Skip to main content
. 2024 Feb 8;8:10. doi: 10.1186/s41747-023-00411-3

Table 4.

Comparative evaluation of pretraining with self-supervision on non-medical images versus full supervision on non-medical images

Pretraining VinDr-CXR ChestX-ray14 CheXpert MIMIC-CXR UKA-CXR PadChest
ROC-AUC DINOv2 88.92 ± 4.59 79.79 ± 6.55 80.02 ± 6.60 80.52 ± 6.17 89.74 ± 3.57 87.62 ± 4.86
ImageNet-21 K 86.38 ± 6.27 79.10 ± 6.34 79.56 ± 6.51 79.92 ± 6.35 89.45 ± 3.62 87.12 ± 5.05
Accuracy DINOv2 82.49 ± 6.92 72.81 ± 7.43 72.37 ± 8.29 73.08 ± 5.32 80.68 ± 4.00 79.82 ± 6.69
ImageNet-21 K 81.92 ± 6.50 71.69 ± 7.29 71.36 ± 8.39 73.00 ± 5.37 79.94 ± 4.29 78.73 ± 7.49
Sensitivity DINOv2 83.58 ± 6.93 73.14 ± 8.94 75.68 ± 6.45 74.87 ± 10.01 83.42 ± 4.57 81.66 ± 6.91
ImageNet-21 K 78.50 ± 8.97 73.04 ± 8.23 75.43 ± 6.00 73.91 ± 9.51 83.76 ± 4.37 81.80 ± 5.30
Specificity DINOv2 81.69 ± 7.37 73.32 ± 8.00 70.95 ± 9.69 72.25 ± 6.04 80.32 ± 4.44 79.49 ± 6.97
ImageNet-21 K 81.80 ± 6.88 72.10 ± 7.94 70.23 ± 9.33 72.30 ± 6.16 79.39 ± 4.61 78.37 ± 7.80
ROC-AUC p-value 0.001 0.001 0.001 0.001 0.001 0.001

The metrics used for comparison include the area under the receiver operating characteristic curve (ROC-AUC), accuracy, sensitivity, and specificity percentage values, all averaged over all labels for each dataset. The datasets in question are those pretrained with self-supervision on non-medical images (DINOv2 [18]) and those under full supervision with non-medical images (ImageNet-21 K [13]). The datasets employed in this study are VinDr-CXR, ChestX-ray14, CheXpert, MIMIC-CXR, UKA-CXR, and PadChest, with fine-tuning training images totals of n = 15,000, n = 86,524, n = 128,356, n = 170,153, n = 153,537, and n = 88,480, respectively, and test images totals of n = 3,000, n = 25,596, n = 39,824, n = 43,768, n = 39,824, and n = 22,045, respectively. For more information on the different labels used for each dataset, please refer to Table 3. p-values are given for the comparison between the ROC-AUC results obtained from DINOv2 and ImageNet-21 K pretraining weights