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Abstract 21 

Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for 22 

exploring human brain function. Submillimeter fMRI, in particular, has emerged as a 23 

tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) 24 

at submillimeter resolutions warrants the use of denoising approaches tailored at 25 

reducing thermal noise – the dominant contributing noise component in high resolution 26 

fMRI. NORDIC PCA is one of such approaches, and has been benchmarked against 27 

other approaches in several applications. Here, we investigate the effects that two 28 

versions of NORDIC denoising have on auditory submillimeter data. As investigating 29 

auditory functional responses poses unique challenges, we anticipated that the benefit 30 

of this technique would be especially pronounced. Our results show that NORDIC 31 

denoising improves the detection sensitivity and the reliability of estimates in 32 

submillimeter auditory fMRI data. These effects can be explained by the reduction of 33 

the noise-induced signal variability. However, we also observed a reduction in the 34 

average response amplitude (percent signal), which may suggest that a small amount 35 

of signal was also removed. We conclude that, while evaluating the effects of the signal 36 

reduction induced by NORDIC may be necessary for each application, using NORDIC 37 

in high resolution auditory fMRI studies may be advantageous because of the large 38 

reduction in variability of the estimated responses. 39 

 40 

1 Introduction  41 

In recent years, the use of ultra-high field (UHF) magnetic resonance imaging has 42 

rapidly increased for a variety of applications. At UHF, the signal-to-noise ratio (SNR 43 

- Vaughan et al., 2001) and the blood-oxygenation-level-dependent (BOLD) contrast 44 
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(Ogawa et al., 1992), the basis of functional MRI (fMRI), increase (Yacoub et al., 45 

2001). This results in higher sensitivity to fMRI responses compared to more 46 

conventional field strengths (e.g. 3T and below). This allows for enormous benefits for 47 

the study of human brain function, in particular, the ability to acquire high spatial 48 

resolution (below 1 mm isotropic voxels) images. As such, at UHF it is possible to 49 

breach into the mesoscale and investigate fundamental computational structures and 50 

organizations of cortical functions, such as layers and columns (see e.g. De Martino 51 

et al., 2018; Dumoulin et al., 2018; Huber et al., 2015; Kok et al., 2016; Lawrence et 52 

al., 2019; Moerel et al., 2021; Olman et al., 2012; Uğurbil, 2018; Yacoub et al., 2008; 53 

Zimmermann et al., 2011). 54 

The functional contrast to noise ratio (fCNR) in fMRI is dependent on the signal 55 

change compared to baseline and both physiological and thermal noise. Submillimeter 56 

fMRI at UHF trades the higher SNR for spatial resolution, often times leaving the 57 

resulting data in a thermal noise dominated regime (characterized as unstructured, 58 

zero-mean Gaussian distributed noise) emanating from electrical sources inherent to 59 

MRI hardware (Triantafyllou et al., 2005, 2011). This makes approaches oriented 60 

towards reducing thermal noise (i.e. improving the image SNR) of particular interest 61 

for neuroscience applications that require mesoscopic level imaging. Importantly, 62 

approaches for improving image SNR have to be evaluated against any practical 63 

considerations or tradeoffs, for example, their ability to preserve spatial information 64 

content at the finest scales (e.g. laminar and columnar cortical responses) (Polimeni 65 

et al., 2018) or whether any unwanted biases are introduced (Kay, 2022). Extensive 66 

averaging, one of the possible approaches for reducing thermal noise, could in 67 

principle help in highlighting small functional changes without altering the signal 68 

content. However, this approach – which assumes constant responses to the same 69 
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stimuli over extended periods of time – is limited by practical implications such as the 70 

overall length of scanning sessions and the need for aligning data across multiple 71 

imaging sessions. While precision imaging approaches, that collect extensive data in 72 

only a few individuals, are becoming increasingly interesting in particular settings (see 73 

e.g. Allen et al., 2022; Michon et al., 2022; Poldrack et al., 2017) their application to 74 

mesoscopic imaging is far from standard and may not suffice when questions are 75 

oriented to generalizing effects at the population level. As an alternative to averaging, 76 

spatial smoothing could be used to increase image SNR. However, its application 77 

needs careful consideration as it comes with inevitable loss of spatial specificity 78 

(Turner & Geyer, 2014), which can be controlled if combined with anatomically 79 

informed constraints (e.g. laminar smoothing maintains specificity in the cortical depth 80 

direction while smoothing only tangentially) (Huber et al., 2021; Kiebel et al., 2000). 81 

Apart from averaging and (image) smoothing (with anatomical constraints), 82 

approaches for improving the detectability of effects (i.e. overcoming the limitations of 83 

low SNR regimes) have been considered at the analysis stage. Multivariate analyses, 84 

for example, have been argued to better leverage the information present in fine 85 

grained patterns and in part overcome the lower SNR of high resolution functional 86 

images, but may have some limitations in interpretability (Formisano & Kriegeskorte, 87 

2012). In univariate analyses, the definition of noise regressors (through e.g. principal 88 

component analysis - Kay et al., 2013), has also been considered in order to improve 89 

the detectability of effects of interest, but relies on knowledge of the experimental 90 

design and assumptions such as the definition of noise pools (i.e. a collection of voxels 91 

whose time series is mostly representing noise sources). Denoising based on 92 

independent component analysis (ICA) has also been developed in fMRI and 93 

evaluated primarily in its ability to remove structured noise components (Pruim et al., 94 
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2015) and improving detectability of effects in lower resolution functional data that are 95 

mainly challenged by physiological noise (Griffanti et al., 2014; Salimi-Khorshidi et al., 96 

2014). For completeness it is important to note that approaches to remove structured 97 

(physiological) noise in fMRI (and thus not tailored to the reduction of thermal noise) 98 

include, apart from ICA, the use of multiple echoes to estimate sources of variance 99 

(Gonzalez-Castillo et al., 2016; Steel et al., 2022), or measuring physiological data to 100 

subsequently remove the noise sources from the data (e.g. RETROICOR - Glover et 101 

al., 2000; or RETROKCOR - Hu et al., 1995). 102 

A denoising technique tailored to the removal of thermal noise that has recently 103 

been introduced is NOise Reduction with DIstribution Corrected Principal Component 104 

Analysis (NORDIC PCA - Moeller et al., 2021; Vizioli et al., 2021). NORDIC is a pre-105 

processing approach based on PCA that selectively removes components that are 106 

indistinguishable from zero-mean normally distributed noise (see e.g. 107 

https://layerfmri.com/2023/07/10/nordic/#more-3956 for an informal description of the 108 

approach). Compared to other PCA denoising techniques (see Veraart et al., 2016), 109 

the main difference rests in the approach used to estimate the number of (principal) 110 

components that are removed (i.e. the threshold on the eigenvalue spectrum that 111 

distinguishes noise components from signal components). NORDIC has been initially 112 

extensively evaluated on visual cortical responses elicited by blocked (temporally 113 

prolonged ~ 12 seconds) stimulation and has been shown to increase detection 114 

sensitivity without affecting the overall signal change and spatial precision of the 115 

responses (i.e. without introducing spatial blurring - Vizioli et al., 2021). NORDIC has 116 

also been evaluated and compared to other PCA based denoising approaches 117 

(dwidenoise - Cordero-Grande et al., 2019; Manzano-Patron et al., 2023; Veraart et 118 

al., 2016). Compared to dwidenoise and more conventional smoothing approaches, 119 
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and in experimental designs ranging from blocked to event related visual stimulation, 120 

NORDIC has been shown to better preserve local and global spatial smoothness of 121 

the functional data as well as the temporal characteristics of the responses (i.e. 122 

temporal smoothing) and it has been shown to not introduce unwanted effects (Dowdle 123 

et al., 2023; but see Fernandes et al., 2023 for an evaluation in rodent data). NORDIC 124 

has been rapidly picked up by the community and its usability is now being examined 125 

across different areas (including visual and motor regions), field strengths (3T and 7T), 126 

and acquisition techniques (see e.g. Dowdle et al., 2022; Knudsen et al., 2023; 127 

Raimondo et al., 2023). These recent studies consistently show that NORDIC 128 

improves detectability of the effects. However, while NORDIC has been shown to 129 

improve (statistical) signal detection, generalizing these results to other cortical 130 

regions and to designs that are particularly SNR limited (e.g. auditory cortical 131 

responses elicited by slow event-related designs) still requires careful evaluation of its 132 

benefits as opposed to any potential unwanted bias. 133 

Here we focus on the application of NORDIC to submillimeter functional MRI 134 

data collected to investigate auditory cortical responses elicited by a slow event-135 

related design. The auditory cortex is located next to large air cavities, with parts of it 136 

like primary cortical regions lying further away from the receive coils compared to other 137 

sensory regions (e.g. visual and somatosensory regions). These and other factors 138 

(e.g. the need for large field of views to image bilateral auditory cortical areas) make 139 

imaging auditory cortical regions sensitive to geometric distortions and signal dropouts 140 

due to large B0 inhomogeneities (Moerel et al., 2021) and not only for BOLD type 141 

acquisitions (Faes et al., 2023). Furthermore, the percent signal change elicited in 142 

auditory regions is lower than in visual cortex (De Martino et al., 2015). However, 143 

despite these challenges, there have been several high resolution auditory studies that 144 
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look at cortical depth dependent responses (see e.g. Ahveninen et al., 2016; De 145 

Martino et al., 2015; Gau et al., 2020; Moerel et al., 2018). As such, given that auditory 146 

submillimeter studies are especially restricted by low SNR, they would greatly benefit 147 

from thermal noise reduction. However, the efficacy of PCA-based denoising methods 148 

also depends on the relative contribution of signal and noise. Therefore, submillimeter 149 

auditory fMRI may present a challenge for NORDIC. Collectively, these considerations 150 

warrant the need to explore the effect of NORDIC denoising on submillimeter fMRI 151 

data collected in the auditory cortex. We center our evaluation on the improvements 152 

in tSNR by considering changes to both the mean percent signal change and its 153 

variability. 154 

 155 

2 Methods  156 

 157 

2.1 NORDIC 158 

NORDIC is a denoising approach that operates on either complex-valued or 159 

magnitude-only fMRI time series. As the use of parallel imaging results in a spatially 160 

varying amplification of the thermal noise according to the g-factor (Pruessmann et al., 161 

1999), if necessary, the NORDIC algorithm first normalizes the functional data by the 162 

g-factor, resulting in the thermal noise being uniformly distributed across space (to 163 

fulfill the assumption of PCA denoising that noise is identically distributed across 164 

voxels). NORDIC uses a locally low rank approach to perform a patch-wise PCA 165 

across space and time. An estimate of the noise level is obtained from an appended 166 

acquisition without a radiofrequency excitation (e.g. a noise scan) or an estimate of 167 

the g-factor noise (Ma et al., 2020). In each patch, the noise threshold defines the 168 

principal components that are removed from the eigenspectrum as they are 169 

considered to be indistinguishable from zero-mean Gaussian distributed noise. The 170 
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noise threshold is chosen with Monte-Carlo simulations for a Casorati matrix with zero-171 

mean normally distributed sampling and, depending on the settings, considering an 172 

ideal or realistic noise distribution. After the removal of noisy principal components, 173 

the patches are recombined and the g-factor is re-applied to reconstruct the fMRI 174 

images. Assuming signal redundancy within the patch (i.e. enough voxels carrying the 175 

same information), NORDIC aims at removing thermal noise from the time series while 176 

preserving the fine-grained temporal and spatial structure of the signal that is assumed 177 

to be carried by the preserved principal components. For more details on NORDIC we 178 

refer to the original publications (Moeller et al., 2021; Vizioli et al., 2021).  179 

Currently, there are two implementations of NORDIC available 180 

(https://github.com/SteenMoeller/NORDIC_Raw). We focus on the use of 181 

(NIFTI_NORDIC - version 04-22-2021) which takes nifti formatted data of both 182 

magnitude and phase images as input.  183 

 184 

2.2 MR imaging acquisition 185 

Data was collected with a 7T Siemens Magnetom System with a single channel 186 

transmit and 32-channel receive NOVA head coil (Siemens Medical Systems, 187 

Erlangen). Whole-brain anatomical T1-weighted images were collected using a 188 

Magnetisation Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) sequence at 189 

a resolution of 0.75 mm isotropic (192 slices, TR = 4300 ms, TE = 2.27 ms) (Marques 190 

et al., 2010). 191 

 Functional data were acquired with 2D gradient-echo (GE) echo planar imaging 192 

(EPI) along with simultaneous multi-slice (SMS)/(MB) multiband (Moeller et al., 2010; 193 

Setsompop et al., 2012) (0.8 mm isotropic, 42 slices, TR = 1600 ms, TE = 26.4 ms, 194 

MB factor 2, iPAT factor 3, 6/8 Partial Fourier, bandwidth 1190 Hz, field of view: 170 x 195 
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170 mm, matrix size: 212 x 212, phase encoding = anterior to posterior; coil 196 

combination = SENSE1).  197 

 198 

2.3 Participants 199 

Ten healthy participants took part in this fMRI study (aged between 23 and 69 years 200 

old, 5 females). Participants had no history of neurological disease or hearing 201 

disorders. Eight participants were scanned at the Center for Magnetic Resonance 202 

Research in Minneapolis (CMRR) and two were scanned at New York University 203 

(NYU) using the identical imaging protocol except for slight differences in TR (TRCMRR 204 

= 1600 ms, TRNYU = 1650 ms). The local IRB at the individual institutions approved 205 

the experiment. All participants signed informed consent forms before commencing 206 

the study.  207 

 208 

2.4 Experimental design 209 

Participants passively listened to tone sequences. Conditions were designed to 210 

investigate predictive processing in the auditory cortex (based on sequences used in 211 

Berlot et al., 2018), but we will disregard the neuroscientific purpose of the 212 

experimental paradigm and focus on the effect of denoising instead.  213 

Six conditions were presented. All conditions consisted of sequences of four 214 

tones. The four tones were presented for 100 ms each with a 400 ms gap between 215 

tones (total tone sequence length was 1.6 seconds). The conditions were designed 216 

such that the first 3 tones were ‘contextual’ tones ordered in either a descending, 217 

ascending or scrambled fashion. The frequencies used for these contextual tones 218 

were always the same three (493.9, 659.3 and 987.8 Hz), albeit presented in a 219 

different order. The fourth tone was selected such that three conditions ended in a 220 
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high frequency (1318.5 Hz) and three conditions ended in a low frequency (329.6 Hz). 221 

This resulted in two predictable sequences (PredH and PredL), two mispredicted 222 

sequences (MispredH and MispredL), and two unpredictable sequences (UnpredH 223 

and UnpredL) as displayed in Figure 1. The auditory stimuli were presented 224 

concomitantly with the scanner noise (i.e. no silent gap for sound presentation was 225 

used).  226 

Per run, each of the predictable sequences were presented 10 times, the 227 

mispredicted sequences and the unpredictable sequences were each presented 4 228 

times in a randomized order (for a total of 36 trials in one run). Tone sequences were 229 

presented in a slow event-related design with an average inter-trial interval of 6 TR’s 230 

(ranging between 5 and 7 TR’s). For each participant, we collected 6 to 8 runs that 231 

lasted approximately 6 minutes each (including noise scans at the end of each run). 232 

Magnitude and phase Dicom images were exported from the scanner.  233 

 234 

 235 

Figure 1. Experimental conditions. The first three tones are contextual eliciting a strong or weak 236 
prediction. The three contextual tones are presented at the same frequencies, albeit in different orders. 237 
The fourth tone can either be a high or low target frequency. The fourth tone can either consecutively 238 
follow the ascending or descending order (PredH and PredL), or the contextual tones could be deviant 239 
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(MispredH and MispredL) or the contextual tones could be scrambled (UnpredH and UnpredL). The two 240 
predictable sequences were presented ten times per run, whereas the other four conditions were 241 
presented four times per run. 242 

 243 

2.5. Data preprocessing  244 

2.5.1 NORDIC preprocessing  245 

Dicom files were converted to NIfTI format (separately for magnitude and phase 246 

images - MRIcron, version 1.0.2). The magnitude and phase NIfTI files were used as 247 

the input to NIFTI_NORDIC. We used two different settings for NORDIC denoising: 1) 248 

using default settings for fMRI data (PCA kernel size of 11:1, temporal phase = 1, 249 

phase filter width = 10, the noise scan is used for empirical noise estimation) and 2) 250 

the same as the default except for the use of the noise scan in the estimation of the 251 

noise threshold. In the NIFTI_NORDIC implementation, not using the noise scan 252 

results in using a noise threshold based on the g-factor estimation (in the 253 

implementation, a threshold of 1/sqrt(2)), which is generally more conservative (i.e. 254 

resulting in the removal of less principal components) than the estimated threshold 255 

when using the noise scan, reflecting the empirical observation that the approach for 256 

g-factor estimation underestimates the value by up to 10%. This resulted in three 257 

datasets (per run), the first, which will be referred to as the ‘Original’, represents the 258 

fMRI data without NORDIC denoising. The second, which we will refer to as ‘NORDIC 259 

default’ (NORdef), represents the fMRI time series resulting from the processing with 260 

default NORDIC settings. The third, we will refer to as ‘NORDIC No Noise’ (NORnn), 261 

represents the fMRI time series resulting from the use of NORDIC without separate 262 

noise scans for the estimation of the noise threshold.  263 

 264 

 265 

 266 
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2.5.2 Pre-processing 267 

The anatomical and functional data were analyzed using a BrainVoyager software 268 

package (BV - version 21.4, Brain Innovation, Maastricht, The Netherlands) and 269 

custom Matlab scripts (The MATHWORKS Inc., Natick, MA, USA). After the initial 270 

NORDIC denoising step, functional processing was performed identically across 271 

datasets. The noise acquisitions were removed from each time series. Pre-processing 272 

of the functional data included slice scan time correction using sinc interpolation and 273 

motion correction along three dimensions using intrasession alignment to the run 274 

closest in time to the collection of opposite phase encoding images (run 1 in most 275 

participants, run 4 in two participants). In addition, temporal filtering was applied to 276 

remove low frequencies (high-pass filtering with 7 cycles per run) and high frequencies 277 

(temporal gaussian smoothing with a full width half maximum kernel of 2 data points). 278 

Reversed phase polarity acquisitions were used to correct for geometric distortions 279 

using Topup (FSL version 6.0.4). In one participant we experienced issues collecting 280 

opposed phase polarity images and therefore no distortion correction was performed 281 

in this participant. 282 

The anatomical data were upsampled to 0.4 mm isotropic, corrected for 283 

inhomogeneities and transformed to ACPC space. A segmentation was created using 284 

the deep neural network in BV to determine the initial white matter (WM) and gray 285 

matter (GM) boundary and GM/cerebral spinal fluid (CSF) border. The segmentation 286 

of the temporal lobe was manually corrected in ITK snap (Yushkevich et al., 2006). 287 

With this corrected segmentation, we created mid-GM surface meshes in BV. 288 

Additionally, we estimate the cortical thickness of the high-resolution segmentation.  289 

 290 

 291 
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2.5.3 ROI definition 292 

Five bilateral regions of interest (ROIs) were drawn on the individual mid-GM meshes 293 

based on macro-anatomical landmarks (as described in Kim et al., 2000), covering the 294 

temporal lobe including Heschl’s Gyrus (HG), Planum Polare (PP), Planum Temporale 295 

(PT), anterior superior temporal gyrus (aSTG) and posterior superior temporal gyrus 296 

(pSTG). These ROIs were projected back onto the anatomy in volume space 297 

(extending 3 mm inwards and outwards from the mid-GM surface). These masks were 298 

first intersected with the GM definition and then dilated (six steps) in order to obtain 299 

the final masks that include GM as well as the WM and the CSF surrounding it. The 300 

union of all the masks (temporal lobe mask) was used to run the statistical analysis 301 

(General Linear Model, see below), while results were inspected separately per ROI 302 

in some analyses.   303 

 304 

2.6. Analyses 305 

2.6.1. General Linear Model 306 

All statistical analyses were performed with custom Matlab scripts. Time series were 307 

first normalized to percent signal change (PSC). For our first-level analysis, we fitted 308 

a general linear model (GLM) with single trials per condition as predictors (36 trials 309 

and one constant per run). Predictors were convolved with a standard two-gamma 310 

hemodynamic response function (HRF) that peaked at 5 seconds after the onset of 311 

the stimuli. In order to evaluate the effects that NORDIC has on the reliability of the 312 

responses, we obtained response estimates (beta weights) and computed statistical 313 

activation maps by considering the variability across single trials (i.e. beta time series) 314 

for all predictors combined (sounds versus no sounds) and for each condition 315 

separately. In other words, we here estimate the variance of the response considering 316 
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the variability across trials and not the variance of the residuals of the GLM fit. This 317 

helped us in evaluating measures of reliability of the response estimates. 318 

After the GLM, in each individual’s anatomical ROI (considering all voxels in the 319 

ROI) we evaluated: 1) the change in beta (PSC) per condition before and after 320 

NORDIC processing; 2) the change in single trial t-statistics (mean divided by variance 321 

across trials); 3) the spatial replicability of the mean betas (PSC); and 4) the spatial 322 

replicability of the t-statistics. For all individual subject data, all analyses were 323 

performed by randomly sampling half of the runs (i.e. repeated split half with 50 324 

repetitions - Valente et al., 2021). The spatial replicability of the betas and t-statistics 325 

was computed by correlating the variable of interest (PSC or t-statistics) across the 326 

two random splits of the data. Finally, across all ROIs we investigated changes in beta 327 

values (before and after NORDIC) in relation to the tSNR. Note that we compute tSNR 328 

(defined as the mean divided by the standard deviation of the time series) on the 329 

original data after pre-processing (tSNRpr). This choice inflates the tSNR we report 330 

compared to the more conventional choice to calculate tSNR on the un-preprocessed 331 

data (in analyses not shown we confirmed that the results we report here are not 332 

dependent on the choice or pre-processing applied to the time series). 333 

At the group level, interactions were tested with repeated measures ANOVA 334 

(where processing strategy is the repeated measure). Main effects were tested for 335 

significance using permutation testing by permuting, for each test, individual subject 336 

data across processing strategies (all possible permutations [210]) and corrected for 337 

multiple comparisons using Bonferroni.  338 

 339 
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2.6.2. Correlation and cross-validation analyses 340 

To evaluate the spatial similarity of beta estimates across processing strategies we 341 

computed the correlation of the estimated beta maps. In particular, we considered: 1) 342 

the correlation of each NORDIC processed run (NORdef and NORnn) to the 343 

corresponding original run (separately for each of the six conditions); 2) the run-to-run 344 

correlation within each processing strategy (i.e. within Original, NORdef and NORnn 345 

data) and 3) using leave-one-run-out, the correlation of each run (i.e. run 3) to the 346 

average of all other runs (all runs except run 3). Importantly for this last analysis the 347 

reference model (i.e. the averaged map coming from all runs except one) was always 348 

kept to be the one extracted from the original time series. 349 

At the group level, interactions (e.g. processing strategy and condition in the 350 

first analysis) were tested with repeated measures ANOVA (where processing strategy 351 

is the repeated measure). To do this, data where Fisher z-transformed prior to the 352 

ANOVA. Main effects were tested for significance using permutation testing by 353 

permuting, for each test, individual subject data across processing strategies (all 354 

possible permutations [210]) and corrected for multiple comparisons using Bonferroni.  355 

 356 

2.6.3 Tonotopic maps 357 

From the two predictable conditions we create tonotopic maps (as best frequency 358 

maps, see Formisano et al., 2003; Heynckes et al., 2023 for an exampe where the 359 

procedure is applied with only two frequencies, as is the case here). Tonotopic maps 360 

were computed in volume space and interpolated to the mid cortical surface.  361 

 362 
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2.6.4 Variance Partitioning 363 

We reasoned that the total variance from the original (magnitude) time series (per 364 

voxel) could be partitioned as follows: 365 

𝑌𝑜𝑟𝑖 =  αY𝐴𝑁 + 𝑏 +  ε𝐴𝑁 366 

Where 𝑌ori and 𝑌𝐴𝑁 are the original time series and the time series after NORDIC 367 

preprocessing respectively (𝑌𝐴𝑁 can then come from either NORdef or NORnn). The 368 

values for the scaling factor and intercept were estimated with ordinary least squares 369 

(OLS), thus obtaining an estimate of the scaling and intercept (𝛼̂ and 𝑏̂). The estimated 370 

scaling and intercept are then used to compute (per voxel) estimated residuals 𝜀̂AN. 371 

These residuals can be interpreted as the portion of the original time series that is 372 

orthogonal to the NORDIC time series. We refer to this as the residuals of the original 373 

time series after NORDIC (residuals after NORDIC in short). This decomposition 374 

guarantees that the total sum of squares of the original data (representing the 375 

variability in the data with respect to their mean) can be expressed as the sum of 376 

squares of the data after NORDIC (weighted by 𝛼̂) and the sum of squares of portion 377 

of the original data that is orthogonal to the data processed with NORDIC (i.e. the 378 

residuals after NORDIC 𝜀̂AN). That is: 379 

𝑆𝑆𝑌𝑜𝑟𝑖 =  𝛼̂
2𝑆𝑆𝑌𝐴𝑁 + 𝑆𝑆𝑌𝜀̂𝐴𝑁

 380 

To quantify the variance associated with the experimental design in the original data, 381 

as well as the data after NORDIC processing and the residuals after NORDIC (𝜀̂AN), 382 

we regressed 𝑌ori, 𝑌𝐴𝑁, and 𝜀̂AN against our design matrix (X). This second regression 383 

allowed us to partition the variance that, in each of the three signals of interest (Yori, 384 

𝑌𝐴𝑁, and 𝜀̂AN), is related to the design (𝑆𝑆𝑌   𝑜𝑟𝑖
𝑋 , 𝑆𝑆𝑌   𝐴𝑁

𝑋 , 𝑆𝑆𝑌   𝜀̂𝐴𝑁

𝑋 ), along with an error 385 

term for each.  386 
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We present the results by calculating the ratio of the sum of squares. First, 387 

within each processing strategy (Original, NORdef and NORnn), we compared the 388 

variance explained by the design to the total variance of each respective time series. 389 

Second, for the NORDIC processed data (NORdef and NORnn) we compared the 390 

variance associated with the design, in their respective residuals after NORDIC 391 

(𝜀̂AN_NORdef  𝜀̂AN_NORnn), to the total sum of squares of the original time series. This last 392 

analysis allowed us to reveal the portion of the variance associated with the design 393 

that is not present in the NORDIC processed data and is thus removed by NORDIC.  394 

  395 

2.6.5 Laminar analysis 396 

We explored the effect of NORDIC denoising on the cortical depth dependent 397 

estimates. Beta maps were computed across 11 cortical depths and sampled on the 398 

mid-GM surface in BV. These maps were subsequently intersected with a mask of 399 

HG. The single trial betas were averaged across vertices and subsequently across 400 

trials. The variability was computed across trials.  401 

 402 

3 Results 403 

3.1 Activation and spatial patterns 404 

We assessed the effect of NORDIC on detection sensitivity by evaluating the overall 405 

activation (sounds > no sounds) elicited by single trials in our experimental design. 406 

Statistical maps were computed by considering the mean and variability (t statistic) 407 

across (single) trials (not the GLM residuals) and corrected for multiple comparisons 408 

using false discovery rate of qFDR<0.01. This is a more stringent threshold than the 409 

customary qFDR<0.05 because it allows better appreciation of the differences 410 

between processing strategies in each individual. Figure 2 presents the results in one 411 
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exemplary volunteer (all other volunteers showed similar results - data not shown) on 412 

a representative transversal anatomical slice, highlighting the statistical advantage in 413 

detection sensitivity conferred by denoising. At the same statistical threshold both 414 

NORdef and NORnn resulted in more activation. In this volunteer, for example, 34% 415 

of voxels in our temporal lobe mask were significantly active at the qFDR threshold, 416 

whereas NORdef and NORnn resulted in 51% and 44% of voxels active, respectively. 417 

NORDIC denoising results in overall higher t-statistics, the 90th percentile across 418 

voxels for each of three datasets was 10.38, 13.42, and 12.38, respectively. These 419 

results are in line with previous applications of NORDIC (Dowdle et al., 2022, 2023; 420 

Knudsen et al., 2023; Raimondo et al., 2023; Vizioli et al., 2021) and similar to these 421 

previous reports, activation maps do not appear spatially distorted (i.e. blurred) when 422 

comparing NORDIC processed data to the original.   423 

 424 

 425 

Figure 2. Single subject overall response to sounds (qFDR<0.01). From left to right we show the t-426 
maps resulting from a GLM with single trials as predictors of the Original, NORdef and NORnn data on 427 
a transversal slice. 428 
 429 

To evaluate some of these effects further, we analyzed the spatial patterns of 430 

activation (separately per condition). Figure 3A shows the similarity (correlation) of 431 

beta maps averaged across trials of NORdef and NORnn to the beta maps obtained 432 
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from the original data (median and interquartile range across runs). NORnn resulted 433 

in a higher correlation to the original data compared to NORdef but the correlation 434 

values were similar across conditions. That is, the similarity was not influenced by the 435 

different amount of repetitions of specific conditions (e.g. the mispredicted and 436 

unpredictable conditions). In what follows, we present results of the predictable 437 

condition(s) only. Figure 3B shows the run-to-run reproducibility of the spatial patterns 438 

of activation within each processing strategy for PredH. NORdef and NORnn resulted 439 

in more reproducible spatial patterns compared to the original dataset. These first two 440 

analyses show that NORdef and NORnn effectively reduce thermal noise and improve 441 

reliability of the estimates (Figure 3B), while NORnn preserves more similarity to the 442 

original data. In the absence of a ground truth, we reasoned that the spatial pattern 443 

elicited by averaging multiple runs of the original data would be a reasonable choice 444 

to compare the results of single runs in their ability to approximate results obtained 445 

with higher SNR. To this end, we computed the average of the spatial pattern of 446 

activation elicited by PredH in the original data in all but one run. This reference pattern 447 

was correlated to the left out run in the original data and to the same run after NORDIC 448 

processing. We repeated this analysis each time leaving a different run out. The results 449 

(Figure 3C) show that after NORDIC, activation patterns in individual runs are more 450 

similar to the reference.  451 
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 452 

Figure 3. Single participant correlation analyses. Box charts display the median and interquartile 453 
ranges. A) Spatial correlations of beta maps for each condition. There is no difference in correlations 454 
between conditions. The correlation values between NORnn and the Original dataset are higher, 455 
indicating that noise removal in NORnn is more conservative than in the NORdef dataset. B) Run-to-456 
run pairwise correlations computed per dataset for the PredH condition. Beta estimates across runs 457 
become more similar in both denoised datasets, albeit the estimates are more stable in the denoised 458 
data. C) Cross-validated correlation of one run to the average of n-1 runs of the Original data for the 459 
PredH condition. Both denoised datasets are more similar to the average of the Original dataset.  460 
 461 

Figure 3 reports the result in a representative volunteer, while the group results 462 

(median and interquartile range across all our volunteers) is presented in Figure 4 463 

(considering the variability across the mean estimates of every subject). The group 464 

results support the trend seen in the single-subject analysis, except in two individuals 465 

that showed very little improvement in either run-to-run variability or correlation to the 466 

reference pattern obtained in the original data (light gray dots in Figure 4B and C). 467 

Correlation coefficients were compared with a two-way repeated measures ANOVA 468 

(with condition and processing strategy as factors). There was no interaction between 469 

condition and processing strategy. Permutation testing showed a main effect of 470 

method, (p<0.001) indicating that at the group level NORnn results in a larger similarity 471 

of the spatial patterns to the original data. This is in line NORnn being more 472 

conservative, that is, resembling more the original data (due to a lower noise threshold 473 
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and the removal of less noise components). The stability of run-to-run estimates 474 

(Figure 4B) was significantly higher for the NORnn compared to the Original data 475 

(p=0.041), whereas there was no evidence of a difference between NORdef and the 476 

Original data (p=0.064). At the group level, the correlation of a single run to the 477 

average of our reference was not significant in either NORdef compared to the Original 478 

data (p=0.258) or NORnn compared to the Original data (p=0.053). 479 

  480 

 481 
 482 
Figure 4. Group Figure of the same analysis as Figure 3. A) Across conditions, correlations between 483 
NORDIC denoised datasets and the Original data are indistinguishable indicating that number of 484 
repetitions do not affect the effect of NORDIC denoising. B) In general, stability of beta estimates 485 
increases with the use of NORDIC denoising. Gray dots indicate different participants. C) Average cross 486 
validated correlation values of single runs to the average of the Original data, for both predictable 487 
conditions. * indicates p<0.05, ** indicates p<0.01. 488 
 489 

Our design also allows the derivation of tonotopic maps, albeit from only two 490 

frequencies, by computing best frequency maps on the predictable high and 491 

predictable low conditions. Figure 5 shows, for a single left hemisphere, tonotopic 492 

maps projected on the mid-GM surface intersected with their respective t-map. As 493 

expected (Moerel et al., 2014), a low frequency preferring region is visible along 494 

Heshl’s gyrus (HG) surrounded by two high frequency preferring areas. This gradient 495 

is visible in the Original data and becomes more discernible in the NORnn and NORdef 496 
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tonotopic maps, respectively. The fact that some regions are more clearly preferring 497 

one of the two frequencies (i.e. blue regions anterior to HG) highlights the fact that 498 

after NORDIC the frequency preference is more spatially homogeneous and less 499 

corrupted by noise.  500 

 501 

502 
Figure 5. Tonotopic maps. Frequency preference maps are computed for each dataset and for one 503 
example participant we display these maps on an inflated mid-GM surface. Denoising does not seem 504 
to alter the frequency preference as the high-low high gradient is visible in all three datasets. The maps 505 
computed from the denoised datasets are less noisy. 506 
 507 

The previous applications of NORDIC (Dowdle et al., 2023; Vizioli et al., 2021) 508 

have shown that detection sensitivity with NORDIC comes due to a reduction in 509 

variance without any change to the percent signal response. While this effect would 510 

explain our results at the level of the whole temporal lobe (reported in Figures 3 and 511 

4), we investigated changes in percent signal as well as its variability across trials also 512 

in separate anatomically defined ROIs. In the temporal lobe, across all ROIs, NORDIC 513 

denoising resulted in reduced percent signal change (Figure 6A). This reduction was 514 
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more pronounced in the NORdef compared to NORnn. Changes in PSC though come 515 

with a larger change in variability of the response when using NORDIC. This is clear 516 

when considering t-values within each of the ROIs (Figure 6B). The increase in t-517 

values is most apparent in the NORdef time series. These changes induced by 518 

NORDIC processing are visible in ROIs that are activated by our design (i.e. the 519 

pattern is less visible in the aSTG that has little activation in our experiment). The 520 

change in betas induced by NORDIC is most evident in voxels whose overall signal 521 

level is low (see Figure 7). The bias introduced by NORDIC in the single ROIs does 522 

not come with detrimental effects to the reliability of the estimates in each ROI 523 

compared to the analysis at the level of the whole temporal lobe. When analyzing the 524 

reliability of spatial patterns in the individual ROIs (Figure 6C and D for PSC and t-525 

value, respectively) the results are in line with the previously reported pattern at the 526 

level of the whole temporal cortex (Figures 3 and 4), that is NORDIC processing is 527 

associated with a general improvement in reliability. 528 
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 529 
Figure 6. Responses in gray matter confined to regions of interest. A) Beta values calculated in 530 
percent signal change. In each ROI where there is signal present in the Original dataset, we observed 531 
a reduction in beta values after denoising. This reduction was lower in NORnn. B) T-statistics are 532 
increased after denoising, which was most pronounced in the NORdef dataset. C) Split half correlations 533 
were calculated to estimate the stability of beta responses. This revealed that beta values are more 534 
stably estimated after denoising. D) T-values are more reliably estimated in NORDIC.  535 

 536 

 537 

Figure 7. Beta difference in relation to tSNR for one representative subject. A) Betas before and 538 
after NORDIC are displayed as a function of mean/standard deviation (tSNRpr). For low tSNRpr values, 539 
the betas change in both directions. However, at high tSNRpr, the betas remain relatively similar after 540 
NORDIC. The red line indicates the mean beta difference per bin. The black line indicates a beta 541 
difference of zero.  B) Same as A but for the beta difference between Original minus NORnn betas.  542 
 543 
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At the group level (Figure 8), a similar result becomes apparent. These results indicate 544 

that, in our data, there is evidence for a bias-variance tradeoff associated with the 545 

application of NORDIC. Repeated measures ANOVAs showed a significant interaction 546 

between processing strategy and ROI for each of the subfigures of Figure 8 (all p-547 

values were smaller than 0.001). Per ROI we subsequently tested all three 548 

comparisons using permutation testing and corrected for multiple comparisons. The 549 

resulting p-values can be found in Table 1 in the Supplementary Materials. 550 

 551 

 552 

Figure 8. Group Figure of beta- and t-value estimates. A) Average reduction of beta values across 553 
participants. B) At the group level, the increase in t-values remains. C) On average, denoising results 554 
in a better estimate of beta values calculated with split half correlations in ROIs where there is more 555 
signal in the data. D) t-value reliability is generally higher after NORDIC than in the Original data.  556 
* indicates p<0.05. 557 
 558 
 559 

3.2 Variance Explained 560 

To investigate the nature of the bias introduced by NORDIC further, we quantified the 561 

variance explained by the design both in the time series as well as in the portions of 562 
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the original time series that are not present in either the NORdef or NORnn time series. 563 

When computing the variance explained by the design compared to the total variance 564 

of the signal (in each respective method dataset – Total SS), denoising resulted in an 565 

increasingly higher portion of variance explained by the experimental design (Figure 566 

9A). This is in line with the increased statistical detection sensitivity afforded by 567 

NORDIC denoising (with or without the noise scan - Figure 2). Interestingly though, 568 

after NORDIC, information related to the experimental design was present in the part 569 

of the signal that was removed by the denoising procedure. In relation to the total 570 

original variance (Total SS Original), the variance explained by the design in the 571 

residuals after NORDIC was higher for NORdef compared to NORnn, which is in line 572 

with the higher number of principal components that are removed when using NORdef 573 

compared to NORnn. Similar patterns of variance explained in the data or the residuals 574 

after NORDIC were visible across all individual subjects (Figure 10). Permutations 575 

indicated that the effects described were significant against and alpha level of 0.05, 576 

corrected for multiple comparisons, both for the increase in variance explained by the 577 

design in the time series (before and after NORDIC) and for the increase in variance 578 

explained by the design in the residuals after NORDIC (p<0.001). 579 

 580 
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 581 
 582 
Figure 9. Variance partitioning. A) The amount of variance explained by our design in the data 583 
increases consecutively with the use of NORnn and NORdef respectively for one exemplary participant. 584 
B) Denoising results in the removal of part of the signal. A proportion of the variance in the residuals 585 
after NORDIC can be explained by our stimulation design.  586 
 587 
 588 
 589 

 590 
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Figure 10. Group analysis of the variance explained by the stimulation design. A) Box charts show 591 
the interquartile percentile range of variance explained by the design in the data across participants. 592 
After NORDIC denoising, an increased proportion of the variance is explained by the experimental 593 
design. NORnn shows an increase in explained variance compared to the original data, but a slightly 594 
lower increase than NORdef. B) The proportion of variance explained by the design that is removed 595 
from the Original data after NORDIC. NORdef removed a larger proportion of the signal compared to 596 
NORnn. * indicates p<0.05, ** indicates p<0.01. 597 
 598 

3.3 Laminar data 599 

Submillimeter data collected with experimental designs presented here are often used 600 

to investigate task-related cortical depth dependent changes in functional activity. In 601 

preparation for such future studies, we set out to determine the effect NORDIC has on 602 

the laminar profiles. We considered the depth dependent changes (11 equivolume 603 

cortical depths) associated with the PredH condition. While in all participants, we could 604 

observe the expected increase towards the surface in our GE-BOLD data (Heinzle et 605 

al., 2016; Menon et al., 1995; Turner, 2002), NORDIC denoising is associated with a 606 

clear reduction in percent signal in superficial cortical depths (see Figure 11 for three 607 

representative subjects).  608 

 609 

Figure 11. Effect of NORDIC across depth. For three participants we plot the laminar response 610 
profiles for the PredH condition. In all plots we can easily identify the draining vein effect. However, we 611 
see a gradual decrease in slope for NORnn and NORdef, indicating that NORDIC denoising has a 612 
differential effect across depths.  613 
 614 
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4 Discussion  615 

Functional MRI is an indispensable tool for the investigation of human brain function. 616 

However, fMRI data is inherently limited by physiological and thermal noise 617 

(Triantafyllou et al., 2005, 2011). For this reason, in the fMRI community, the 618 

development of methods for removing unwanted sources of variance in the data has 619 

been a longstanding goal. Denoising techniques in fMRI can be broadly distinguished 620 

in those that tackle the removal of structured (physiological) noise and those that 621 

instead aim to reduce thermal noise. A technique that has been introduced to deal with 622 

thermal noise in particular is NORDIC PCA. NORDIC denoising has been vetted in 623 

various brain areas, voxel sizes, experimental designs and field strengths (for 624 

examples see Dowdle et al., 2022, 2023; Knudsen et al., 2023; Raimondo et al., 2023; 625 

Vizioli et al., 2021). While in fMRI several approaches have been introduced to improve 626 

(statistical) detection power of the signals of interest, it is important to note that any 627 

denoising approach may affect the temporal or spatial precision of the underlying fMRI 628 

signal as well as their bias-variance tradeoff (Kay, 2022). Ideally, denoising techniques 629 

should not spatially or temporally blur the data, while also minimizing any bias 630 

introduced. In its initial applications to fMRI, NORDIC denoising has been shown to 631 

preserve spatial and temporal information as well as not introducing unwanted biases 632 

in the data. These applications have focused primarily on visual and motor cortical 633 

areas at different magnetic field strengths (3T and 7T) and using different experimental 634 

designs as well as contrast mechanisms (Dowdle et al., 2022, 2023; Knudsen et al., 635 

2023; Raimondo et al., 2023). 636 

Investigating fMRI responses in temporal cortical areas with high spatial 637 

resolution (at UHF) is particularly challenging. The location of (primary) cortical areas 638 

in particular calls for large field-of-view acquisitions (in either transversally or coronally 639 
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applied slices to ensure bilateral coverage), which requires high in-plane acceleration 640 

to reduce distortions in the resulting EPI images. In addition, when using a single 641 

transmit coil, as is the case in most applications, inhomogeneities in the radio 642 

frequency transmit field result in suboptimal flip angles (Moerel et al., 2021). While ad-643 

hoc solutions can be found (e.g. by limiting the coverage to single hemispheres), high 644 

spatial resolution investigations of temporal cortical areas result in lower temporal SNR 645 

compared to e.g. visual or motor cortical regions. For these reasons, we evaluated the 646 

consequences associated with the use of NORDIC denoising in temporal cortical 647 

areas and extend this to a larger number of subjects. We compared two processing 648 

strategies to the original data (i.e. no NORDIC denoising), one dataset using the 649 

default settings for fMRI NORDIC (i.e. using magnitude and phase images and a noise 650 

threshold estimated using noise scans) and one dataset with a more conservative 651 

noise threshold obtained from g-factor estimation.  652 

Our results indicate that NORDIC processing results in increased reliability of 653 

the response estimates, increased reliability of the spatial patterns and increase 654 

similarity of single run patterns to an ideal model formed by averaging multiple runs. 655 

However, our results suggest that, in auditory cortical regions, NORDIC denoising is 656 

associated with a non-negligible difference in the percent signal changes, compared 657 

to the original data, elicited by our slow event-related design (Figures 6 and 8). These 658 

effects are reminiscent of regularization approaches in regression as it results in lower 659 

estimated regression coefficients (i.e. betas) while reducing their variance. The 660 

variance reduction is proportionally larger with respect to the introduced bias, as 661 

evidenced by the increased t-statistics (Figures 6 and 8) and underlies the increased 662 

statistical detection sensitivity following NORDIC processing compared to the original 663 

data (Figure 2 - and in agreement with previous studies Dowdle et al., 2023; Vizioli et 664 
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al., 2021). Importantly, the reduced variance in the NORDIC processed data results in 665 

increased spatial consistency (especially when evaluated in a repeated split half 666 

analysis). All our analyses performed at the level of beta estimates in different temporal 667 

cortical regions showed a gradual improvement (e.g. in t-statistics) from NORnn to 668 

NORdef (and an associated larger bias in NORdef compared to NORnn), in line with 669 

our assumption that NORnn is the more conservative approach. Interestingly, even 670 

within a dataset, the deviations from the original data introduced by NORDIC are not 671 

uniform, it is associated with the amount of signal present in the data. That is, voxels 672 

with more signal (as measured by the mean of the time series divided by the standard 673 

deviation of the time series [tSNR]) show the lowest change in estimated percent 674 

signal (Figure 7).  675 

At the group level, the lower variance associated with the estimated responses 676 

also resulted in a higher run-to-run correlation (with significant effects at the group 677 

level observed for NORnn, see Figures 3 and 4). It is interesting to note that when 678 

considering the run-to-run variability or the correlation to a multi-run reference, 679 

NORDIC seems to improve data in most, but not all of our participants. For participants 680 

in which the original data exhibit the lowest reliability the improvements are not 681 

noticeable (see single participants points in Figure 4). We can only speculate about 682 

the reason for the lack of improvement. These two participants displayed the most 683 

movement across their scanning session, which may have resulted in the noise in the 684 

data being mainly physiological of origin. This could be a reason why NORDIC 685 

denoising did not result in a large improvement for these two participants.  686 

The difference between the original data and NORDIC processed data is 687 

suggestive of the fact that some signal (associated with the experimental design) has 688 

been removed by the approach. We confirmed this by analyzing the portion of the 689 
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signal from the magnitude images that is removed by NORDIC (computed as the 690 

portion of the original data time series orthogonal to either the NORdef or NORnn time 691 

series). While the design explained larger portions of variance in the data after 692 

NORDIC processing, the design also explained larger portions of variance in the 693 

residuals after NORDIC (Figures 9 and 10). This indicates, that perhaps not 694 

surprisingly, NORDIC can remove portions of the signal that in a given sample (i.e. a 695 

functional run) are indistinguishable from the noise. These results are in agreement 696 

with the results indicating larger changes in beta estimates after NORDIC (compared 697 

to the original data) in voxels with lower tSNR (putatively voxels in which the signal 698 

and the noise are more confounded - Figure 7).  699 

As a preliminary analysis, we investigated the difference in laminar profiles 700 

between NORDIC and the original data (Figure 11). The larger changes in estimated 701 

percent signal were noticeable on superficial cortical layers (and more so for NORdef 702 

compared to NORnn). This interesting effect may relate to the changes in signal and 703 

noise contributions across depths in GE-fMRI. Further research is necessary to 704 

explore the causes of these changes induced by NORDIC in the layer dependent 705 

signals and the consequences they may have on neuroscientific conclusions drawn 706 

by investigating differential responses across layers, or when more elaborate modeling 707 

techniques are used (Markuerkiaga et al., 2016; Uludag & Havlicek, 2021; van Mourik 708 

et al., 2019).  709 

It is important to note that we here defined the bias introduced by NORDIC as 710 

the reduction in percent signal changes that is visible when analyzing the time series 711 

after NORDIC compared to the original data (Figures 6 and 8). While NORDIC acts 712 

on complex data (to ensure a Gaussian distribution of the noise) the percent signal 713 

estimates are computed on the magnitude data. The noise distribution in magnitude 714 
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only data is not Gaussian but Rician (see e.g. Manzano-Patron et al., 2023) and can 715 

result in a biased estimate of the effects. That is, it is possible that the reduced percent 716 

signal change we observe after NORDIC is stemming from a larger bias in the 717 

estimates obtained from the original data induced by the elevated noise floor. While 718 

this explanation offers an alternative interpretation of the reduced percent signal 719 

changes obtained after NORDIC, it is not clear how it can explain the effects we report 720 

on the portion of the variance explained by the design in the residuals of the time series 721 

after NORDIC (Figure 9 and Figure 10). This is because any amplitude difference 722 

between the original and the NORDIC time series is accounted for in the way we 723 

estimate the residuals after NORDIC (i.e. these residuals are not a simple subtraction 724 

of the data before and after NORDIC).  725 

Our results have some implications for the use of NORDIC in neuroscientific 726 

investigations as well as for future methodological developments of this denoising 727 

technique. First, as NORDIC can (in low SNR regimes as ours) remove portions of the 728 

signal, it follows that its application on a run-to-run basis may not combine its benefits 729 

to the more general practice of averaging. That is, while averaging will preserve all 730 

signal portions in the single run data (and with enough runs may render small effects 731 

detectable), NORDIC may remove some of these effects in the single runs and make 732 

them undetectable even after extensive averaging. Second, any biases introduced by 733 

NORDIC is likely related to signal components that, in a given sample (i.e. a run) are 734 

indistinguishable from noise. This consideration highlights the need to further 735 

investigate the interaction between the experimental design and any bias introduced 736 

by NORDIC processing. That is, in our data the effect may have been exacerbated by 737 

the slow event-related stimulus presentation that may confound the response (i.e. the 738 

signal) more with the noise in low SNR regimes. While in visual areas event-related 739 
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designs do not result in a detectable bias after NORDIC (Dowdle et al., 2023), this 740 

may relate to the higher SNR of visual areas compared to temporal regions. Finally, it 741 

is tempting to speculate that several approaches could be undertaken to abate the 742 

bias. Here, we showed that a more conservative threshold for the identification of noisy 743 

eigenvalues results in a lower bias (NORnn). Further investigations are warranted in 744 

evaluating the effect that other settings (e.g. the patch size) have on the bias. More 745 

sophisticated approaches could be considered to, for example, select principal 746 

components for removal only if their relationship with the experimental design is 747 

negligible akin to the selection of interesting components when performing 748 

independent component analysis for task fMRI (De Martino et al., 2007; McKeown et 749 

al., 1998; Moritz et al., 2005; Schmithorst & Brown, 2004). Such an approach would 750 

not generalize to resting state fMRI but could help for task based functional studies.  751 

Independent of the biases we describe here, NORDIC processing remains an 752 

important tool for fMRI investigations especially when SNR is limited (i.e. when thermal 753 

noise is dominant), such as laminar studies or functional MRI studies using less 754 

sensitive contrast mechanisms (e.g. spin-echo BOLD or non-BOLD contrast 755 

mechanisms such as cerebral blood flow-based vascular space occupancy or blood 756 

flow based contrast mechanisms such as arterial spin labeling). NORDIC can then be 757 

used as a complement to techniques that target physiological noise components to 758 

improve the usability of these different SNR starved acquisition approaches. Similarly, 759 

NORDIC could be very beneficial in patient studies that cannot rely on long scan times 760 

(i.e. extensive averaging) because of practical constraints. In general, though, while 761 

any given processing or reconstruction step likely introduces some bias, and while it 762 

may be acceptable in some circumstances, it is reasonable to advise NORDIC users 763 

to evaluate the amount of bias introduced in their data (by e.g. plotting percent signal 764 
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estimates before and after NORDIC) apart from focusing only on the increased 765 

(statistical) detectability of the effects.  766 

In conclusion, NORDIC can be added to the family of preprocessing techniques 767 

that can be utilized to improve the detection sensitivity and reliability of the responses 768 

estimated from the fMRI signal. The improvements NORDIC affords warrant its use in 769 

SNR challenged settings. Following previous reports, also in our data these positive 770 

effects were significant. The signal changes we report here, on the other hand, suggest 771 

that some care is required when using NORDIC – new applications may have to further 772 

characterize the effect of NORDIC to better evaluate the generalizability of its effects.  773 

 774 

Data and Code Availability   775 

Analyses codes (after preprocessing) are available on Github 776 

https://github.com/lonikefaes/auditory_nordic. The anonymized raw data of this study 777 

is available and can be downloaded from doi:10.18112/openneuro.ds004928.v1.0.0. 778 

(The dataset will be made publicly available upon acceptance). 779 
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