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Activation of S1P2 is protective against cisplatin-induced
peripheral neuropathy

Dear Editor,

Platinum-based therapeutics are commonly used for cancer treatment,

but often lead to peripheral neuropathy. Peripheral neuropathy is

characterised by nerve damage in the peripheral nervous system

(PNS). It can cause various sensory alterations, such as paresthesia,

allodynia, or hyperalgesia, and significantly impact patients' quality of

life.1 Multiple factors, including chemotherapy, diabetes, and autoim-

munity, contribute to peripheral neuropathy.2 Chemotherapy-induced

peripheral neuropathy (CIPN) affects a substantial number of cancer

patients even after the treatment completion. In a post-chemotherapy

follow-up study, it was observed that up to 30% of the patients con-

tinued to suffer from CIPN.3 Despite information regarding molecular

events underlying peripheral neuropathy, there are no effective treat-

ments available to prevent or reverse CIPN, consequently resulting in

dose reduction or cessation of chemotherapy, which may compromise

patient survival. Currently, the main focus is on prevention and allevi-

ating symptoms, while clinical trials addressing the underlying mecha-

nisms of the disorder continue to be limited. For example, a phase II

study in 2012 investigated the effectiveness of tetrodotoxin for pain

relief related to chemotherapy (NCT01655823), and a phase III study

probed the neuroprotective effects of amifostine in treating periph-

eral neuropathy (NCT00058071). However, there have been no sig-

nificant updates on the progress of these two drugs since then,

highlighting the gap in our understanding of the disease's mechanisms

and emphasising the urgent need for further research to develop via-

ble treatment options for this condition. This underscores the impor-

tance of identifying therapeutic targets, such as the S1P2 receptor,

which presents promising avenues for developing interventions to

mitigate or prevent the neurotoxic effects of platinum-based chemo-

therapy drugs.

Building on our previous research, we have discovered that acti-

vating the S1P2 receptor can counteract the behavioural changes,

myelin defects, and satellite glial cell activation in the dorsal root

ganglia (DRG) induced by cisplatin, a platinum-based chemotherapy

drug. In this study, we focus on cisplatin and investigate the mecha-

nistic basis for the neuroprotective effects of activating the S1P2

receptor. The results demonstrate that cisplatin treatment in vivo

leads to significant alterations in major neuronal-associated pathways

within the DRG, a site of peripheral nerve damage. Importantly, co-

treatment with CYM-5478, an S1P2 activator, restores these pathway

changes. These findings highlight the potential of targeting the S1P2

receptor as a pharmacological approach for rescuing CIPN.

MATERIALS AND METHODS

Animals and drug treatment

Twelve female Sprague–Dawley (S.D.) rats (InVivos, Singapore) were

used with four rats per treatment group. The experimental procedures

were approved by the Institutional Animal Care and Use Committee

at the National University of Singapore.

Cisplatin (Sigma, USA) was dissolved in sterile saline prior to each

use. The treatment, starting on Day �1 (Figure 1A), followed a dosage

previously shown to induce peripheral neuropathy in rats.4

RNA-sequencing and analysis

RNA was isolated from rat DRG using RNeasy Micro Kit (QIAGEN,

USA) and analysed with NanoDrop (ThermoScientific, USA). The RNA-

sequencing library was prepared with rRNA-depleted RNA by NEBNext

Ultra Directional RNA Library Prep Kit for Illumina (NEB, USA). Cluster-

ing of the index-coded samples was performed on a cBot Cluster Gen-

eration System using PE Cluster Kit cBot-HS (Illumina, USA). Raw base

call files from Bowtie v2.0.6 were demultiplexed with bcl2fastq v2.20,

and FastQC was used for quality control. Alignment to Rnor_6.0 (Rattus

norvegicus, Norway rat, genome) was done with STAR-2.7.8a and read

counts were quantified with -quantMode GeneCounts enabled. Gene

read count tab-delimited files (TSV) were consolidated into a comma-

delimited file (CSV) with Modern CSV v1.3.23. iDep0.91 and DESeq2

were used for differential expression analysis, considering genes with a

fold change of ±1.5 (q-value <0.05) as differentially expressed genes

(DEGs). Functional analysis of DEGs utilised Gene ontology (GO) terms

and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms through

ShinyGO v0.61 (q-value <0.05). Gene set enrichment analysis (GSEA)

was performed with the GSEA software (Broad Institute), and gene

symbols were converted from rat to human using the ‘Rat_Gene_Sym-

bol_Remapping_Human_Orthologs_MSigDB.v7.2.chip’. Gene set per-

mutations were performed 100,000 times to determine p-values.
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Primary DRG neuronal cell isolation and treatment

Primary DRG neurons were isolated from 4- to 6-week-old C57BL/6

female mice (InVivos) as previously described.5 Cisplatin (40 mM; Sigma)

was dissolved in dimethylformamide (Sigma) prior to each use. CYM-

5478 (1 mM) was dissolved in fatty acid-free fetal bovine serum (Sigma).

Immunofluorescence

Primary DRG neuronal cells were fixed in 4% ice-cold paraformalde-

hyde (Sigma) overnight. Cells were blocked with 2.5% bovine serum

albumin (Biowest, France) and 0.1% Triton-X-100 (Sigma) for 1 h, fol-

lowed by overnight incubation with anti-beta-tubulin antibody (Tuj1;

R&D Systems, MAB1195) at 25 μg/mL in blocking buffer at 4�C. Cells

were washed three times with 1� PBS (ThermoScientific) before incu-

bation with goat anti-mouse IgG Alexa Fluor 488-conjugated second-

ary antibody (Jackson ImmunoResearch, USA) diluted 1:250 in

blocking buffer for 2 h. Cells were counter-stained with Hoechst

33342 (ThermoScientific) at 1:500, and washed three times in 1�
PBS. The slides were mounted with anti-fade mounting media (Vector

Laboratories, USA). Images were captured at 40� magnification with

an epifluorescence microscope (Leica DM 6B) and scored for neurite

growth using ImageJ by a blinded researcher.

Statistical analysis

An ANOVA with Tukey's multiple comparison test in GraphPad Prism

version 8 was used to determine the significance of differences between

the treated samples and controls for values resulted from immunofluo-

rescence. A p-value <0.05 was considered significant based on at least

three independent replicates. For DGE and GO analysis, the q-value of

any enrichment was calculated with DESeq2 within iDep0.91.

RESULTS

S1P2 activation rescued molecular pathology
associated with cisplatin treatment in vivo

To determine the pathways underlying the protective effect of S1P2

on CIPN, DRGs were collected from rats treated with cisplatin alone

or co-treated with CYM-5478 (Figure 1A). RNA from the DRGs was

extracted, purified, and subjected to RNASeq analysis (Figure 1B). The

RNA samples were of high quality, free of contamination, and passed

quality assessment by Novogene.

The transcriptomic patterns of DRGs collected from CP rats dif-

fered from VEH rats, while co-treatment with CYM-5478 (CPCYM)

resulted in transcriptomic patterns resembling those of VEH rats

(Figure 1C). To further validate the variation in the expression pat-

tern between CPCYM and CP rats, we performed t-SNE analysis.

Overall, the expression profile of DRGs from CPCYM and VEH rats

were more closely clustered to each other as compared to CP rats

(Figure 1D).

Out of the 660 genes that were meaningfully (fold change ≥2)

and significantly (q-value <0.05) differentially expressed in DRGs of

rats following CP treatment, 581 genes were upregulated, and

79 genes were downregulated (Figure 1E). Notably, co-administration

of cisplatin with CYM-5478 reduced the differences in gene expres-

sion, with only nine genes showing meaningfully (fold change ≥2) and

significantly (q-value <0.05) differential expression (Figure 1E). Among

the top downregulated genes, several were associated with mitochon-

drial function (ckmt2 and ckmt1b) and neurite growth (csmd3, cdh4,

and slitrk4), both of which are relevant to CIPN.6–8 Collectively, these

data suggest that S1P2 activation in DRGs can restore cisplatin-

induced gene dysregulation associated with mitochondrial functions

and neurite growth.

S1P2 activation restored dysregulated neuronal-
associated pathways in cisplatin-treated rats

The GSEA for up- and down-regulated genes were also performed

for Gene Ontology (GO) terms for biological process. Cisplatin-

treated rats revealed a significant downregulation of synaptic

function-related processes, including anterograde trans-synaptic

signalling (q-value = 9.85E�38), synaptic signalling (q-value

= 9.85E�38), and cell–cell signalling (q-value = 3.91E�27)

(Figure 2A). We also observed significant downregulation of processes

associated with ion transports, such as ion transmembrane transport

(q-value = 2.02E�30), ion transport (q-value = 6.06E�29), inorganic

transmembrane transport (q-value = 4.38E�28), cation transport

(q-value = 5.51E�26), and metal ion transport (q-value = 5.51E�26).

However, co-administration CYM-5478 reversed these effects and

resulted in upregulation of these processes (Figure 2B).

F IGURE 1 S1P2 activation rescued transcriptomic changes induced by cisplatin treatment. (A) Graphical depiction of the in vivo treatment.
(B) Graphical depiction of the RNA-Seq workflow to explore the relationship between samples. (C) Differential expression analysis was performed

to obtain differentially expressed genes with a fold change cut-off of ±1.5 and q-value <0.05, depicted as a heat map. Upregulated genes are
depicted in red, while downregulated genes are depicted in green. (D) t-distributed stochastic neighbour embedding (t-SNE) projection was used
to visualise clustering of the RNASeq gene sets. Blue represents vehicle-treated group. Red represents cisplatin-treated group. Green represents
cisplatin and CYM-5478 co-administered group. (E) Volcano plots were used to highlight the statistical significance and magnitude of change of
RNASeq between two treatment groups. Red dots represent genes, which were significantly upregulated (q-value <0.05, fold change ≥1.5). Blue
dots represent genes, which were significantly downregulated (q-value <0.05, fold change ≤�1.5). CP, samples from cisplatin-treated rats;
CPCYM, samples from rats receiving co-administration of cisplatin and CYM-5478; VEH, samples from vehicle-treated rats.

LETTER TO THE EDITOR 3 of 8



We used IPA to identify canonical pathways, and disease

function annotations associated with the differentially regulated

genes with q-value <0.05. Consistent with the GO analysis, synap-

togenesis signalling pathway, related to synaptic function, was the

most inactivated biological process in DRGs of cisplatin-treated

rats (Figure 2C). Calcium signalling, known for its important roles

in maintaining neuronal functions,9–11 was activated in DRGs fol-

lowing cisplatin treatment. Interestingly, the pathway associated

with neuropathic pain signalling in dorsal horn neurons was signif-

icantly activated in cisplatin-treated rats. Notably, all these dysre-

gulated pathways were corrected with co-administration of

CYM-5478.

F IGURE 2 S1P2 activation restored dysregulated neuronal-associated pathways in cisplatin-treated rats. Gene ontology analysis for canonical
biological processes was carried out based on the differential gene analysis and illustrated using network. (A) Comparison between cisplatin versus
vehicle-treated rats. (B) Comparison between cisplatin and CYM-5478. Red represents more significantly enriched. Green represents less significantly
enriched (fold change ≥1.5, q-value <0.05). The larger circle in each plot represents most significantly enriched. (C) Ingenuity pathway analysis was
carried out based on the differential gene analysis. The top 30 canonical pathways, which are significantly changed (�2 ≤ z-score ≥ 2) in cisplatin-
treated rats, are illustrated as heatmap. (D) The top 30 diseases/functions associated pathways which are significantly changed (�2 ≤ z-score ≥ 2) in
cisplatin-treated rats are also illustrated as heatmap. CP, cisplatin; CPCYM, co-administration of cisplatin with CYM-5478; VEH, control rat.
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The DEGs were also sorted into related diseases and functions

using IPA and triaged into the top 30 categories (Figure 2D).

Remarkably, the top three significantly altered pathways in cisplatin-

treated rats were associated with movement disorders. Also, we

observed an increased activation of pathways associated with

changes in neuronal cytoskeleton structures, such as outgrowth of

neurites, body size, and cytoskeleton organisation. These findings

suggest that cisplatin treatment damages neurons, leading to possi-

ble compensatory activation of these pathways. Notably, co-

administration of CYM-5478 rescued these dysregulated categories

associated with diseases and functions.

The results of these two independent analyses indicate that S1P2

activation has a protective effect against cisplatin-induced neuronal

defects in the DRGs.

F IGURE 3 S1P2 activation reduced cisplatin-induced neurite damage in rat dorsal root ganglia (DRG) and primary mouse DRG neurons.
(A) The top 10 neurite-associated pathways by IPA, which changed (�2 ≤ z-score ≥ 2) in cisplatin-treated rats. (B, C) Primary DRG neurons were
isolated from 4- to 6-week-old C57BL/6 mice and cultured for 5 days before treatment. Cells were fixed and stained with Hoechst 33342
(HO) and anti-beta-tubulin-III (Tuj1). The length of neurites was quantified using ImageJ from n = 3 mice per group. scale bar: 200 μm.
**p < 0.001. Error bars represent standard error of mean.
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S1P2 activation reduced cisplatin-induced neurite
damage in rat DRG and primary murine DRG neurons

Due to the known role of axonal degeneration in the development of

CIPN, IPA terms specific to neurite integrity were evaluated

(Figure 3A).12 The results supported the notion that cisplatin induced

neurite damage as seen from excessive activation of pathways associ-

ated with neuritogenesis, morphogenesis of neurons, and branching

of neurites (Figure 3A). To confirm this, primary C57BL/6 mice DRG

neurons were examined using immunofluorescent staining of the neu-

ronal markers beta-tubulin-III (Tuj1). It was observed that cisplatin

treatment significantly reduced neurite length (Figure 3B,C). However,

co-administration of CYM-5478 fully restored neurite length, indicat-

ing that S1P2 activation can reduce cisplatin-induced neurite damage.

DISCUSSION

This study aimed to further our understanding of the mechanisms

underlying the neuroprotective effect of S1P2 in CIPN. CIPN is a com-

mon side effect of platinum-based chemotherapy, and currently, there

are no approved methods to mitigate this adverse effect other than

discontinuing treatment. Previous study from the Herr lab demon-

strated that S1P2 activation can prevent CIPN.13 The current study

employs next-generation sequencing to understand the molecular

changes occurring in the DRG following cisplatin treatment, and to

identify the mechanisms by which S1P2 activation exerts its protec-

tive effect.

Our in vivo findings suggest that cisplatin treatment in rats dis-

rupted gene expression patterns related to neuronal growth and sur-

vival. This aligns with previous studies that used animal models of

CIPN, which demonstrate cell death in the hippocampus and signifi-

cantly greater DRG neuronal cell death with cisplatin compared to

oxaliplatin, a less neuropathic platinum chemotherapeutic.14,15 They

attributed this difference in cell death as a result of greater platinum

accumulation in neuronal cells treated with cisplatin. For example,

cisplatin treatment led to death of primary cortical neurons in a dose-

dependent manner.16 We also observed that these disrupted path-

ways could be restored by treatment with CYM-5478, an activator

of S1P2.

Furthermore, S1P2 activation appears to have a rescue effect on

cisplatin-induced neuronal defects. We found that CIPN rat model

exhibited a significant decrease in genes associated with various neu-

ronal pathways, such as neuronal differentiation, generation of

neurons, and synaptic signalling. However, co-treatment with CYM-

5478 rescued the gene expression profiles of these pathways. In addi-

tion, analysis using the IPA revealed a decrease in the activation of

neuronal pathways, including synaptogenesis signalling pathway,

cAMP response element-binding (CREB) signalling in neurons, and

endocannabinoid neuronal synapse pathway. These data suggest that

the impact of cisplatin on synaptogenesis signalling pathway, which

has the lowest z-score, might be related to its binding to neuronal

tubulins, potentially affecting cell-to-cell communication in the PNS.

Further studies could explore these effects and how S1P2 activation

helps rescue them.

As shown in our previous data, S1P2 activation reduced gliosis in

satellite glial cells (SGCs), which resemble astrocytes in the CNS.13

SGC and astrocytes activation are indicators of nervous system dam-

age.17,18 It has been suggested that aberrant electrical activity in neu-

rons can induce the production of nitric oxide which activates SGCs,

possibly through the extracellular signal-regulated kinase (ERK) signal-

ling pathway.18,19 Activated SGCs release inflammatory cytokines

which can cause damage to neuronal cells and form a positive feed-

back loop.18 Thus, changes in SGCs and neuronal cells induced by cis-

platin may be a result of S1P2 activation.

The ability of CYM-5478 treatment to correct pathways dis-

rupted by cisplatin administration suggests that S1P2 activation acts

against the molecular pathologies responsible for the disease. Impor-

tantly, this suggests that S1P2 agonists represent potentially disease-

modifying therapeutics rather than merely palliative treatments. Our

previous work demonstrated that CYM-5478 can attenuate cisplatin-

induced generation of reactive oxygen species (ROS) mediated by

Rac1-induced NADPH oxidase (NOX) activation.20 Since NOX-

mediated oxidative stress is a key driver of neuropathy,21 preventing

this proximal event through S1P2 activation would be expected to

prevent downstream pathway dysregulation.

Neurites, projections from neuronal cell bodies, play a crucial role

in facilitating proper connectivity between cells in the CNS.22 Dis-

rupted neurite outgrowth is associated with various neurodegenera-

tive diseases, such as Alzheimer's and Parkinson's.23–26 Several

studies have explored regulating neurite outgrowth as a therapeutic

approach for peripheral neuropathy. For example, guaifenesin

improves neurite outgrowth in cultured DRG neurons,27 while done-

pezil reduces nerve degeneration in rats possibly by regulating neurite

growth.28 Rat adipose-derived stem cells have also been evaluated for

peripheral neuropathy treatment based on neurite outgrowth.29 In

murine DRG neurons, we observed that exposure to cisplatin led to

reduction in neurite length, but co-administration with CYM-5478

rescued this damage. Interestingly, S1P2 activates Rho/Rho-

associated kinase pathway (ROCK), known to promote neurite retrac-

tion, while inhibition of ROCK has been shown to promote neurite

outgrowth.30–32 This suggests that the neuronal protective effect of

S1P2 may involve an indirect pathway, such as reduction in ROS. Inhi-

biting NOX promotes neurite growth, and activating S1P2 can sup-

press NOX.20,33 Therefore, the neuroprotective effect of S1P2

activation may be attributed to inhibiting ROS formation through the

RhoA/NOX3 pathway.34

In conclusion, the findings of this study suggest that S1P2 activa-

tion can rescue dysregulated genes and pathways associated with

neuronal growth and survival, and attenuate neurite damage in

cisplatin-treated DRGs. To gain a more precise understanding of how

S1P2 activation operates, conducting RNASeq at an earlier time point

could help examine the direct pathways. Additionally, it would be

interesting to investigate whether these pathways are specific to cer-

tain cell types or consistent across various tissues. Additional in vitro

research could shed light on the significance of S1P2 activation in the
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recovery of neuronal function. Further in vivo investigations will be

necessary to fully explore S1P2 as a reliable pharmacological target for

treating CIPN.
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