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ABSTRACT. Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and 
other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on 
vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying 
this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed 
that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses 
other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 
lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies 
against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively 
detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future 
broad-protective vaccine.
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Rabies is a neglected infectious disease that is responsible for an estimated 59,000 human deaths worldwide each year [26]. The 
disease in terrestrial animals and humans is primarily caused by the classical rabies lyssavirus (RABV), which is classified under the 
Genus Lyssavirus within the Subfamily Alpharhabdovirinae, belonging to the Family Rhabdoviridae in the Order Mononegavirales 
[24]. Once clinical symptoms of rabies appear, the disease is almost invariably fatal [45]. Since the 1950s, numerous lyssaviruses 
related to RABV have been identified. All lyssaviruses cause neurological disease in mice when infected intracranially under laboratory 
conditions [3, 19]. To date, 17 lyssavirus species have been documented: RABV, Lagos bat lyssavirus (LBV) in 1956, Mokola 
lyssavirus (MOKV) in 1968, Duvenhage lyssavirus (DUVV) in 1970, European bat lyssavirus 1 (EBLV-1) in 1977, European bat 
lyssavirus 2 (EBLV-2) in 1986, Aravan lyssavirus (ARAV) in 1991, Australian bat lyssavirus (ABLV) in 1996, Khujand lyssavirus 
(KHUV) in 2001, West Caucasian bat lyssavirus (WCBV) and Irkut lyssavirus (IRKV) in 2002, Shimoni bat lyssavirus (SHIBV) and 
Ikoma lyssavirus (IKOV) in 2009, Bokeloh bat lyssavirus (BBLV) in 2010, Lleida bat lyssavirus (LLEBV) in 2012, Gannoruwa bat 
lyssavirus (GBLV) in 2016, and Taiwan bat lyssavirus (TWBLV) in 2018 [2, 25, 30]. These viruses are officially recognized by the 
International Committee on Taxonomy of Viruses [24]. In addition, Kotalahti bat lyssavirus (KBLV) has been recently discovered 
from a dead Brandt’s bat (Myotis brandtii) in Eastern Finland as a novel lyssavirus [6]. Of these 18 lyssaviruses, 16, (not MOKV or 
IKOV) have been isolated from bat species [43]. MOKV has been isolated from rodent species [10, 44] and IKOV from the African 
civet [38]. Until now, at least seven lyssaviruses, RABV, ABLV, DUVV, EBLV-1, EBLV-2, IRKV, and MOKV, have been responsible 
for fatal infections in humans [42]. While instances of human infection by lyssaviruses other than RABV are rare, they are fatal and 
the real number of cases is unknown because of limited surveillance and misdiagnosis [8, 37].

Lyssaviruses can be classified into two phylogroups by their genomic sequences [1]. Phylogroup I consists of RABV, ABLV, 
ARAV, BBLV, DUVV, EBLV-1, EBLV-2, GBLV, IRKV, KBLV, KHUV, and TWBLV, and phylogroup II includes LBV, MOKV, and 
SHIBV. However, WCBV, IKOV, and LLEBV are unclassified. Historically, research has primarily focused on the cross-reactivity 
of RABV vaccine immune sera against other lyssaviruses [21]. These investigations have demonstrated that RABV vaccines do not 
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offer protection against other phylogroup lyssaviruses. Consequently, the search for vaccine antigens effective against new lyssaviruses 
has become imperative. However, there has been limited exploration of cross-reactivity using immune sera tailored to each specific 
lyssavirus [27]. In our previous study, cross-neutralization activities using only 5 lyssaviruses were compared, suggesting limited cross-
reactivities among lyssaviruses [31]. To further validate cross-reactivities among lyssaviruses in detail, comprehensive neutralization 
assays using all lyssaviruses would need to be conducted, however, it is very difficult to obtain all the viruses to be tested. Therefore, in 
this study, cross-reactivities among all 18 lyssaviruses were examined using a panel of vesicular stomatitis viruses (VSVs) pseudotyped 
with all 18 lyssavirus glycoproteins. These tools enabled us to perform neutralization tests (NTs) to conduct a comprehensive analysis 
of cross-reactivities for the entire range of known lyssaviruses.

First, expression plasmids, each containing a lyssaviral glycoprotein gene, were constructed as described our recent study [31]. Briefly, 
complete open reading frames encoding glycoproteins of RABV-SRV9 strain (Accession number, AF499686), ARAV (EF614259), 
BBLV (JF311903), DUVV (JN986749), EBLV-1 (KP241939), EBLV-2 (EF157977), GBLV (KU244266), IRKV (JX442979), KBLV 
(LR994545), KHUV (EF614261), TWBLV (MF472710), LBV (EU259198), MOKV (NC_006429), SHIBV (GU170201), WCBV 
(EF614258), IKOV (JX193798), and LLEBV (KY006983) were artificially synthesized (Azenta, Chelmsford, MA, USA) and cloned 
into the expression plasmid, pCAGGS [40]. The expression plasmid encoding the ABLV (AF426298) glycoprotein was kindly provided 
by Prof. Christopher C. Broder, Department of Microbiology and Immunology, Uniformed Services University, USA. The NT based 
on the pseudotyped VSV (VSVp) was developed using VSV pseudotyped with lyssaviral glycoprotein and expressing secreted alkaline 
phosphatase (SEAP) as a biomarker. The VSVps were generated as previously reported [23, 32]. Briefly, plasmids expressing each 
glycoprotein were transfected into 80% confluent HEK293T cells using polyethylenimine (PEI) (Thermo Fisher Scientific, Waltham, 
MA, USA). On two days post-transfection, VSVΔG-SEAP, a recombinant VSV whose G gene was replaced by the SEAP gene was 
inoculated at a multiplicity of infection of 1. VSVΔG-SEAP was kindly provided by Dr. Y. Matsuura, Osaka University, Japan. After 
24 hr, the culture supernatants including each VSVp were collected and filtered through a 0.45 µm syringe filter (MERCK, Darmstadt, 
Germany) to remove cell debris, and stored at −80°C until use. Each VSVp was named based on its pseudotyped glycoprotein, 
e.g., VSVp-RABV. The titration of each VSVp was determined by a SEAP reporter assay using substrate solution (SIGMAFAST 
p-Nitrophenyl Phosphate Tablets, Thermo Fisher Scientific). The NT with each VSVp was performed as previously reported [32]. 
The neutralization titers are represented as the serum dilution that reduced VSVp infectivity by 75% (IC75) compared with no-serum 
control. IC75 was calculated by CompuSyn software (ComboSyn Inc., Paramus, NJ, USA). The VSVps for EBLV-1 and IKOV did not 
yield measurable titers, prompting the creation of chimeric glycoproteins. These chimeric envelope glycoproteins were engineered by 
fusing the ectodomains and transmembrane domains of the EBLV-1 and IKOV envelope glycoproteins with the cytoplasmic domain 
from the VSV glycoprotein. The expression plasmid encoding the VSV glycoprotein (AJ318514) was kindly provided by Dr. S. 
Fukushi, Department of Virology I, National Institute of Infectious Diseases, Japan [23].

To examine the cross-protective activities of human and animal RABV vaccines against lyssaviruses, comparative NT was conducted 
between all the VSVps and a panel of rabbit antisera generated by RABV vaccination in our previous study [31]: Briefly, the results 
of NTs using VSVps indicated that the sera from rabbits immunized with the human vaccine, Rabipur, had high neutralization titers 
against RABV. These sera also displayed cross neutralizing reactions against other phylogroup I lyssaviruses, with titers within a 
four-fold range of those against RABV (Fig. 1, Table 1). In contrast, neutralization titers against phylogroup II and unclassified 
lyssaviruses were over 100 times lower than those against RABV, or below the detection limit. Sera from rabbits immunized with 
the animal vaccine, KMB, showed a trend similar to that of Rabipur-immunized rabbit sera (Fig. 1, Table 1). These findings indicate 
that the current rabies vaccines are effective at inducing high serum neutralization titers against lyssaviruses in phylogroup I but have 
limited to no efficacy against phylogroup II and unclassified lyssaviruses.

Next, to investigate whether any lyssavirus glycoproteins can induce broad protective antibodies, cross neutralization reactivity 
among lyssaviruses was comprehensively analyzed using 18 VSVp and polyclonal anti-glycoprotein sera. These antisera were 
generated in our previous study [31]. Briefly, eighteen female Japanese white rabbits were inoculated six times with a glycoprotein-
encoding expression plasmid (one glycoprotein-encoding plasmid per rabbit). For each inoculation, 400 µg of the expression plasmid 
was mixed with 100 µg of PEI in Opti-MEM (Thermo Fisher Scientific), and the mixture was administered to the rabbits at two-
week intervals [33]. Blood samples were collected for serum two weeks following the final injection (permission numbers: 120146, 
121128, and 122165). Anti-RABV glycoprotein (CVS-11 strain) rabbit serum was prepared as previously described [29]. NTs using 
the VSVps with rabbit sera against the glycoproteins of all 18 lyssaviruses revealed specific patterns of cross-reactivity according 
to their phylogroups: sera directed against glycoproteins from phylogroup I lyssaviruses exhibited high neutralization titers against 
VSVps of the same phylogroup, yet they showed reduced neutralizing ability against phylogroup II. Notably, the neutralizing titers 
against VSVps of unclassified lyssaviruses, WCBV, LLEBV, and IKOV, were nearly undetectable (Fig. 2, Table 1). Similarly, antisera 
against phylogroup II glycoproteins showed strong neutralization against their corresponding VSVps but weaker neutralization against 
phylogroup I. Almost no neutralizing activity was observed against the VSVps of the unclassified lyssaviruses. In contrast, within 
the same phylogroup, some discrepancies in cross-reactivity were observed: rabbit sera against GBLV and KHUV glycoproteins did 
not neutralize VSVp-DUVV, even though they belong to the same phylogroup I. Similarly, antiserum against MOKV glycoprotein 
exhibited limited cross-reactivity with VSVp-SHIBV and LBV, which are part of phylogroup II. Interestingly, antisera against EBLV-1 
glycoprotein demonstrated a broad neutralization capacity, affecting both phylogroup I and II VSVps. In contrast, VSVps of unclassified 
lyssaviruses showed unique reactivity: antisera against IKOV and LLEBV glycoproteins showed almost no cross-reactivity with any 
of the VSVps tested. Interestingly, the antiserum against WCBV glycoprotein, despite being an unclassified lyssavirus, was capable 
of neutralizing several VSVps of phylogroup I (Fig. 2, Table 1).

This comprehensive study highlights the challenges and the innovations needed to evaluating the cross-reactivity of lyssaviruses. 
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Conventional methods, such as the Rapid Fluorescent Focus Inhibition Test and the Fluorescent Antibody Virus Neutralization test, 
which are considered gold standards by the World Health Organization and The World Organisation for Animal Health [7, 39, 47] are 
time-consuming, and require biosafety level−3 facilities and expensive reagents, such as fluorescent antibodies. Pseudotyped rabies 
viruses with either green fluorescent protein or luciferase as a biomarker have been successfully generated and employed for high-
throughput screening [5, 48]. The pseudotyped virus expressing SEAP as a biomarker, which we utilized in this study, can be quantified 
using an absorbance system, such as ELISA, and it offers a straightforward and cost-effective alternative. In a recent investigation 
related to SARS-CoV-2, the pseudotyped virus neutralization antibody titers were regarded as the most reliable indicator of vaccine 
efficacy and protection, primarily because of the remarkable sensitivity of NT-based pseudotyped virus [4].

In this study, even the hyperimmune sera generated with six RABV vaccinations, failed to exhibit cross-reactivity with phylogroup 
II and unclassified lyssavirus, indicating the limitation of RABV vaccination against lyssavirus infections. In a previous report, cats 
with a history of three RABV vaccinations were infected with LBV belonging phylogroup II. The cats were euthanized after a 3-day 
illness characterized by neurological symptoms [16]. In addition, most sera from humans inoculated with the RABV vaccine did 
not possess virus neutralization activity against lyssaviruses belonging to different phylogroups [11, 36]. These findings indicate that 
existing pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) measures for use with RABV vaccines may not be 
effective in preventing infections caused by phylogroup II and unclassified lyssaviruses.

The comprehensive NT in this study offers critical insights into the complexity of lyssavirus immunology and the risk of relying 
solely on genetic homology for predicting antigenic cross-reactivity. While lyssaviruses within the same phylogroup generally exhibit a 
relatively high degree of glycoprotein amino acid homology [14], the observed lack of cross-neutralization among certain lyssaviruses 
(e.g., GBLV, KHUV, and DUVV) despite being in the same phylogroup indicates that small variations in glycoprotein amino acids, 
especially in neutralizing epitopes, can lead to significant changes in antigenic structure. While the precise locations of neutralizing 
epitopes in RABV glycoprotein (RABV-G) have been identified using techniques such as mutagenesis and monoclonal antibodies 
(mAbs), the locations of the neutralizing epitopes in other lyssavirus glycoproteins are only inferred based on their known positions in 
RABV-G [12, 34]. Considering the difficulty to predict cross-reactivity among lyssaviruses solely on amino acid sequence homology 
of whole glycoproteins, further studies on detailed analysis of antigenic structures of each lyssavirus are expected.

Lyssaviruses other than RABV have been reported in a limited number of human infections. MOKV from phylogroup II was 
responsible for an infection in an infant that led to a fatal outcome. Furthermore, infections with neurological signs in companion 
animals have also been reported, including cases of LBV from phylogroup II affecting dogs and cats [9], and WCBV, an unclassified 
strain, infecting cats [35]. It has become clear that “rabies free” countries [18], have endemic lyssaviruses circulating within bat 
populations, such as ABLV in Australia and EBLV-1, 2 in the UK [17, 41, 46]. In both nations humans have died from lyssavirus 
infection as a result of bat bites [20, 22]. These matters highlight the need for the development of pan-lyssavirus vaccines capable of 
providing protection against all lyssaviruses.

The lyssavirus glycoprotein is instrumental in triggering the production of neutralizing antibodies [28]. Notably, monoclonal 

Fig. 1. Comparison of neutralizing titers of Rabies lyssavirus (RABV) vaccine-immunized rabbit sera against 18 lyssaviruses. Serum neu-
tralization tests using sera from two rabbits immunized with human RABV vaccine (Rabipur-1 and -2) and two rabbits immunized with 
animal RABV vaccine (KMB-1 and -2) were conducted against vesicular stomatitis viruses pseudotyped with 18 lyssaviruses. The titers 
are shown as the geometric mean of two independent experiments.
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antibodies (mAbs) from individuals who received the RABV vaccine have recently been isolated, and some of these mAbs have 
demonstrated broad-spectrum neutralization activity against various lyssaviruses [11, 28]. Additionally, there have been reports on the 
immunogenicity of chimeric glycoproteins possessing neutralizing epitope sites of the G protein of MOKV or LBV (phylogroup II) 
and RABV-G (phylogroup I) in various combinations, which succeeded in acquiring broad cross-reactivities against both phylogroups 
I and II [13, 15]. This suggested that the detailed analysis of the reactivity of each lyssavirus glycoprotein other than RABV-G could 
be utilized to develop broad-reactive vaccines. Our findings of broad-spectrum neutralization by EBLV-1 and WCBV antisera are 
particularly promising, as they may be able to guide the development of a pan-lyssavirus vaccine. The identification of glycoproteins 
that elicit cross-protective antibodies may serve as the basis for a next-generation vaccine design that would offer protection against a 
range of lyssaviruses, not just RABV. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses 
and evaluate their cross-reactivities for developing a future broad-protective vaccine.
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