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Abstract

Background: Carcinoma of the breast, a prevailing factor in female mortality world-

wide, involves dysregulation of lncRNAs and microRNAs.

Aim: The main goal of this research was to predict and experimentally examine the

LINC01405 expression status in breast cancer subtypes, along with investigation of

its interaction with miR-29b and miR-497-5p that results in regulating PI3-Kinase,

WNT, and TGF-beta signaling pathways.

Methods and Results: We performed a meta-analysis of five GEO datasets, encom-

passing microarray and RNA-seq data, to identify differentially expressed genes. The

Cancer Genome Atlas transcriptome dataset was also analyzed to determine essential

gene modules, associated with different stages of breast cancer by weighted gene

co-expression networks. In addition, networks of drug-gene interactions were con-

structed to explore potential treatment options. LINC01405 as a microRNA sponge

was chosen and examined. furthermore, downstream target genes were discovered.

Experimental validation consisted of plasmid constructs used in cell culture experi-

ments, RT-qPCR for expression analysis, and cell cycle assays. Our bioinformatics

findings showed higher LINC01405 expression in Basal-like triple-negative breast

carcinoma. In contrast, lower expression in Luminal samples was observed compared

with normal samples, which was consistently observed in both breast cancer tissues

and cell lines. LINC01405 expression level was correlated with miR-29b and miR-497

levels. The MDA-MB-231 cell line demonstrated higher LINC01405 expression and

lower miR-29b and miR-497 expression levels. However, SKBR3 and MCF7 cells had

lower LINC01405 expression and higher miR-29b and miR-497 levels, suggesting a

regulatory role for LINC01405 as a competing endogenous RNA. This was experi-

mentally confirmed when LINC01405 was overexpressed in SKBR3 cells, and the

common target genes of miR-29b and miR-497 were upregulated. Additionally,

LINC01405 upregulation led to the increased cell populations, proliferation, and

upregulation of critical cancer-related genes, including AKT1, AKT3, mTOR, WNT3A,

SMAD3, CYCLIN D1, CYCLIN D2, BCL2, and GSK3B.
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Conclusion: We revealed the differential expression of LINC01405 in several types

of breast cancer and its role in regulating signaling pathways, potentially via scaveng-

ing miRNAs. These findings clarified the role of LINC01405 in breast cancer develop-

ment and identified potential therapeutic targets.
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1 | INTRODUCTION

Despite the invention of advanced and high-tech technologies, breast

cancer remains the leading cause of death in women worldwide.

According to surface markers, researchers have separated breast can-

cer into four subgroups: HER2-positive (HER2-like), ER-positive/

HER2-negative (corresponding to Luminal A and B), and Triple-

negative breast cancer, which is a type of breast cancer that does not

have any of the receptors that are commonly found in breast

cancer.1–3

Non-coding RNAs have been the subject of several cancer studies

with claims and proof of their remarkable influence on cancer.

Recently, researchers have introduced several ncRNAs as biomarkers

responsible for the onset, development, and progression of breast

cancer.4,5 Functional ncRNAs are categorized into four major groups:

transfer RNAs, ribosomal RNAs, small RNAs such as microRNAs, siR-

NAs, snoRNAs, snRNAs, exRNAs, and long non-coding RNAs.6

LncRNAs play vital roles in the physiologic or pathologic status of

cells, such as proliferation, development, and immunity.7 They could

adjust gene expression at the transcription, post-transcription, and

translation levels, as recent studies have implied their involvement in

epigenetic regulation.8,9 MicroRNAs are non-coding, small RNAs with

a length of 17 to 22 nucleotides that control the expression of genes.

They, impede translational progress by degrading mRNA through

Watson and Crick base pairing between 3'-UTR MREs and miRNA

seed sequences.10 According to their role in the cell, miRNAs are

divided into two categories: “oncogenic microRNAs” which geneti-

cally promote tumor growth, and “tumor suppressive microRNAs”
which are mainly in charge of suppressing oncogenes and overacti-

vated signaling pathways.11,12

DNA methylation is an important epigenetic process that involves

the addition of a methyl group to cytosine at the C5 carbon residues

(known as 5mC). Usually CpG sites within CpG islands in healthy cells

are unmethylated. However, in cancer, there is often hypermethyla-

tion at these CpG sites, leading to the silencing of tumor suppressor

genes.13

The exciting subject of sponging miRNA by lncRNAs has raised

attention over the years, where lncRNAs appear as competing endog-

enous RNAs (ceRNAs) to scavenge miRNAs.14,15 LINC01405, or

loc100131138, on chromosome 12, is a 374-bp intergenic lncRNA

containing two exons and one intron. Researchers have documented

the differential expression of LINC01405 in breast cancer through

bioinformatics analysis. For instance, Yang et al.16 conducted next-

generation sequencing (NGS) on samples of her2-enriched breast can-

cer. Their findings indicate that LINC01405 plays a pivotal role within

the co-expression network involving long non-coding RNAs (lncRNA)

and messenger RNAs (mRNA). In the same study, co-expression net-

works were constructed between the tumor and normal groups based

on Pearson correlation analysis. The K score was used to identify the

central genes in this network, with higher scores indicating their regu-

latory roles within the network. The results demonstrated significant

differences in the co-expression network between tumor cells and

tumor margin cells. Notably, LINC01405 exhibited the highest k-core

among the tumor groups, indicating its primary regulatory role in this

gene network. Furthermore, experimental studies have explored its

expression in other cancers, such as esophageal cancer.17 There is

indeed a notable gap in research concerning the differential expres-

sion of LINC01405 in different subtypes of breast cancer and its regu-

latory roles. However, our study addresses this gap for the first time

through a combined approach of bioinformatics and experimental

analysis, providing valuable insights into both differential expression

and methylation along with the regulatory functions of LINC01405

across various subtypes of breast cancer. This approach contributes

to a deeper understanding of the role of LINC01405 in breast cancer

and its potential implications for diagnosis and treatment.

Our research stands out in lncRNA studies because of its distinc-

tive focus on identifying innovative targets within the lncRNA-

miR-mRNA network and stage-specific therapeutic drugs in breast

cancer patients. Previous research has investigated LINC01405 in var-

ious cancer types17 but has not suggested specific drugs for targeting

breast cancer at different stages. Using WGCNA and drug-gene inter-

action analysis, our approach goes beyond conventional research. It

seeks to identify targets specific to varying stages of breast cancer

and the corresponding drugs tailored to these targets.

2 | MATERIALS AND PROCEDURES

2.1 | Bioinformatics analysis

2.1.1 | Data gathering and identification of
differentially expressed genes using microarray and
RNA-seq (DEGs)

We designed bioinformatics to identify a functional lncRNA in breast

cancer (Figure 1). We used five datasets (GSE134359, GSE29431,
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GSE27562, GSE12777, and GSE68086) from the GEO database.

GSE134359 (Long noncoding RNA landscape in breast cancer,

75 adjuvant tumors, and 12 Adjacent normal tissue), GSE29431

(Identifying breast cancer biomarkers in breast cancer, 54 tumors, and

12 normal tissue), GSE27562 (Expression data from human PBMCs,

57 tumors, and 37 control peripheral blood mononuclear cells

(PBMCs), and GSE12777 (Analysis of 51 human breast cancer cell

lines gene expression profiles). Next, the selected microarray datasets

were subjected to a meta-analysis to identify DEGs.3,9,18 Before start-

ing data processing, we annotated all genes and probe IDs as Entrez

IDs to ensure consistency. In addition, we utilized the Sva package

(version 3.40.0) in the R software to eliminate hidden batch effects

and merge the four datasets. We used the Bioconductor-based

R package limma (version 3.48.3) to identify genes with differential

expression from the microarray datasets. We applied an adjusted

P-value threshold of .05 and a log2 fold Change threshold of 1.41.

RNAseq data comprise one dataset, GSE68086 (Blood-based,

multiclass, and molecular pathway cancer diagnoses are made possible

by RNA-seq of tumor-educated platelets), where breast cancer blood

and control samples were candidates for further analysis. To avoid

generating biased results between the two technologies (microarray

and RNAseq), we preferred to analyze this platform separately from

the microarray datasets. We decided not to pool the results and eluci-

dated the mutual DEGs between the two platforms.

We performed two meta-analyses of five datasets in the GEO

database:

1. Between four microarray datasets.

2. Between the results (differential expression genes) of the meta-

analysis of microarray datasets and the RNAseq dataset (GSE68086).

2.1.2 | Functional enrichment analysis for
meta-analysis of microarray and RNAseq datasets

To identify the primary role and extract information about enriched

pathways related to differentially expressed genes (DEGs), we utilized

the GO database to evaluate the biological process (BP), cellular com-

ponent (CC), and molecular function (MF) of each functional gene,

aiming to comprehend their potential functions.3,9,19 To conduct this

analysis, we used the ClusterProfler (V 4.0.2) R software package,

which leverages an ontology for statistical analysis, and visualization

of gene functional profiles. We used the Benjamini-Hochberg

approach and established the following standards: a p-value of .05

F IGURE 1 Flowchart of this study.
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and a q-value under 0.05 for GO analysis of DEGs. Additionally, for

GO pathway analysis, we considered a corrected p-value of <.05 as

the cutoff using the ClusterProfler.

2.2 | Analysis of the TCGA dataset

The Cancer Genome Atlas (TCGA) is a public resource that displays

cancer genetic changes in various cancer tissues. We accessed tran-

scriptome data (Gene Expression Quantification) and clinical informa-

tion of breast cancer patients (including 1229 samples, 1107 primary

tumors, 114 normal solid tissue samples, and eight metastatic sam-

ples) from the TCGA database.20 R packages: TCGA biolinks, Summa-

rized Experiment, and DT were used for data download and analysis.

We conducted the normalization of RNAseq data using edgeR.

We performed expression data analysis for RNA between primary

tumors and normal solid tissue using DESeq2. Only when the adjusted

p-value was less than .05, and the log-fold change was >1.5, were dif-

ferentially expressed genes (DEGs) reported.

2.3 | Analysis of the weighted gene co-expression
network

A systems biology and bioinformatics method called weighted gene

co-expression network analysis (WGCNA) was used to create and exam-

ine co-expression networks. WGCNA performs various tasks by examining

the topology of modules associated with highly connected genes, including

network creation, visualization, data simulation, and gene selection. Here,

the BRCA transcriptome dataset was used as the input for WGCNA. We

employed normalized count data to identify modules connected to stages

I_IV, using Pearson's correlation matrices to build the adjacency matrix

between all paired genes. A soft threshold power of 5 was used to gener-

ate a scale-free adjacency matrix (scale-free R2 = 0.9), which also helped

to reduce the correlation noise. Subsequently, a topological overlap matrix

(TOM) was genereted from the adjacency matrix.

The modules with a correlation greater than 0.5 and a p-value of

.005 were retained, using the TOM-based dissimilarity measure. A

minimum size of 10 and a cut height of 0.9 were specified to allow for

the combination of related modules. We were able to recognize key

modules by using significantly differentially expressed genes (DEGs)

with comparable expression patterns to cluster them into discrete

gene modules using the average linkage hierarchical clustering

approach. The association between module eigengenes (MEs), clinical

factors (stages I to IV of breast cancer), and sample types were investi-

gated in the search for clinically relevant modules.

2.4 | Network of drug-gene interactions

The Drug Gene Interaction Database (DGIdb42) was used to identify

possible therapeutics for breast cancer. After conducting WGCNA

analysis, a list of genes was selected in the consensus modules with

colors (yellow, grey60, green) that contained DEGs within each

module that met our criteria, and these genes were used as input for

DGIdb. Subsequently, the network of gene-drug interactions was

extrated, and drug-gene interaction networks were constructed and

visualized using alluvial plotting.

2.5 | Differential methylation analysis

Illumina Human Methylation 27 K array data from 313 primary

breast cancer tumor solid tissues, 27 normal cases, and 27 342

methylation sites were used to analyze differential methylation.

The beta value (β) was used as an index to quantify the methylation

level, which identifies the ratio of the intensities of methylated and

unmethylated alleles. Differential methylation analysis was per-

formed between 27 normal and 313 tumor samples. Probes con-

taining SNPs, chromosome X, and probes with more than 10%

missing values were excluded from the analysis. The Wilcoxon

rank-sum test was used to determine the differentially methylated

CpGs (DMCs), and the p-values were adjusted using the FDR

method. DMCs were reported if the mean methylation difference

was >0.2 with an FDR of 5%.

2.5.1 | Integrative analysis of DNA methylation and
gene expression

In this part of the study, Illumina Human Methylation 27 K methyla-

tion data and RNA-seq gene expression data were integrated from

the TCGA to detect breast cancer DNA methylation and expression

markers. Different methylated CpGs (DMC) analysis was performed

to understand the differentiation of DNA methylation in each group

and their significance value. We performed a differential expression

analysis (DEA) and detected the fold change in gene expression and

their significance value. We integrated Differential expression

and Differential methylation data, and set criteria in four sections.

(Section 1) Hypo-Down (logFC < (�1), delta beta < (�.2), FDR <

(0.05), adjP.Val < (.05)), (section 2) Hypo-Up (logFC < (1), delta beta <

(�.2), FDR <0.05, adj pvalue<.05), section 3) Hyper-Down ((logFC

< (�1), delta beta > (.2), FDR <0.05, adjP.Val <.05)), section 3) Hyper-

Up (logFC < (1), delta beta > (.2), FDR <0.05, adjP.Val <.05).

2.5.2 | Assessment of candidate lncRNAs' potential
to sponge microRNAs

The miRcode (http://www.miRcode.org/) and RNAhybrid (https://bibiserv.

cebitec.uni-bielefeld.de/rnahybrid) databases were utilized to evaluate the

potential of candidate lncRNA (LINC01405) as a microRNA sponge.

2.6 | Prediction of miRNA-target interactions

The miRNA target genes (miR-497, miR29b) were identified

using multiple databases, including Targetscan (https://www.
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targetscan.org/), mirTarBase (https://miRtarbase.cuhk.edu.cn/), miRdb

(https://miRdb.org/), MiRwalk (http://miRwalk.umm.uni-heidelberg.

de/), and DIANA TOOLS (http://diana.imis.athena-innovation.gr/). The

shared set of genes targeted by both microRNAs was determined.

3 | EXPERIMENTAL PROCEDURE

3.1 | Plasmid constructs

The LINC01405 coding sequence was amplified by RT-qPCR

from cDNA derived from whole blood. The resulting insert

was then inserted into the pTG19-R/T vector and further sub-

cloned into the pcDNA 3.1(+) vector using KpnI and XbaI restric-

tion enzymes for cloning. Verification of all constructs was

performed by sequencing. Additionally, the miR-497 and miR-29-b

sequences were cloned into the pEGFPC1 expression vector for

experimental use.

3.2 | Cell culture and transfection

SKBR3, a Her2-enriched cell line obtained from the Institute Pasteur in

Iran, was cultured in 12-well plates at specified cell densities. Following

this, the cells were transfected with an expression vector containing the

LINC01405 sequence, using the TurboFectTM Transfection Reagent

from Thermo. After a 4 h incubation period, the transfection medium

was replaced with fresh media containing 10% FBS. The transfection

efficiency was evaluated 24 h after transfection using a fluorescence

microscope (Nikon Eclipse Te2000-s).

3.3 | Extraction of total RNA, synthesis of cDNA,
and RT-qPCR

Total RNA was extracted using RiboEx Total RNA Reagent, following

the guidelines provided by the manufacturer (GeneAll Biotechnology).

After treating 1 g of total RNA with DNase I, cDNA was synthesized

to detect miRNAs. For this purpose, a polyA tail was added to the 30

ends of RNAs using polyA polymerase (Takara, Japan), following the

manufacturer's protocol. Subsequently, anchored oligo-dt and random

hexamer primers were introduced, and the mixture was incubated at

65 �C for 5 min. Reverse transcription was carried out at 42 �C for

70 min, followed by an incubation step at 72 �C for 10 min, and then

held at 20 �C. For qPCR amplification, miRNA-specific forward

primers and a universal reverse primer recognizing the oligo-dt anchor

were added to the SYBR green master mix (BioFACT). During this pro-

cess, no template controls were included, and all PCR reactions were

performed in triplicate. The miRNA quantitative data were normalized

to U48, whereas the mRNA quantification data were normalized to

GAPDH. The fold change in gene expression was determined using

the 2-Ct method.

3.4 | Cell cycle assay

SKBR3 cells were seeded in 12-well plates and then transfected with

pcDNA 3.1 (+) containing the LINC01405 fragment, alongside mock

controls. After 48 h, the cells were detached using trypsin, and the

collected cells were fixed in 70% ethanol and stored at 4 �C for 48 h.

Subsequently, they were rinsed twice with cold PBS and exposed to

PBS containing RNase A (10 mg/mL) for 1 h at 37 �C. Following this,

the cells were stained with propidium iodide (40 mg/mL). The cell pro-

liferation index was measured using flow cytometry, and flow cytome-

try software was used to analyze and calculate the proliferation index

(Figure 1).

3.5 | Statistical evaluation

The data are stated as the average ± standard error (SE). Student-

paired t-tests or independent t-tests were used to compare the mea-

sured data between groups. Software from IBM, Armonk, New York,

in version 22 of SPSS and R was used for all statistical studies. Using

GraphPad Prism 5.0 (GraphPad, La Jolla, CA), the findings were visu-

ally shown. The Wilcoxon test in R software generated the scatter

plot and paired plot. A p-value of less than .05 was considered statisti-

cally significant for all two-tailed tests.

4 | RESULTS

4.1 | Meta-analysis

Initially, the log2 raw expression data obtained from breast cancer

samples were imported into R software. Subsequently, the data were

normalized using the Normalize-Quantiles function.

Next, the four microarray datasets were combined, and the

widely used Combat function available in the R (SVA) package was

employed to remove any underlying batch effects. As a result, a box

plot representing 366 samples before and after batch effect removal

was produced (Figure 2A,C).

Because the data had a high dimensionality, which hardened the

identification of breast cancer tumor samples from their normal coun-

terparts, principal component analysis (PCA) was utilized for unsuper-

vised classification following the normalization of the four datasets.

The process helped us to discriminate breast tumors and normal tissue

samples from each other before and after batch effect removal. unsu-

pervised classification through PCA revealed successful discrimination

between tumor tissues of each cancer type and normal samples.

Figure 2B,D).

In this section, the expression patterns of differentially expressed

genes (DEGs) across various datasets and conditions were displayed

as a heatmap using the Complex Heatmap package in R. For the

meta-analysis of each dataset, we used a heatmap to visually repre-

sent the correlation in expression patterns for a specific subset of
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genes in the microarray datasets (Figure 3A). Also, we draw the

expression profile heat map for the DEGs in GSE68086 (Figure 3B)

and the expression profile heatmap for the DEGs in TCGA datasets

(Sup Figure S1). In between, our results emphasized the downregula-

tion of LINC01405 in breast cancer (Sup Tables S1–S3).

We revealed that genes such as LOC10028891, LIPE-AS1, and

BOLA3-AS1 also exhibit differential expression between breast carci-

noma and adjacent normal tissue samples (Figure 3A). Furthermore,

the GNLY, PNN, and PCED1B-AS1 genes were among the critical

DEGs in GSE68086 (Figure 3B). These DEGs in microarray datasets

(Sup Figure S2A), RNAseq data (Sup Figure S2B), and TCGA data are

visualized in volcano plots (Sup Figure S2C).

The Venn diagram of the intersection between the meta-analysis

of the four microarray datasets and the RNAseq (GSE68086) dataset

showed that 16 815 (48%) genes were mutually expressed between

the two meta-analytic studies (Figure 3C).

4.2 | GO and KEGG pathway enrichment analysis

To categorize the function of DEGs in cellular pathways, we illustrated

a Cnetplot that depicts the linkages of genes and biological concepts

(KEGG pathways) as a network. Based on the log2 fold change of the

genes, the ERbB signaling pathway was introduced. Accordingly,

NCK2, AKT1, CK, and SRC were the four essential genes with differ-

ential expression associated with the ERbB signaling pathway

(Figure 4A). The study employed gene ontology (GO) analysis, which

involves biological processes (BP), cellular components (CC), and

molecular functions (MF) are the three categories. The purpose of this

study was to gain deeper insights into the roles of 16 815 genes that

showed differential expression (DEG) (refer to Figure 4B (CC), 4C

(MF), and 4D (BP)).

For this dataset, 2,88 biological processes, 286 cellular compo-

nents, and 393 molecular functions were enriched. The significance

level was set at a p-value of less than .05.

4.2.1 | Candidate LncRNA

Based on the data generated from the meta-analysis and TCGA, sev-

eral lncRNAs that showed remarkable expression differences within

the breast cancer malignant and normal tissues were chosen for fur-

ther analysis. LncRNA disease analysis indicated that ectopic expres-

sion of LINC01405 is associated with several cancers, such as cervical

cancer, lung cancer, and hepatocellular carcinoma. However, it is most

strongly associated with breast cancer (Sup Figure S3).

F IGURE 2 Microarray meta-analysis quality control, Box plots, and PCA of data before and after batch effect correction. (A) Shows the
boxplot of four microarray datasets before batch effect removal. (B) Shows the PCA analysis of four microarray datasets before batch effect
removal. (C) Presents boxplot of four microarray datasets after batch effect removal. (D) Presents PCA analysis of four microarray datasets after
batch effect removal.
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4.3 | WGCNA identifies necessary modules
relevant to stages I–IV

First, outlier samples that lacked biological significance were found

and eliminated using a sample clustering tree. Then, utilizing a soft-

thresholding power of β = 5 (with a scale-free R2 of 0.9) and a cut

height of 0.4, 22 modules, each represented by a different color,

were discovered, along with DEGs that did not cluster subse-

quently. The, yellow (162 DEGs), gray 60 (14 DEGs), and green-

yellow (36 DEGs) modules exhibited significant associations with

clinical information based on stages I to IV, as determined through

module-trait relationship evaluation (Figure 5A,B,C and Sup

Figures S4–S7).

4.4 | Construction of the modular network

Having identified the crucial modules, namely, yellow (162 DEGs),

gray (14 DEGs), and green-yellow (36 DEGs), a network was con-

structed to visualize the most significant candidate modules associ-

ated with breast cancer. In this network, nodes represent

differentially expressed genes. Three separate networks were

F IGURE 3 Heat map representing and Venn diagram of differentially expressed genes in breast cancer. (A) Meta-analysis of individual
microarray data sets indicated that 18 837 genes were differentially expressed in breast cancer. (B) Comparative individual RNAseq data analysis
from GEO(GSE68086) indicated that 10 227 genes were differentially expressed in breast cancer. (C) Venn diagram of intersection between
DEGs in the microarray meta-analysis of an RNAseq (GSE68086) dataset, there are 16 815 (48%) genes shared in both datasets. Also, 16 232
DEGs are GSE68086-specific, while 2021 genes are microarray-specific.
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presented: a green-yellow network, (Figure 5C), a gray network (Sup

Figure S6), and a yellow network (Sup Figure S7). The gene

LINC01405 was found within the green-yellow module (Figure 5C).

4.5 | Detection of potential drug-target networks

Following the determination of modules in breast cancer, possible

drug-target interactions were investigated. Figure 5D depicts pro-

spective drug-target networks built using particular DEGs from the

DGIdb database. The medications in the plot are chemotherapy treat-

ments used to treat various malignancies, particularly gemcitabine,

which is utilized in combination therapy for breast cancer.

4.6 | Analysis of the relationship between DNA
methylation and gene expression through integration

Analysis of DNA methylation and gene expression data revealed

875 genes exhibiting differential methylation and expression based on

predefined criteria. Among these genes, 345 genes were found to be

hypermethylated and downregulated, whereas 336 genes displayed

hypermethylation and upregulation. Additionally, 147 genes exhibited

hypomethylation and downregulation, and 49 genes showed hypo-

methylation and upregulation (Sup Table S5). These findings provide

insights into the complex regulatory mechanisms involving DNA

methylation and gene expression in the studied context. In addition,

we demonstrated integration data in a scatter plot of mean

F IGURE 4 Pathway enrichment plot for the intersected DEGs of breast cancer. (A) Cnetplot KEGG pathway enrichment produced from the
intersected DEGs (microarray meta-analysis and RNAseq (GSE68086). Accordingly, MAPK, Focal adhesion, apoptosis, sphingolipid, and ERbB
signaling are the most prominent pathways. (B) Dot plot shows an overview of the cellular components of GO analysis. Accordingly, actin filament
and transcription repressor complex systems are the most prominent cellular components involved in breast cancer incidence. (C) Bar plot shows
an overview of the molecular function of GO analysis. Accordingly, DNA- binding transcription factors are the most important molecular
functions in breast cancer incidence.(D) According to GO analysis, TGFB, Wnt, and serine/threonine signaling are in the most important biological
processes involved in breast cancer.
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methylation difference versus log2 expression (Supplementary

Figure S8A). In the last step, we observed that LINC01405 showed

hypomethylation status (median = 0.68) in the case group, whereas it

was hypermethylated in normal control (median = 0.62) (Supplementary

Figure S8B).

4.7 | Confirmation of bioinformatics analysis using
experimental results

In subtype categorization, GSE134359 (Long noncoding RNA land-

scape in breast cancer, 75 adjuvant tumors, and 12 Adjacent normal

tissues) dataset analysis indicated that the expression level of

LINC01405 in Triple-negative breast cancer (Basal-like) tissues was

higher than that in the control. However, its expression in the

Her2-enriched and Luminal tissues subclasses was lower than that

the control, whereas its expression level in the Her2-enriched tissues

subtype was higher than that in the Luminal tissues subtype

(Figure 6A left). This pattern was experimentally validated in tissue

samples to a certain extent, where we confirmed the highest expres-

sion level of LINC01405 in TNBC compared with Luminal A and B

subtypes (Figure 6B left). We also analyzed LINC01405 expression

levels in cell lines of breast cancer. Our bioinformatics analysis

revealed that the LINC01405 expression level in cell lines of breast

F IGURE 5 WGCNA analysis PLOT based on the tumor stages of breast cancer. (A) Clustering dendrograms of robust DEGs and related
modules based on a dissimilarity measure (1-TOM). (B) Heatmap of the correlation between module eigengenes and stages I to IV (as clinical
traits) in BRCA. Data shows that, unlike other modules, MEbrown and MElightgreen modules do not correlate with cancer stages.
(C) Representation of green-yellow color modules produced by WGCNA analysis in breast cancer. (D) Data shows only green and yellow modules
interact with current therapy drugs.
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cancer to some extent follows the breast cancer tissues subtype pat-

tern, where the highest expression of this lncRNA was observed in

MDA-MB-231(Triple-negative cell line) compared to the

Her2-enriched and the Luminal A cell line, (SKBR3) and (MCF7)

(Figure 6A right). This also showed consistency with experimental

data, in which LINC01405 had the highest expression level in the cell

line of MDA-MB-231 compared with SKBR3 and MCF7 cell lines

(Figure 6B right).

Our experimental observation showed that the highest expres-

sion of LINC01405 in the cell line of MDA-MB-231 came with lower

miR-29b and miR-497 expression levels. Conversely, lower levels of

LINC01405 expression were observed in SKBR3 and MCF7 cell lines,

with higher miR-29b and miR-497 expression levels (Figure 7A).

To confirm the ceRNA effect of LINC01405, we overexpressed

LINC01405 within SKBR3 cells and observed a significant drop in

miR-29b and miR-497 expression levels (Figure 7B) as well as an

increased expression level of these miRNAs common target genes

(Figure 7E).

Transient manual upregulation of LINC01405 in SKBR3 cells led

to increased cell populations and induced cell proliferation

(Figure 7C). This oncogenic potential of LINC01405 was further vali-

dated when we reported significant upregulation of AKT1, AKT3,

mTOR, WNT3A, SMAD3, CYCLIN D1, CYCLIN D2, BCL2, and GSK3B

in these cells (Figure 7D, E). It is worth mentioning that LINC01405

may serve as a biomarker for breast cancer based on An ROC curve

analysis (Sup Figure S9).

F IGURE 6 Expression analysis of Linc01405 in breast cancer tissue and cell line samples. (A) (Left) Expression of linc01405 in GSE134359 in
the different subtypes of breast cancer and control, adopted from the microarray and RNAseq data. (Right) The expression of linc01405 in three
breast cancer cell lines (GSE12777). Accordingly, LINC01405 is highly expressed in basal-like cells while downregulated in Luminal B cancer types
and related cell lines. (B) (Left) RT-qPCR experimental validation of LINC01405 expression in 29 breast cancer tissue samples and three (SKBR3,
MD-MB231, and MCF7) cell lines (Right). Consistently, LINC01405 is highly expressed in basal-like (TNBC) while being downregulated in Luminal
B cancer types and related cell lines.
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Using the miRcode database, we found that LINC01405 contains

one highly conserved binding sequence for miR-29b and three binding

sites (with an average conservation score) for miR497 (Sup Figure S10A).

Additionally, we used the RNA hybrid database to predict the base pair-

ing between LINC01405 and miR-29b and miR-497(Sup Figure S10B).

Common genes targeted by both microRNAs (miR-29b and miR_407),

include, AKT1, AKT3, mTOR, WNT3A, SMAD3, CYCLIN D1, CYCLIN

D2, BCL2, and GSK3B (Sup Figure S10C). In supplemental Table S4, a list

of the primers utilized in this investigation is provided.

5 | DISCUSSION

Breast cancer is a multifaceted disease that requires further under-

standing of its underlying mechanisms. Current endeavors have been

concentrated on exploring the molecular aspects participating in the

onset and advancement of breast cancer.3,9,21 Hundreds of molecular

elements, such as proteins and RNAs, are involved in disease genera-

tion.22 In this study, we conducted a meta-analysis on four microar-

rays and one RNAseq dataset from GEO, and an analysis of RNAseq

data from TCGA separately. We found a list of differentially expressed

genes and non-coding RNAs from each of them and selected

LNC01405 among them to validate its function in breast cancer.

LINC01405 was already known as a down-regulated lncRNA in

esophageal carcinoma.17 Furthermore, it was previously introduced as

a prognostic marker in tongue carcinoma.23 Based on the meta-

analysis results, we understood that LNC01405 showed the highest

level of expression in cases of Triple-negative breast cancer samples.

We were able to validate the experimental phase of the research by

successfully confirming it in 29 pairs of breast tissue and adjacent

normal tissue samples. It is evident that LINC01405 functions in a

network, and by drawing this network, it was suggested that the

co-expression network between the group's tumor and tumor margin

had tremendous differences. Previously, it was reported that

LINC01405 has the highest score (k-core) among the tumor groups,

which shows the prominent regulatory role of LINC01405 in breast

cancer. Additionally, our bioinformatics analysis suggested that

LINC01405 is a sponge for miR-29b and miR-497. Wang et al., dem-

onstrated that miR-29b is upregulated in breast cancer cells to induce

migration.24 Also, it was reported to be a tumor suppressor, which

showed a negative correlation with DNMT3A.25 Liu et al. suggested

that the interaction between CAF1 and miR-29b to induces prolifera-

tion in metastasis.26 On the other hand, miR-497 could directly target

Bcl-w and induce apoptosis,27 whereas more tumor suppression

effects were reported for miR-497 by targeting HIF-1α and prevent-

ing angiogenesis in breast cancer cells.28

Our claim was first predicted by MiRcode, RNA hybrid, and MiR

walk software and confirmed when the overexpression of LINC01405

F IGURE 7 Endogenous and overexpressed Linc01405 and miR-29b and miR-497 and their effects on genes targeted by microRNAs after
transfection in the SKBR3 cell line. (A) The endogenous expression levels of linc01405 and miR-29b and miR-497 in SKBR3. MDA- MB-231, and
MCF-7 cell lines. (B) overexpression of linc01405 and miR-29b and miR-497 in SKBR3 cell lines after transfection of cells. (C) Cell cycle plot of
SKBR3 after transfection with Linc01405. (D) Overexpression of linc01405 after transfection of SKBR3 cells. (E) The effect of linc01405
overexpression on miR-29b and miR-497 target genes.
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caused the expression of miR-29b and miR-497 to decrease signifi-

cantly. Further evidence of LINC01405's ability to act as a scavenger

was provided when we observed a significant rise in the expression of

essential target genes for both miRNAs. MiR-29b has been demon-

strated to suppress tumor growth by targeting the AKT2 isoform.29

Our study found upregulation of AKT1 and AKT3, which are involved

in the signaling pathway of PI3K, and previous studies have demon-

strated overactivation of the PI3K pathway in breast cancer. The

enhanced mTOR expression, induced by miR-29b and miR-497, may

result from AKT overexpression and phosphorylation. Activation of

the PI3K/AKT/mTOR pathway in breast cancer has been reported to

induce cell proliferation, and in this research, the increased prolifera-

tion might result from the induced PI3K/AKT/mTOR pathway. The

enhanced mTOR expression, induced by miR-29b and miR-497, may

be the result of AKT overexpression and phosphorylation.30 miR-497

is also reported to be a negative regulator of the TGFB signaling path-

way. This pathway is activated in breast cancer, and when negative

regulators such as miR-497 are diminished by the aid of an lncRNA

scavenger, hyperactivation of the pathway is expected.31 The

increased expression of CCND1 and CCND2, along with AKT1, AKT3,

and mTOR, may trigger cell proliferation, as observed by flow cytome-

try assay.32

The canonical Wnt signaling pathway is induced by Wnt1, Wnt2,

Wnt3 and Wnt3a.33 Following the upregulation of Linc-01405, we

reported the upregulation of Wnt3a and GSK-3 as significant proteins

involved in Wnt signaling. Accordingly, we suggest the oncogenic role

of LINC01405 in activating the key participants in the Wnt signaling

pathway and the consequent proliferation of cancer cells. Bcl2 is

known to suppress cancer cell apoptosis, and our further evidence for

the oncogenic role of LINC01405 comes from Bcl2 upregulation fol-

lowing LINC01405 overexpression in the cell lines of SKBR3. Cellu-

larly, overexpression of LINC01405 resulted in an increased S-phase

cell population, consistent with the Bcl2 upregulation effect.34

Taken together, we hypothesized that LINC01405 could play a

significant role in breast cancer. Via dataset analysis, we predicted

a cancer promoter role for LINC01405. Our experimental evidence

showed that LINC01405 promoted cancer cell proliferation, sug-

gesting an oncogenic effect for this lncRNA. However, when we

consider LINC01405 as a player of a regulatory network where it

might regulate miR-29b and miR-497 (which are reported both as

F IGURE 8 Schematic view of linc01405 in the cell.
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tumor suppressors and oncogene in several breast cancer studies), it is

not logical to emphasize a strict effect (tumor suppressor or oncogene

effect) for LINC01405. Here, we suggested that LINC01405 sponges

miR-29b and miR-497 through which, it upregulated common target

genes of these miRNAs, resulting in the upregulating of Wnt, PI3K, and

TGFB signaling. Here, we took the first step to investigate the effect of

LINC01405 on breast cancer, but it is necessary to conduct comprehen-

sive study programs to find its role in different cancers and more breast

cancer samples.35–38

Details associated with the LINC01405 (Loc100131138) function

in the cell are represented by a schematic (Figure 8).
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