm to the cell [49, 50]. Given its central neuropathological role in 

LBD, we were interested in whether SNCA played one or more of these key roles in our proteomic 

co-expression network.  

WGCNA assigns each protein to only one module based on the strength of its correlation 

to the module eigenprotein [51]. This correlation metric (kME) can also be used to identify module 

hubs, which are often defined as those proteins ranking among the top 20% of module members 

based on kME [49, 51]. Using these criteria, SNCA was not a hub of its assigned module (M19). 

While it featured a moderately strong correlation to M19 (kME=0.6838), SNCA ranked 95 among 

its 242 module members and fell well outside of hub status (Fig. 3A). Yet, we noticed that SNCA 

harbored kMEs of similar strength to other modules beyond M19, including M7 (kME=0.6245), 

M17 (kME=0.5820), and M26 (kME=0.5688) (Table S3). Like M19, all three of these modules 

featured strong links to presynaptic gene ontologies. Furthermore, M17 and M26 were also highly 

correlated to LB deposition, as opposed to neuritic plaque and NFT accumulation. These 
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observations indicated that while it was not a hub of its assigned module, SNCA may play more 

of a central role in the communication between this group of closely related presynaptic modules.  

 We thus investigated whether SNCA might serve as a bottleneck protein between these 

four modules. In network theory, bottleneck status is typically measured using the metric 

“betweenness centrality (g)”, which in WGCNA can be calculated utilizing the topological 

overlap matrix generated with each network [51, 52]. Applying this method, we were thus able 

to measure and rank the top bottleneck proteins among the presynaptic modules of interest. This 

analysis revealed SNCA as the strongest bottleneck (g=0.003089) among the 242 members of M19, 

highlighting this protein as central to flow of information between the four modules (Fig. 3B, 

Table S7). This result underscored the importance of SNCA within the UPenn LBD network and 

further bolstered the links we previously observed between these presynaptic modules and 

neuropathological LB burden.  

Accordingly, the same presynaptic modules were also highly represented among 

individual proteins with strong positive correlations to SNCA abundance levels (Fig. 3C-D, Table 

S8). These highly correlated proteins included known SNCA interactors, such as beta-synuclein 

(SNCB) of M26 and synaptobrevin-2 (VAMP2) of M19 [44, 53, 54]. M19 and M26 also harbored 

numerous other SNCA-correlated cell surface proteins, such as L1 cell adhesion molecule 

(L1CAM), neural cell adhesion molecule 1 (NCAM1), and ankyrin 2 (ANK2). Synuclein levels in 

L1CAM-positive plasma-derived exosomes have emerged recently as a possible prodromal PD 

biomarker, supporting the strong association between these proteins [55, 56]. In addition, the 

highly positive correlation between SNCA and cholinergic receptor muscarinic 1 (CHRM1) of 

M26 suggested synuclein-mediated cholinergic dysfunction may play a key role in LBD 

pathophysiology. Many signaling molecules from M17 were also among those proteins highly 

correlated to SNCA, including various members of the G protein family (GNAO1, GNB1, GNB2, 

GRM5). Of note, select SNCA-correlated proteins among these presynaptic modules appeared 

more strongly linked to protein transport and targeting, such as tumor protein D52 (TPD52) of 

M17 and NEDD8 ubiquitin like modifier (NEDD8) of M26. TPD52 localizes primarily to 

endoplasmic reticulum (ER), highlighting the complex interactions between the ER and synaptic 

compartments. Indeed, the ER of neurons is known to mediate several aspects of synaptic 

transmission, including calcium signaling / homeostasis and vesicular trafficking [57-59].  

 In sum, we established that SNCA serves as a key bottleneck node to modules with strong 

links to presynaptic ontologies, robust elevations in LBD, and positive correlations to LB 

pathology. Numerous individual proteins across these modules demonstrated strong 

correlations to SNCA abundance and together reflected a wide range of synapse-associated 

processes.  

LBD-associated network alterations are preserved in replication analyses 

Emory Replication Analysis  

 To examine the validity of our UPenn LBD network findings, we analyzed the proteome 

of a separate cohort of DLPFC tissues derived from the Emory University ADRC brain bank. 

These cases included tissues with neuropathologically confirmed diagnoses of control (n=15), 

PDD (n=10), and DLB (n=19). Like the UPenn cohort, those Emory cases with dementia were on 

average in their mid-70s (PDD=75.3 +/- 10.7, DLB=74.6 +/- 7.9) and predominantly male (Table 
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S9). Neuritic plaque deposition was common among the Emory LBD cases. Nearly all Emory DLB 

cases (n=17) and half of the PDD cases (n=5) featured moderate to severe levels of plaque 

deposition (CERAD 2-3). NFT tau levels were overall milder. Yet, 10 of the 19 DLB cases featured 

severe NFT deposition (Braak V-VI), increasing the likelihood that both AD and LBD pathology 

were contributing to cognitive decline within this group. All Emory LBD cases featured some 

degree of LB deposition throughout the frontal cortex. Almost all DLB cases harbored frequent 

frontal LB inclusions, while those with PDD generally maintained lower burdens often ranging 

from sparse to moderate. 

 TMT-MS analysis across all 44 Emory cases quantified 8,213 proteins (Fig. 4A), including 

only those proteins quantified in at least 50% of samples. Like the UPenn cohort, TAMPOR was 

used to minimize technical variance and the protein abundance data was regressed for variance 

due to age, sex, and PMI [17, 18, 29]. We then used WGCNA to build a co-expression network on 

the dataset. The resultant network comprised 7,829 proteins organized into 39 Emory (E) modules 

with the largest (E-M1) featuring 431 proteins and the smallest (E-M39) harboring 90 proteins 

(Fig. 4B, Table S10-11). Module eigenprotein correlations were similar to those observed in the 

UPenn LBD network. This included strongly negative disease and pathological correlations 

among modules linked to postsynaptic (E-M3, E-M10, E-M25), ribosomal (E-M23, E-M36), 

mitochondrial (E-M2, E-M5, E-M19), and cilia function (E-M6, E-M33). Highly positive disease 

and pathological correlations among modules linked to the matrisome / cell adhesion (E-M8), 

proteasome (E-M11), transcription / RNA localization (E-M12), and ER / synaptic signaling (E-

M24) also mirrored our UPenn findings. Module preservation analysis revealed that all 39 Emory 

modules were highly preserved (z score > 10) in the UPenn network (Fig. 4C). To directly compare 

the expression trends of preserved modules across the two LBD networks, we examined the 

weighted module abundance of the top 20% of proteins by kME in each Emory module within 

the UPenn dataset. These UPenn “synthetic eigenproteins” revealed strong concordance between 

abundance trends in both networks across a variety of biological ontologies (Fig. 4D).  

A hypergeometric Fisher’s exact test (FET) revealed a closely related cluster of Emory 

modules (E-M24, E-M26, E-M29) that overlapped strongly with the SNCA-associated presynaptic 

modules in the UPenn network (Fig. S1). Accordingly, synaptic signaling ontologies were 

featured among the top GO terms for these Emory modules (Table S11). E-M24 was also strongly 

linked to ER function, again highlighting the close associations between the synaptic and ER 

compartments. E-M24 was particularly interesting among this module cluster, as it featured 

significant increases in LBD and highly positive correlations to frontal LB deposition compared 

to amyloid and tau. Furthermore, E-M24 harbored SNCA among its module members (Fig. 4E, 

Table S10). As in the UPenn network, SNCA was not a strong hub of E-M24 (kME=0.71). It’s kME 

ranking of 32 within this relatively small module of 161 proteins placed it just at the edge of the 

top 20th percentile. SNCA also maintained similar kME values relative to other synapse-associated 

Emory modules, including E-M26 (kME=0.6481) and E-M29 (kME=0.6210). This suggested a 

preserved bottleneck role for SNCA within the Emory network as well. In addition to SNCA, E-

M24 also featured stark elevations in many of the same synapse-associated proteins also 

increased in the UPenn network, including L1CAM, ANK2, TPD52, and NEDD8 (Fig. 4F). 

Overall, these results from our Emory cases validated many of the observations from the UPenn 

network, including increases in proteins associated with SNCA and presynaptic functions.  
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ROSMAP Replication Analysis 

 As a second replication study, we also examined the proteomes of DLPFC tissues derived 

from the Religious Orders Study or Rush Memory and Aging Project (ROSMAP) cohorts [60-62]. 

We used available clinical and pathological traits to classify these cases into control (n=42), 

asymptomatic LB pathology (AsymLB, n=21), and Lewy body dementia (LBD, n=40) groups 

(Table S12). Control cases comprised those with no cognitive impairment or corticolimbic LB 

deposition at death. AsymLB was defined as cases with corticolimbic LB deposition but normal 

cognition at death. Finally, LBD cases included those with clinical dementia and corticolimbic LB 

pathology present at death. Control cases featured minimal to no AD pathology, while AsymLB 

and LBD cases were restricted to those with only mild to moderate NFT deposition. These criteria 

helped ensure a high likelihood that LB deposition, as opposed to AD pathology, was the primary 

contributor to cognitive decline in our LBD cases [26]. 

Using TMT-MS, we quantified a total of 7,801 proteins across these cases and built a co-

expression network with WGCNA comprising 28 modules. All quantified data was regressed for 

age, sex, and PMI. We found that the co-expression observed in the UPenn data remained 

consistent among these ROSMAP cases. All 33 UPenn modules were significantly preserved in 

the ROSMAP dataset with the majority surpassing preservation z scores of 10 (Fig. S2A). 

Synthetic eigenproteins of UPenn module members within the ROSMAP dataset demonstrated 

concordance between the two cohorts across multiple modules, including the presynaptic UPenn 

modules of interest (M17, M19, M26) (Fig. S2B). Interestingly, among these presynaptic modules, 

increased protein levels were also observed in those with AsymLB, suggesting these alterations 

occur early in preclinical LB deposition. In sum, these results provided additional validation of 

the disease-associated alterations observed in our discovery UPenn cohort.  

Network level proteome comparison reveals LBD presynaptic co-expression signatures 

distinct from AD 

Unique pathophysiological signatures of LBD that distinguish it from AD and other 

related dementias are necessary to advance diagnostic and therapeutic target development. Our 

LBD network observations suggested key differences in co-expression patterns between LBD and 

our previous AD networks [15-22] that could inform key LBD biomarker discovery. To further 

compare network-level changes between LBD and AD, we performed a series of overlap analyses 

with our UPenn LBD network and two separate AD co-expression networks (Fig. 5A). The first 

AD network was also derived from the UPenn ADRC, comprising 49 DLPFC tissues from 

pathologically defined AD cases and the same 47 control tissues analyzed in the LBD network 

(Table S1). The second AD network was a previously published consensus analysis comprising 

> 500 control, asymptomatic AD (AsymAD), and AD DLPFC cases from the Banner Sun Health 

Research Institute [63] and ROSMAP [60-62]. AsymAD cases were defined as those with an Aβ 

and NFT burden similar to pathologically defined AD cases but without significant cognitive 

impairment close to death [17]. Thus, these tissues represented an early preclinical phase of AD 

[64]. We first analyzed the preservation of the 33 modules in our LBD network in these two AD 

networks (Fig. 5B-C). Nearly all LBD modules were highly preserved (Zsummary > 10) in both AD 

networks, indicating that the framework of protein co-expression was consistent across all three 

datasets.  
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 To compare the direction of expression of preserved modules across networks, we 

examined the synthetic eigenproteins of the Lewy body modules in each AD network. As with 

our above replication analyses, these AD synthetic eigenproteins reflected the weighted 

expression profiles of the top 20% of proteins in each UPenn LBD module. As expected, synaptic 

modules significantly decreased in LBD were also significantly decreased in AD (Fig. 5D). This 

included M6 and M8, which were both associated with the postsynaptic density. In contrast, those 

modules associated with presynaptic functions (M7, M17, M19, M26) showed much less 

concordance between LBD and AD (Fig. 5E). M19 and M26 were significantly increased in LBD 

but decreased in AD, while M17 featured significant increases in LBD but remained largely 

unchanged in AD. Finally, M7 was unchanged in LBD but significantly decreased in AD. 

Individual proteins with the starkest divergence in expression trends between LBD and AD are 

highlighted in Fig. 5F. These differentially expressed markers included SNCA and several co-

expressed proteins of interest, such as L1CAM, ANK2, NEDD8, and CEP68. These findings 

supported our observations that the LBD frontal cortex harbored expression trends among 

synaptic proteins that diverged from those found in AD. These results also suggested that these 

two diseases may feature marked differences specifically in presynaptic protein pathophysiology. 

Matrisome-associated protein levels differentiate LBD cases with high levels of amyloid co-

pathology   

 Overlapping AD pathology is extremely frequent in both DLB and PDD with as many as 

90% of cases harboring accumulation of the extracellular amyloid-beta (Aβ) plaques [10]. The 

presence of this concurrent pathology can also influence clinical progression and disease severity. 

Therefore, we were interested in examining protein expression trends across cases with low and 

high AD pathology burden. In our UPenn cohort, nearly half of the 58 LBD cases harbored 

minimal to no Aβ plaque pathology (CERAD 0-1), including 26 PDD and 2 DLB cases. The 

remaining cases, including 21 PDD and 9 DLB, featured moderate to severe plaque pathology 

(CERAD 2-3). Differential expression analysis of these low- and high-amyloid LBD cases revealed 

>700 proteins significantly altered between these two groups (Fig. 6A, Table S13). As expected, 

this included APP and several additional members of M13 (NXPH1, OSTM1), which were 

significantly elevated in the high-amyloid cases compared to those with low amyloid levels. Yet, 

most altered among the differentially expressed high- vs low-amyloid markers were numerous 

members of M10 (MDK, NTN1, SMOC1, CTHRC1), a glial and endothelial enriched module 

highly linked to the extracellular matrix (i.e., matrisome) and cell adhesion. Compared to low-

amyloid LBD cases, these M10 markers demonstrated large, highly significant fold-change 

elevations in those with high-amyloid LBD and were even more elevated in the UPenn AD cases 

(Fig. 6A-B). These results aligned well with our previous observations in the AD brain network, 

in which these matrisome proteins serve as hubs of a highly preserved plaque-associated module 

consistently elevated in AD [17, 18]. Interestingly, certain matrisome markers were significantly 

decreased in low-amyloid LBD compared to controls (Fig. 6B-C), suggesting a separate 

physiological process in this cohort in which the expression of these plaque-associated proteins 

is actively suppressed. Such markers included midkine (MDK), a heparin-binding growth factor 

involved in cell growth and angiogenesis, and collagen triple helix repeat containing 1 (CTHRC1), 

a protein implicated in vascular remodeling and the cellular response to arterial injury [65, 66]. 
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Both are often elevated in not only AD, but also cancer and tumorigenesis. Overall, these results 

revealed how the LBD brain network can be a source of not only unique pathophysiological 

markers, but also those that overlap with other neurodegenerative conditions, distinguishing 

those LBD cases with mixed pathology from cases with more pure Lewy body deposition. It also 

highlighted potential divergent glial-mediated pathophysiology in LBD cases with low versus 

high amyloid plaque burdens.  

Discussion  

The corticolimbic pathophysiology underlying the aggressive cognitive and 

neuropsychiatric deterioration in LBD is extremely complex, poorly understood, and features 

significant overlap with AD. In the current study, we employed co-expression network 

proteomics to define systems-based pathophysiologic alterations in the frontal cortex of a large 

UPenn autopsy cohort and compare these signatures to those observed in AD. We identified a 

diverse array of protein modules altered in the brains of those with PDD and DLB, encompassing 

synaptic, metabolic, and inflammatory pathophysiology. We then validated these network 

signatures across independent LBD cohorts and identified reproducible synaptic alterations that 

diverged from those in the AD brain. We also identified informative overlapping signatures 

between LBD and AD, including glial-associated matrisome markers that proved highly 

concordant with Aβ deposition and capable of stratifying LBD cases with low versus high 

burdens of amyloid plaque co-pathology. These results underscore how proteomic co-expression 

network analysis can yield insights into key divergent and overlapping pathophysiological 

signatures in the LBD and AD brain. 

Synaptic protein loss is generally considered a universal feature of the neuropathological 

changes observed in dementia. Numerous studies in AD have shown that pathological measures 

of synaptic loss correlate more strongly with cognitive impairment compared to Aβ and tau 

pathology [67-70]. Accordingly, we and others have observed stark decreases in a variety of 

synaptic proteins in the AD brain across multiple independent cohorts and brain regions [15-21, 

71]. We have also identified these synaptic decreases in the brains of those with AsymAD, or 

individuals with significant neuritic plaque and NFT deposition but no evidence of clinical 

cognitive impairment at death [17, 18, 20]. These results suggest early synaptic losses in AD 

independent of clinical declines. Aligning with these observations, we found significant decreases 

among our LBD cases in two large modules linked to postsynaptic function (M6, M8). These 

modules included synaptic markers that already feature well-described decreases in 

neurodegeneration, such as VGF and NPTX2 [30-38], reinforcing their potential as reliable 

markers of degeneration across different neurologic diseases. 

Yet, we also observed increased levels in presynaptic modules among our UPenn LBD 

cases, contrasting with our prior AD observations. These included M17, a neuron-enriched 

module linked to synaptic vesicular transport that featured various GTPases among its hub 

proteins (RAB1A, GNB2, GNAO1), as well as M19, another neuronal module that included SNCA 

and other proteins linked to vesicular signaling. The third neuronal module significantly 

increased in LBD was M26, which maintained ontological associations to both the synapse and 

cellular localization. While its hub proteins included largely cell surface proteins (ANK2, 

L1CAM), this module also featured proteins involved in protein targeting, folding, and 
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processing (CEP68, NEDD8). All three of these modules were either unchanged or significantly 

decreased when examined in our comparison AD networks, indicating divergent 

pathophysiology between the two dementias. It is unclear why LBD features these presynaptic 

increases and will require further investigation. On one hand, it is possible these increases 

represent a compensatory, rather than pathological, response in this brain region. However, the 

network-based links these modules shared with SNCA levels and LB deposition suggests that 

aberrant SNCA function is to some extent mediating these findings. 

Accordingly, SNCA served as a strong bottleneck node among these presynaptic 

modules. While hub proteins, which demonstrate high connectivity within their respective 

modules, are often considered key molecular drivers in co-expression networks [72], there is also 

growing recognition that proteins with a high degree of connectivity between modules are also 

highly relevant to disease. These bottleneck proteins have been shown to play central roles in 

various disorders and serve as successful therapeutic targets [49, 73-75]. As a strong presynaptic 

bottleneck, SNCA mediated communication between the three modules highlighted above (M17, 

M19, M26), as well as a fourth larger module (M7) also heavily associated with vesicular signaling 

and the presynaptic compartment. This aligns with the growing amount of research indicating 

SNCA localizes to the presynaptic terminal and participates in vesicular cycling, including 

regulation of vesicle pool size, mobilization, and endocytosis [44]. In addition, these presynaptic 

modules featured proteins known to interact closely with SNCA, such as synaptobrevin-2 

(VAMP2) and synapsin 1 (SYN1) [44, 54, 76]. L1 cell adhesion molecular (L1CAM), an 

increasingly studied neuronal surface marker for isolating and measuring exosome-associated 

SNCA in biofluids [55, 56], also mapped to these presynaptic modules (M26) and its increasing 

abundance in LBD correlated strongly with those of SNCA. Thus, our LBD network underscored 

well-established links between SNCA and the presynaptic compartment and supported its 

central role in the unique pathophysiological changes of LBD.  

These presynaptic LBD signatures also supported unique alterations in cholinergic 

pathways and their potential therapeutic implications. M26 featured muscarinic cholinergic 

receptors CHRM1 (M1) and CHRM4 (M4), which have both demonstrated promise as synaptic 

targets for cognitive and behavioral symptoms in dementia [77, 78]. Drugs that enhance synaptic 

M1 and M4 activity are currently being explored in the management of both AD and DLB. 

Compared to controls, both receptors demonstrated significant increases among LBD cases but 

stable, largely unchanged levels in AD. While this reveals potential differences in AD and LBD 

cholinergic function, it does suggest both diseases are able to preserve these receptors to some 

extent and may be responsive to M1 and M4 agonists. Yet, the stark increases LBD demonstrated 

in these cholinergic receptors, as well as others (CHRM2, CHRM3), could be in response to 

significant losses in other components of the cholinergic pathways. For instance, all three LB 

disorders in our UPenn network demonstrated dramatic, several-fold decreases in SLC5A7, a 

protein necessary for presynaptic choline uptake and ACh synthesis [41]. Of note, though much 

of its activity is localized to the presynaptic terminal, SLC5A7 expression trends most closely 

aligned with postsynaptic M8. Thus, despite their predominant ontologies, it is important to note 

that all our neuronal modules likely harbor some mixture of proteins that function in both the 

presynaptic and postsynaptic spaces. Nevertheless, these cholinergic trends further showcase the 
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diversity of abundance alterations within LBD synaptic pathways, highlighting those proteins 

with preserved to increased levels in disease that may respond well to therapeutic agonists.  

Yet, synaptic pathways were not the only ones implicated as distinctly altered in LBD. In 

both the UPenn and Emory LBD networks, proteins involved in protein targeting, folding, and 

ER function were also co-expressed with our elevated presynaptic LBD markers. M26 best 

reflected this co-expression of synaptic and protein processing molecules in the UPenn network, 

while E-M24 of the Emory network mapped strongly to both synaptic and ER ontologies. These 

network associations likely reflect the well-established functional relationships between ER and 

synaptic regulation [57-59]. Many have also linked SNCA itself to ER stress and aberrant protein 

processing. For instance, Colla et al. found oligomeric species of SNCA in the ER of both animal 

and human brains with synucleinopathy [79], suggesting an ER-mediated stress response may 

play an integral role in disease pathophysiology. Others have also reported colocalization of ER 

stress markers with synuclein inclusions in diseased brain tissue [80, 81]. Furthermore, LB disease 

has been linked to various disruptions in protein processing, such as neddylation [82]. NEDD8, a 

ubiquitin-like protein involved prominently in neddylation, was among the synapse-associated 

modules in our UPenn and Emory networks that demonstrated strong increases in LBD and 

marked decreases in AD. Dysfunction of this protein has been previously linked to multiple 

neurodegenerative diseases with ubiquitinated inclusions, including AD and LB disorders [82-

84]. However, our results suggest the pathophysiological mechanism underlying this dysfunction 

may differ between these two disorders.  

These divergent network changes could eventually yield much needed diagnostic and 

therapeutic markers of LBD. The observation in our ROSMAP cases that these presynaptic 

proteins are elevated in asymptomatic disease further supports their potential clinical utility as 

early targets. Yet, tools that help identify overlapping LBD and AD are also useful. Studies have 

shown that the burden and distribution of AD pathology can have a significant impact on LBD 

presentation and progression [85, 86].  Thus, understanding the physiological breadth of co-

pathology among these individuals is also paramount. Our network analysis revealed that 

proteins associated with the extracellular matrix (ECM) were best at distinguishing LBD cases 

with low versus high levels of amyloid co-pathology. This supports growing evidence that these 

proteins associate strongly with amyloid plaques [71]. Furthermore, these results underscore our 

prior AD brain network analyses, which have established many of these matrisome proteins 

(SMOC1, NTN1, MDK) as hubs of a highly preserved glia-associated module consistently 

elevated in both AsymAD and AD [16-18]. Our current LBD data provides an additional role for 

these emerging biomarkers as early indicators of AD co-pathology in LB populations, which 

could help guide clinical management throughout the course of disease. In addition, their 

elevation in such a sizeable portion of LBD patients suggests these markers could provide another 

avenue independent of SCNA for therapeutic targeting. 

Prior integrative proteomic studies from our group and others have demonstrated the 

translation potential of brain network analysis into promising biofluid markers of disease [16, 18, 

23, 71, 87]. We have previously demonstrated up to 70% overlap between the brain and CSF 

proteomes using TMT-MS. This has allowed us to identify panels of CSF biomarkers in AD 

reflecting a diverse range of pathophysiology and further validate these markers in cross-

sectional and longitudinal AD cohorts [16, 18, 23, 24, 87]. In a recent manuscript, we showed that 
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a panel of 48 CSF AD markers, originally identified in brain network analyses, improved early 

diagnostic and predictive assessments of sporadic AD [23]. A separate study demonstrated that 

CSF levels of matrisome markers SMOC1 and SPON1 were elevated nearly 30 years prior to the 

onset of symptoms in an autosomal dominant AD population [24]. Thus, future directions include 

integrating the LBD brain network proteome with the CSF and plasma proteomes of diseased 

patients to similarly identify molecularly diverse biofluid panels that could advance the 

diagnostic and predictive accuracy of LBD. 

Our focus on the DLPFC could be viewed as a limitation in this study. This region was 

chosen because it is commonly affected in diffuse neocortical LBD and routinely scored in its 

neuropathological diagnosis. In addition, frontal executive deficits are commonly among the first 

symptoms observed in LBD [26], indicating this region could provide a valuable map of early 

pathophysiological changes in the evolution of LB-mediated cognitive changes. The robust 

differential expression we observed even in non-demented PD cases further suggests this region 

is affected early in the brainstem-to-corticolimbic disease evolution thought to eventually 

provoke PDD. Yet, it is possible other heavily affected regions in LBD, including the inferior 

temporal and parietal lobes, may yield different network findings and additional insights. 

Among other limitations, our LBD subjects lacked racial diversity and skewed predominantly 

male. In our prior network studies of the AD brain proteome, we have found that both age and 

sex have a very limited impact on disease-associated module trends [18]. Yet, it will be important 

in future studies, particularly when examining these markers in biofluids, to utilize large, more 

diverse cohorts to define the impact of these demographic variables on LBD protein signatures.  

In summary, our study offers a network-level map of the LBD brain proteome, which 

revealed disease-associated alterations in a diverse range of protein systems. Using this network, 

we were able to identify key overlapping and divergent protein signatures in LBD and AD tissues 

and correlate these disease-associated alterations to core neuropathologies. These results can 

serve as a strong systems-based framework for future integrative studies focused on identifying 

protein biofluid markers relevant to corticolimbic pathophysiology in the LBD brain.  
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Methods 

Brain Tissues. Human postmortem brain tissues used in this study were obtained from the 

UPenn ADRC, Emory ADRC, and ROSMAP [60-62] autopsy collections. All tissues were derived 

from the DLPFC (BA 9) and acquired under Institutional Review Board protocols at each 

representative institution. All ROSMAP participants signed informed and repository consents 

and an Anatomic Gift Act. In all cases, neuritic plaque distribution was scored according to the 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) criteria [28], and the extent 

of neurofibrillary tangle pathology was assessed with the Braak staging system [27]. The 

frequency of Lewy body (LB) deposition in the frontal cortex was scored in the UPenn and Emory 

cases using similar semi-quantitative scales. The UPenn scale included scores of 0 (absent), 1 

(sparse), 2 (moderate), and 3 (frequent), while the Emory scale comprised scores of 0 (absent), 1 

(sparse to moderate), and 2 (frequent). LB deposition in the ROSMAP cases was scored using a 

global regional scale that indicated whether these inclusions were absent, nigral-predominant, 

limbic-type, or neocortical-type, as previously described [6]. Clinical scores were available for the 

UPenn and ROSMAP samples, including Mini-Mental Status Examination (MMSE) values. 

Clinical consensus cognitive diagnoses were also provided for ROSMAP cases based on detailed 

neuropsychological testing, which indicated whether an individual had no cognitive impairment 

(NCI), mild cognitive impairment (MCI), or dementia at death, as previously reported [88-90]. 

Disease classification in the UPenn and Emory cohorts reflected neuropathological diagnoses 

provided by expert pathologists at each institution. These diagnoses were made in accordance 

with established criteria and guidelines [26, 91]. Disease classification of ROSMAP tissues was 

determined using available clinical and pathological traits. ROSMAP controls included those 

with NCI, absent corticolimbic LBs, and minimal neuritic plaque and NFT deposition (CERAD 0-

1, Braak NFT 0-II). Asymptomatic LB (AsymLB) cases were those with NCI, present corticolimbic 

LBs, and mild to moderate NFT deposition (Braak NFT 0-IV), while those with Lewy body 

dementia (LBD) featured dementia at death, present corticolimbic LBs, and mild to moderate NFT 

deposition (Braak NFT 0-IV). These criteria surrounding tau levels helped ensure a high 

likelihood that LB deposition, as opposed to AD pathology, was the primary contributor to 

cognitive decline in our LBD cases [26]. All sample metadata are provided in 

https://www.synapse.org/#!Synapse:syn53177242. The subsequent Methods sections outline the 

processing, TMT labeling, and MS analysis of the three tissue cohorts included in this study. All 

procedures were performed within the Emory University Center for Neurodegenerative Disease 

and remained largely consistent across cohorts with minor differences where indicated. The 187 

UPenn samples included in this study were processed and MS quantified within a larger UPenn 

tissue cohort comprising a total of 354 samples. Only samples with neuropathologically 

confirmed diagnoses of control (n=47), PD (n=33), PDD (n=47), DLB (n=11), and AD (n=49) were 

included in the subsequent network analyses. Likewise, the 103 ROSMAP cases included for 

validation were quantified as part of a larger cohort of ROSMAP cases that comprised a total 610 

samples. Only those meeting clinical and pathological criteria for control (n=42), AsymLB (n=21), 

and LBD (n=40) were used for validation analyses. Detailed methods have been previously 

published for the processing and MS analysis of the complete ROSMAP cohort [92], which we 

refer to when appropriate.  
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Brain Tissue Homogenization and Protein Digestion. Tissue homogenization of all cases was 

performed essentially as described [20, 93]. Approximately 100 mg (wet weight) of each tissue 

sample was homogenized in 500 μL of 8 M urea lysis buffer (8 M urea, 10 mM Tris, 100 mM 

NaH2PO4, pH 8.5) with HALT protease and phosphatase inhibitor cocktail (ThermoFisher). 

Tissues were added to the lysis buffer immediately after excision in Rino sample tubes 

(NextAdvance) supplemented with ~100 μL of stainless-steel beads (0.9 to 2.0 mm blend, 

NextAdvance). Using a Bullet Blender (NextAdvance), tissues were then homogenized at 4 °C 

with 2 full 5 min cycles. The lysates were transferred to new Eppendorf Lobind tubes and 

sonicated for 3 cycles, each lasting 5 seconds at 30% amplitude. Sample lysates were then 

centrifuged for 5 min at 15,000 x g and the supernatant transferred to new tubes. Protein 

concentration was determined by bicinchoninic acid (BCA) assay (Pierce). For protein digestion, 

100 μg of each sample was aliquoted and volumes normalized with additional lysis buffer. 

Samples were reduced with 1 mM dithiothreitol (DTT) at room temperature for 30 min followed 

by 5 mM iodoacetamide (IAA) alkylation in the dark for another 30 min. Lysyl endopeptidase 

(Wako) at 1:100 (w/w) was added, and digestion allowed to proceed overnight. Samples were 

then 7-fold diluted with 50 mM ammonium bicarbonate. Trypsin (Promega) was added at 1:50 

(w/w) and digestion was carried out for another 16 hours. The peptide solutions were acidified 

to a final concentration of 1% (vol/vol) formic acid (FA) and 0.1% (vol/vol) trifluoroacetic acid 

(TFA) before desalting with a 30 mg HLB column (Oasis). Prior to sample loading, each HLB 

column was rinsed with 1 mL of methanol, washed with 1 mL 50% (vol/vol) acetonitrile (ACN), 

and equilibrated with 2×1 mL 0.1% (vol/vol) TFA. Samples were then loaded onto the column and 

washed with 2×1 mL 0.1% (vol/vol) TFA. Elution was performed with 2 volumes of 0.5 mL 50% 

(vol/vol) ACN. An equal amount of peptide from each sample was aliquoted and pooled as the 

global internal standard (GIS), a fraction of which was TMT labeled and included in each batch 

as described below.  

Isobaric Tandem Mass Tag (TMT) Peptide Labeling. TMT peptide labeling was performed as 

previously described [20, 93]. As outlined above, the 187 UPenn samples included in this study 

were labeled and MS analyzed within a larger UPenn tissue cohort comprising a total of 354 

samples. Prior to labeling, these 354 UPenn cases were randomized into 24 batches by age, sex, 

and diagnosis. Labeling was performed using TMTpro 16-plex kits (ThermoFisher 44520). Each 

batch included one TMT channel with a labeled GIS standard. Labeling of sample peptides was 

performed as previously described [19, 93, 94]. Briefly, each sample (100 μg of peptides) was re-

suspended in 100 mM triethylammonium bicarbonate (TEAB) buffer (100 μL). TMT labeling 

reagents (5 mg) were equilibrated to room temperature. Anhydrous ACN (256 μL) was added to 

each reagent channel. Each channel was then gently vortexed for 5 minutes. A volume of 41 μL 

from each TMT channel was transferred to each peptide solution and allowed to incubate for 

1 hour at room temperature. The reaction was quenched with 5% (vol/vol) hydroxylamine (8 μL) 

(Pierce). All channels were then dried by SpeedVac (LabConco) to approximately 150 μL, diluted 

with 1 mL of 0.1% (vol/vol) TFA, and acidified to a final concentration of 1% (vol/vol) FA and 

0.1% (vol/vol) TFA. Labeled peptides were desalted with a 200 mg C18 Sep-Pak column (Waters). 

Prior to sample loading, each Sep-Pak column was activated with 3 mL of methanol, washed with 

3 mL of 50% (vol/vol) ACN, and equilibrated with 2×3 mL of 0.1% TFA. After sample loading, 
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each column was washed with 2×3 mL 0.1% (vol/vol) TFA followed by 2 mL of 1% (vol/vol) FA. 

Elution was performed with 2 volumes of 1.5 mL 50% (vol/vol) ACN. The eluates were then dried 

to completeness by SpeedVac. The 44 Emory samples were randomized by age and diagnosis into 

3 batches and labeled using TMTpro 16-plex kits (ThermoFisher 44520). Each batch included one 

TMT channel with a labeled GIS standard. Labeling of these sample peptides then proceeded 

according to the protocols above. Randomization and multiplex labeling of ROSMAP cases were 

performed according to very similar protocols, as previously described in detail [92].  

High-pH Off-line Fractionation. High pH fractionation of all cases was performed essentially 

as described [93, 95] with slight modifications. Dried samples were resuspended in high pH 

loading buffer comprising 0.07% (vol/vol) NH4OH, 0.045% (vol/vol) FA, and 2% (vol/vol) 

ACN. Resuspended samples were then loaded onto a Water’s Ethylene Bridged Hybrid (BEH) 

column (1.7 um, 2.1 mm x 150 mm). A Thermo Vanquish high-performance liquid 

chromatography (HPLC) system was used to carry out the fractionation. Solvent A consisted 

of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 2% (vol/vol) CAN. Solvent B 

comprised 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 90% (vol/vol) ACN. The 

sample elution was performed over a 25 min gradient with a flow rate of 0.6 mL/min. A total 

of 192 individual equal volume fractions were collected across the gradient and subsequently 

pooled by concatenation into 96 fractions [95]. The fractions were then dried to completeness 

using a SpeedVac. 

Mass Spectrometry Analysis of UPenn Samples. MS analysis was performed on the fractionated 

UPenn samples as previously described with modifications [17, 18, 20, 93]. Briefly, fractions were 

resuspended in an equal volume of loading buffer (0.1% FA, 0.03% TFA, 1% ACN) and analyzed 

by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Peptide eluents 

were separated on a custom in-house packed Charged Surface Hybrid (CSH) column (1.7 um, 15 

cm × 150 μM internal diameter) by a Dionex RSLCnano ultra-performance liquid 

chromatography (UPLC) system (ThermoFisher Scientific). Buffer A comprised water with 0.1% 

(vol/vol) FA, and buffer B comprised 80% (vol/vol) ACN in water with 0.1% (vol/vol) FA. Elution 

was performed over a 30 min gradient with a flow rate of 1500 nL/min. The gradient ranged from 

1% to 99% solvent B. Peptides were monitored on a Orbitrap Eclipse mass spectrometer with 

high-field asymmetric waveform ion mobility spectrometry (FAIMS) (FAIMS Pro Interface, 

ThermoFisher Scientific). Two compensation voltages were chosen for FAIMS. For each voltage 

(-45 and -65) top speed cycle of 1.5 seconds, the full scan (MS1) was performed with an m/z range 

of 410-1600 and 60,000 resolution at standard settings. The higher energy collision-induced 

dissociation (HCD) tandem scans were collected at 35% collision energy with an isolation of 0.7 

m/z, resolution of 30,000 with TurboTMT, AGC setting of 250% normalized AGC target, and a 

maximum injection time of 54 ms. For all batches, dynamic exclusion was set to exclude 

previously sequenced peaks for 20 seconds within a 10-ppm isolation window.  

Mass Spectrometry Analysis of Emory Samples. MS analysis on the fractionated Emory samples 

was performed similarly to the UPenn samples with modifications. Fractions were resuspended 

in an equal volume of loading buffer (0.1% FA, 0.03% TFA, 1% ACN) prior to LC-MS/MS analysis. 

Peptide eluents were separated on a custom in-house packed Charged Surface Hybrid (CSH) 
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column (1.7 um, 15 cm × 150 μM internal diameter) by a Dionex RSLCnano running capillary flow 

UPLC (ThermoFisher Scientific). Buffer A comprised water with 0.1% (vol/vol) FA, and buffer B 

comprised 80% (vol/vol) ACN in water with 0.1% (vol/vol) FA. Elution was performed over a 40 

min gradient with flow rate of 7 uL/min. The gradient ranged from 1% to 99% solvent B. Peptides 

were monitored on a Orbitrap Exploris 240 mass spectrometer at 2 seconds top speed cycle. Each 

cycle comprised of a full scan (MS1) with an m/z range of 410-1600 and 120,000 resolution at 

standard settings. The HCD tandem scans were collected at 36% collision energy with an isolation 

of 0.7 m/z, resolution of 45,000, AGC setting of 250% normalized AGC target, and 100 ms 

maximum injection time. For all batches, dynamic exclusion was set to exclude previously 

sequenced peaks for 20 seconds within a 10-ppm isolation window. 

Mass Spectrometry of ROSMAP Samples. MS analysis of fractionated ROSMAP samples was 

performed in two separate sets as previously described [92].  

Database Searches and Protein Quantification. All RAW files acquired from TMT-MS of all 

cases were searched against a human reference protein database using the Proteome Discoverer 

suite (version 2.4, ThermoFisher Scientific). MS2 spectra were searched against the UniProtKB 

human proteome database containing Swiss-Prot human reference protein sequences (20,338 

target proteins downloaded in 2019). Searches were performed using previously published 

protocols [17, 18, 93]. Percolator was used to filter peptide spectral matches (PSMs) and peptides 

to a false discovery rate (FDR) of less than 1%. Following spectral assignment, peptides were 

assembled into proteins and were further filtered based on the combined probabilities of their 

constituent peptides to a final FDR of 1%. A multi-consensus in Proteome Discoverer was then 

performed to achieve parsimonious protein grouping across both sets of samples. In cases of 

redundancy, shared peptides were assigned to the protein sequence in adherence with the 

principles of parsimony. As default, the top matching protein or “master protein” was the protein 

with the largest number of unique peptides and smallest value in the percent peptide coverage 

(i.e., the longest protein). Reporter ions were quantified using an integration tolerance of 20 ppm 

with the most confident centroid setting. Only parsimonious peptides were considered for 

quantification.  

Controlling for Batch-Specific Variance. A tunable median polish approach (TAMPOR) [29] was 

used to remove technical batch variance in the proteomic data from all three cohorts, as 

previously described [17]. TAMPOR is utilized to remove inter-batch variance while preserving 

meaningful biological variance in protein abundance values, normalizing to the median of 

selected intra-batch samples and the median samplewise abundance, alternately and iteratively 

in a median polish [29]. We have previously applied this batch-correction approach to multiple 

large proteomic datasets [17, 18, 92]. This approach is robust to outliers and up to 50% of 

measurements missing. If a protein had more than 50% of samples with missing values, it was 

removed from the protein abundance matrix. No imputation of missing values was performed 

for any cohort. For the current data, TAMPOR leveraged the median protein abundance from the 

pooled GIS TMT channels as the denominators in both factors to normalize sample-specific 

protein abundances across batches.  
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Regression of Covariates. Following TAMPOR batch correction, the protein abundance matrices 

from all three cohorts were subjected to non-parametric bootstrap regression by subtracting the 

covariate of interest multiplied by the median estimated coefficient from 1000 iterations of fitting 

for each protein in the log2(abundance) matrix, as previously described [17]. The UPenn and 

Emory datasets were regressed for age, sex, and PMI. The ROSMAP cases were regressed for 

these three covariates, as well as any residual variation related to batch. Ages at death used for 

regression were uncensored. Case diagnosis was also explicitly modeled and protected in each 

iteration. 

Weighted Gene Co-expression Network Analysis (WGCNA). The WGCNA algorithm was used 

to perform co-expression network analysis on the batch-corrected and regressed data from all 

three cohorts, as previously described [17, 18, 20]. A total of four co-expression networks were 

built for this study. For UPenn cases, two separate networks were built on the data matrices from 

1) an LB subset of cases including those with neuropathological diagnoses of control, PD, PDD, 

and DLB and 2) an AD subset of cases comprising controls and AD. These subset data matrices 

also included GIS data. Two additional validation networks were also built on the 44 Emory and 

103 ROSMAP cases. For each build, network connectivity outlier removal was performed as 

described [17, 18, 20]. The WGCNA::blockwiseModules() function was used to generate each 

network. The UPenn and Emory LB networks were built using the following WGCNA settings: 

soft threshold power = 11.0, deepSplit = 2, minimum module size = 25, merge cut height = 0.07, 

mean topological overlap matrix (TOM) denominator, a signed network with partitioning about 

medioids (PAM) respecting the dendrogram, and a reassignment threshold of p < 0.05 with 

clustering completed within a single block. Soft threshold power was adjusted in the UPenn AD 

and ROSMAP LB networks to 12.0 and 7.5, respectively. As previously described [17], this 

function generates a correlation matrix across all proteins within each network and subsequently 

clusters proteins hierarchically into modules based on protein expression pattern similarity 

across samples. Module eigenproteins are also generated, each representing the first principal 

component or weighted expression profile of its respective module. The signedkME function of 

WGCNA then allowed us to determine the bicor correlation between each individual protein and 

each module eigenprotein. This measure of module membership is defined as kME and was 

ultimately utilized to determine hub status [51]. To enforce a kME table with no aberrant module 

assignments, a post-hoc clean-up procedure with iterative protein reassignments were performed 

as previously described [17, 20].  

Gene Ontology and Cell Type Marker Enrichment Analyses. Gene ontology (GO) annotations 

were retrieved from the Bader Lab’s monthly updated .GMT formatted ontology lists as 

previously described [96]. A Fisher’s exact test for enrichment was performed into each module’s 

protein membership using an in-house script. Molecular function, biological process, and cellular 

compartment assignments for each module were determined using the highest ranked GO terms 

associated with each module. Cell type enrichment was also investigated as previously described 

[17, 20] by analyzing module overlap with RNA sequencing (RNA-seq) and proteomic reference 

lists of cell type-specific markers [97, 98]. Fisher’s exact tests (FET) were performed to measure 

the extent of cell type enrichment in each module and were corrected by the Benjamini-Hochberg 

procedure.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.23.576728doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.23.576728
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS Module Association. The enrichment of UPenn LB modules with GWAS targets was 

performed using MAGMA (version 1.08b) [45] and disease-specific single nucleotide 

polymorphism (SNP) summary statistics, as previously described [17, 20]. PD summary statistics 

were derived from http://www.pdgene.org, while AD summary statistics were obtained from 

Kunkle et al [99]. These lists were filtered for those genes with disease association values of p<0.05 

prior to enrichment analyses.   

Betweenness Centrality Calculations. To determine the bottleneck status of SNCA and other 

proteins in its assigned module (M19) in the UPenn LB network, we calculated the betweenness 

centrality (g) of each of these proteins relative to related presynaptic modules, including M7, M17, 

and M26. Essentially, these betweenness values represent the number of shortest paths passing 

through a certain protein or node, and those nodes with high betweenness are responsible for the 

flow of information in that portion of the network [49, 50, 52]. These betweenness measures were 

calculated in NetworkX (v3.1) in Python (v3.11.5) using the topological overlap matrix (TOM) 

plot generated by WGCNA upon building the UPenn LB network. A subgraph was constructed 

using the protein members of M19, M7, M17, and M26. Edges with weights less than the mean 

edge weight were removed to focus on proteins with the most similar expression patterns. The 

betweenness centrality was calculated for the resultant graph with protein members of M19 as 

source nodes and the remaining proteins in M7, M17, and M26 as target nodes. After betweenness 

centrality was calculated, proteins in M19 were ranked.  

Network Module Preservation. The WGCNA::modulePreservation() function was used to assess 

network module preservation across networks, as previously described [17, 18, 20]. This function 

generated a Zsummary composite score for each module, using one designated network as the 

template for each pairwise network comparison. We also assessed module preservation using 

synthetic eigenproteins as previously published [17, 18, 20]. Briefly, using one network as a 

template, synthetic modules were assembled in the comparison network comprising the top 20th 

percentile of proteins by kME. The WGCNA::moduleEigengenes() function was then used to 

calculate the weighted eigenproteins of these synthetic modules, representing the variance of all 

synthetic module members across disease cohorts. 

Other Statistics. Statistical analyses were performed in R (version 3.5.2). Correlations were 

performed using the biweight midcorrelation function as implemented in the WGCNA R 

package. Comparisons between two groups were performed by t test. Comparisons among three 

or more groups were performed with one-way ANOVA with Tukey or Bonferroni correction for 

multiple pairwise comparisons of significance. P values were adjusted for multiple comparisons 

by false discovery rate (FDR) correction where indicated. Box plots represent the median and 25th 

and 75th percentiles, while data points up to 1.5 times the interquartile range from each box hinge 

define the extent of error bar whiskers. Data points outside this range were identified as outliers. 
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Figure Legends 

Figure 1. Differential expression and network analysis of UPenn LBD tissues. (A) Study 

approach for analyzing differential expression and co-expression across the UPenn DLPFC 

tissues, including control (n=47), PD (n=33), PDD (n=47), and DLB (n=11) cases. TMT-MS resulted 

in the quantification of 9,661 proteins across all cases. (B) Volcano plots displaying the log2 fold 

change (x-axis) against the -log10 statistical p value (y-axis) for proteins differentially expressed 

between pairwise comparisons of each disease to controls. All p values across pairwise 

comparisons were derived by ANOVA with Tukey post-hoc correction. (C) Boxplots of MS-

measured APP and SNCA levels and their correlations to neuropathology measures of global 

amyloid plaque (CERAD) and frontal LB deposition, respectively. ANOVA p values are provided 

for each MS abundance plot (*, p<0.05; **, p<0.01; ***, p<0.001), while the Pearson correlation 

coefficient with associated p value is provided for each correlation analysis. (D) Co-expression 

network generated by WGCNA across all UPenn cases, consisting of 33 modules each labeled 

with a number and color. Module relatedness is shown in the dendrogram. (E) Neuropathological 

trait correlations, cell type marker enrichment, and principal gene ontology for each module. 

Module abundances were correlated to each disease diagnosis and measures of pathological 

burden with positive correlations indicated in red and negative correlations in blue. The cell type 

nature of each module was assessed by module protein overlap with cell type-specific marker 

lists of astrocytes, microglia, neurons, oligodendrocytes, and endothelia. Gene ontology analysis 

was used to identify the primary biology reflected by each module. Asterisks in each heat map 

indicate the degree of statistical significance of the trait correlation or cell type marker enrichment 

(*, p<0.05; **, p<0.01; ***, p<0.001). Abbreviations: CTL, control; PD, Parkinson’s disease; PDD, 

Parkinson’s disease dementia; DLB, Dementia with Lewy bodies; DLPFC, dorsolateral prefrontal 

cortex; TMT-MS, Tandem mass tag mass spectrometry; APP, amyloid precursor protein; SNCA, 

α-synuclein.  

Figure 2. Module abundances of UPenn LBD network reflect significant disease-associated 

alterations across diverse biological ontologies. (A-I) Abundance levels (eigenproteins) of select 

modules across control and disease groups with their top associated biological ontologies. 

ANOVA p values are provided for each abundance plot. All modules depicted were significantly 

altered (p<0.05) across the four groups. Box plots represent the median and 25th and 75th 

percentiles, while data points up to 1.5 times the interquartile range from the box hinge define 

the extent of error bar whiskers. (J) Module enrichment of PD (dark blue) and AD (purple) genetic 

risk factor proteins identified by GWAS. The dashed red line indicates a z score of 1.28, above 

which enrichment was significant (p=0.05) with an FDR of <10%. Gray shading indicates those 

modules with significant LBD-associated alterations in disease that were also significantly 

enriched with GWAS targets. Modules are ordered by relatedness as showed in Fig. 1D. (K) Table 

highlighting modules containing proteins identified by integrative multi-omic analysis as 

maintaining a causal role in PD (dark blue) and AD (purple). Abbreviations: FDR, false discovery 

rate.  

Figure 3. Alpha-synuclein serves as a bottleneck protein between presynaptic UPenn modules. 

(A) Graphical representation of SNCA module membership (kME) relative to four neuronal 
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modules in the UPenn co-expression network. While assigned to M19, SNCA was not a hub of 

this module. In addition, SNCA maintained moderately strong correlations to M7, M17, and M26 

with kME values approaching or exceeding 0.6. All four modules were linked to presynaptic 

biological ontologies. The top hub proteins for M19 are shown. (B) Graphical representation of 

the bottleneck analysis performed among the four presynaptic modules of interest. Top 

bottlenecks for M19 across these modules are shown based on measures of betweenness centrality 

(g). SNCA featured the highest g value of M19, indicating its central role in information flow 

between the four depicted modules. (C) Volcano plot displaying the biweight midcorrelation 

(bicor) to SNCA abundance (x-axis) against the -log10 statistical p value (y-axis) for all proteins 

quantified in the UPenn dataset. Proteins are shaded according to color of module membership. 

There were 2394 proteins with statistically significant (p<0.05) negative correlations and 2222 

proteins with significant positive correlations to SNCA abundance. Presynaptic modules were 

among those most highly represented among proteins with the strongest positive SNCA 

correlations. SNCA -log10 p value set was from >200 to 25 to keep plot scale. (D) Abundance plots 

for select individual proteins with significant positive correlations to SNCA abundance, 

highlighting presynaptic modules M17, M19, and M26. ANOVA p values are provided for each 

abundance plot (*, p<0.05; **, p<0.01; ***, p<0.001). Module eigenprotein box plots represent the 

median and 25th and 75th percentiles, while data points up to 1.5 times the interquartile range 

from each box hinge define the extent of error bar whiskers. Abbreviations: SNCA, α-synuclein.  

Figure 4. LBD-associated network alterations are replicated in an Emory tissue cohort. (A) 

Study approach for analyzing co-expression across the Emory DLPFC tissues and comparing 

these network-level alterations to the UPenn dataset. TMT-MS resulted in the quantification of 

8,213 proteins across all cases, which included 15 controls, 10 PDD, and 19 DLB tissues. The 

Emory and UPenn networks were compared using module preservation and overlap analyses. 

(B) Co-expression network generated by WGCNA across all Emory cases, consisting of 39 

modules each labeled with a number and color. Module relatedness is shown in the dendrogram. 

As in the UPenn network, module abundances were correlated to each disease diagnosis and 

measures of pathological burden with positive correlations indicated in red and negative 

correlations in blue. Gene ontology analysis was used to identify the primary biology reflected 

by each module. Asterisks in each heat map indicate the statistical significance of the trait 

correlation (*, p<0.05; **, p<0.01; ***, p<0.001). (C) Module preservation analysis of Emory network 

into the UPenn network. Modules with a Zsummary score of greater than or equal to 1.96 (q=0.05, 

blue dotted line) were considered preserved, while modules with Zsummary scores of greater than 

or equal to 10 (q=1.0E-23, red dotted line) were considered highly preserved. (D) Select Emory 

network module eigenproteins with their corresponding synthetic eigenproteins in the UPenn 

network. The UPenn synthetic eigenproteins reflected the weighted module abundance of the top 

20% of proteins by kME comprising each Emory module. All Emory module eigenproteins shown 

were significantly altered (p<0.05) across groups with synthetic eigenproteins that replicated in 

the UPenn network. ANOVA p values are provided for each eigenprotein plot. Box plots 

represent the median and 25th and 75th percentiles, while data points up to 1.5 times the 

interquartile range from the box hinge define the extent of error bar whiskers. (E) Graphical 

representation of individual proteins in the E-24 module arranged by kME with strong hubs at 

the center. SNCA is designated in bold. (F) Plots of individual protein abundances across groups 
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for members of the E24 protein module. ANOVA p values are provided for each abundance plot 

(*, p<0.05; **, p<0.01; ***, p<0.001). Abbreviations: CTL, control; PDD, Parkinson’s disease 

dementia; DLB, Dementia with Lewy bodies; SNCA, α-synuclein; ER, endoplasmic reticulum.  

Figure 5. Network level proteome comparison between LBD and AD reveals divergent 

signatures. (A) Study approach for comparing network-level alterations between the UPenn LBD 

network and two independent AD networks. The first AD network comprised DLPFC UPenn 

tissues, including 49 AD cases and the same 47 control cases analyzed in the initial UPenn LBD 

network. The second AD network was a previously published consensus analysis comprising > 

500 control, asymptomatic AD (AsymAD), and AD DLPFC cases from the Banner Sun Health 

Research Institute and Rush Memory and Aging Project (ROSMAP) cohorts. Module preservation 

and overlap analyses were used to compare these networks. (B-C) Module preservation analyses 

of the UPenn LBD network into the UPenn and Consensus Banner / ROSMAP AD networks. 

Modules with a Zsummary score of greater than or equal to 1.96 (q=0.05, blue dotted line) were 

considered preserved, while modules with Zsummary scores of greater than or equal to 10 (q=1.0E-

23, red dotted line) were considered highly preserved. (D-E) UPenn LBD network module 

eigenproteins associated with the postsynaptic (D) and presynaptic (E) compartments with their 

corresponding synthetic eigenproteins in the two AD networks. The AD synthetic eigenproteins 

reflected the weighted module abundance of the top 20% of proteins by kME comprising each 

LBD module. ANOVA p values are provided for each eigenprotein plot. Box plots represent the 

median and 25th and 75th percentiles, while data points up to 1.5 times the interquartile range 

from the box hinge define the extent of error bar whiskers. (F) Heat maps depicting the fold 

change magnitude of select presynaptic proteins across UPenn LBD and AD cases. Increases in 

protein levels are indicated in red, while decreases are in blue. Asterisks in each heat map indicate 

the statistical significance of the fold change (*, p<0.05; **, p<0.01; ***, p<0.001). Abbreviations: 

CTL, control; AsymAD, Asymptomatic Alzheimer’s disease; AD, Alzheimer’s disease; PDD, 

Parkinson’s disease dementia; DLB, Dementia with Lewy bodies. 

Figure 6. Matrisome proteins distinguish UPenn LBD cases with low and high amyloid 

burden. (A) Volcano plot displaying the log2 fold change (x-axis) against the -log10 statistical p 

value (y-axis) for proteins differentially expressed between UPenn LBD cases with low (CERAD 

0-1) versus high (CERAD 2-3) amyloid deposition. All p values were derived by t-test analysis. 

Proteins are shaded according to color of module membership. Proteins mapping to M10 

matrisome in the UPenn LBD network were among those most differentially expressed. (B) Heat 

maps depicting the fold change magnitude of select matrisome and other proteins across UPenn 

LBD and AD cases. Increases in protein levels are indicated in red, while decreases are in blue. 

Asterisks in each heat map indicate the statistical significance of the fold change (*, p<0.05; **, 

p<0.01; ***, p<0.001). (C) Plots of individual protein abundances across groups, including low- and 

high-amyloid LBD, in the UPenn LBD and AD datasets. ANOVA p values are provided for each 

abundance plot (*, p<0.05; **, p<0.01; ***, p<0.001). Abbreviations: CTL, control; PD, Parkinson’s 

disease; LBDLow, Low-amyloid Lewy body dementia; LBDHigh, High-amyloid Lewy body 

dementia.  

Figure S1. Module overlap between UPenn and Emory co-expression networks. A 

hypergeometric Fisher’s exact test was used to determine which modules shared significant 
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overlap of protein members between the UPenn and Emory networks. The 33 modules in the 

UPenn network (x-axis) were aligned to the 39 modules in the Emory network (y-axis). Numbers 

indicate the -log10 p-value with red shading indicating the degree of significance of overlap (*, 

p<0.05; **, p<0.01; ***, p<0.001). The green box indicates those UPenn modules that overlapped 

most strongly with E-24, which stood out in the Emory network given its association with 

synaptic ontologies, robust elevations in LBD, and selectively positive correlation to LB 

deposition relative to amyloid and tau. Its overlapping UPenn modules included M17 and M26, 

which were also SNCA-associated synaptic modules with strong increases in LBD. 

Figure S2. LBD-associated network alterations are replicated in a ROSMAP tissue cohort. (A) 

Module preservation analysis of UPenn network into the ROSMAP network. Modules with a 

Zsummary score of greater than or equal to 1.96 (q=0.05, blue dotted line) were considered preserved, 

while modules with Zsummary scores of greater than or equal to 10 (q=1.0E-23, red dotted line) were 

considered highly preserved. (B) Select UPenn LBD network module eigenproteins associated 

with their corresponding synthetic eigenproteins in the ROSMAP network. The ROSMAP 

synthetic eigenproteins reflected the weighted module abundance of the top 20% of proteins by 

kME comprising each LBD module. ANOVA p values are provided for each eigenprotein plot. 

Box plots represent the median and 25th and 75th percentiles, while data points up to 1.5 times 

the interquartile range from the box hinge define the extent of error bar whiskers. Abbreviations: 

CTL, control; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; DLB, Dementia with 

Lewy bodies; AsymLB, Asymptomatic Lewy body pathology; LBD, Lewy body dementia.  
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