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Convergence and equilibrium in molecular
dynamics simulations
Franco Ormeño1 & Ignacio J. General 2✉

Molecular dynamics is a powerful tool that has been long used for the simulation of bio-

molecules. It complements experiments, by providing detailed information about individual

atomic motions. But there is an essential and often overlooked assumption that, left

unchecked, could invalidate any results from it: is the simulated trajectory long enough, so

that the system has reached thermodynamic equilibrium, and the measured properties are

converged? Previous studies showed mixed results in relation to this assumption. This has

profound implications, as the resulting simulated trajectories may not be reliable in predicting

equilibrium properties. Yet, this is precisely what most molecular dynamics studies do. So the

question arises: are these studies even valid?Here, we present a thorough analysis of up to a

hundred microseconds long trajectories, of several system with varying size, to probe the

convergence of different structural, dynamical and cumulative properties, and elaborate on

the relevance of the concept of equilibrium, and its physical and biological meaning. The

results show that properties with the most biological interest tend to converge in multi-

microsecond trajectories, although other properties–like transition rates to low probability

conformations–may require more time.
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The analysis of Molecular Dynamics (MD) simulations is
most often based on the implicit assumption that the
system was in thermodynamic equilibrium. For example,

in biomolecular simulations, the starting point is usually an
experimentally determined 3D structure, retrieved from the
Protein DataBank1 that is not in equilibrium, since its determi-
nation required specific preparations (for x-ray diffraction, the
most usual experimental technique used for structure determi-
nation, the biomolecule is part of a crystal from where electron
density maps are obtained; these are strong non-equilibrium
conditions, if one wants to simulate a physiological–non-
crystal–system). Consequently, the typical simulation protocol
consists of the energy minimization of the system, followed by the
so-called equilibration steps, where the system is first heated and
pressurized to the target values, and then a relatively long and
unrestrained simulation is carried on, to let the system explore its
conformational plus velocity space (i.e., the phase space) and
relax, reaching thermodynamic equilibrium. But here lies an often
oversaw detail: how can we determine if the system reached true
equilibrium?

A standard way to check for equilibration is to plot several
magnitudes calculated from the simulation, as a function of time,
and see if they have reached a relatively constant value (a plateau in
the graph). Simple and often used metrics are the energy and the
root-mean-square deviation (RMSD) of the biomolecule. The latter
is supposed to reach a plateau when the potential energy of the
biomolecule reaches a minimum (although this is not necessarily
true). There are more sophisticated ways of checking for equili-
bration, but they tend to be more complex and time-consuming, so
they are usually not employed2. One of those other ways was used
by Hu et al.3, who studied time-averaged mean-square displace-
ments and autocorrelation functions (ACF) of some properties of
three biomolecules, extracted from long MD simulations, noticing
that convergence was not achieved, and concluding that, in general,
biomolecules do not reach equilibrium, even in simulations on the
order of tens of μs. Furthermore, they proceeded to study ACFs of
two more biomolecules, from results of single-molecule spectro-
scopy experiments, and concluded that some proteins may posses
non-equilibrium behavior for times longer than hundreds of sec-
onds. This is a very strong conclusion, that directly affects the
relevance of MD studies. Is MD a valid tool to analyze the equili-
brium properties of proteins? Or is it highly insufficient, since the
time-ranges that are currently possible to simulate are very, very far
from the needed ones? This is a question that, in our opinion, is
being surprisingly ignored by the community, but needs to be
thoroughly addressed since, if Hu et al.’s conclusions are generally
true, then a majority of currently published MD studies would be
rendered mostly meaningless. Strangely enough, as the question is
ignored and publications using MD are very common and are
presented as if their results are clearly converged, at the same time
there is a sort of acceptance of Hu et al.’s conclusion, with many
authors citing their result as common knowledge4–8 but none
(to the best of our knowledge) testing, extending or replicating
those results.

This non-equilibrium behavior was also described in relation to
surface water around proteins; using neutron-scattering experi-
ments and MD simulations, Tan et al.9 found sub-diffusive
motion of water molecules during time-intervals of around 1 ns;
but for longer windows, of about 100 ns, the sub-diffusivity ten-
ded to disappear. Interestingly, using a Go model of a λ-repressor
protein, Krivov10 found that subdiffusivity appeared when a non-
optimal reaction coordinate was employed, but it disappeared
when switching to an optimal one, pointing to the importance of
a careful choice of the property to be measured.

From a Statistical Mechanics point of view, the physical
properties of a typical system are derived from its conformational

partition function, Z, i.e., the volume of the available conforma-
tional space, Ω, weighted by an exponential factor of the energy
(see Eq. (1) for the expression of Z in the Canonical ensemble; the
exponential, or Boltzmann factor, represents the probability of
observing a state with energy E(r) in Ω). Z should have the
correct contribution from all physically allowed conformations,
including low probability ones. On the other hand, when calcu-
lating the average of a property A, 〈A〉 (such as a distance, angle,
RMSD, etc), the mathematical expression can be written as an
average of the values of the property, weighted by the Boltzmann
factor (Eq. (2)). But low probability regions of the conformational
space will not contribute much to 〈A〉, since they tend not to
happen and, hence, 〈A〉 does not require a full exploration of Ω;
counting contributions only from the most probable regions can
lead to a very good approximation.

Z ¼
Z
Ω
exp � EðrÞ

KBT

� �
dr ð1Þ

hAi ¼ 1
Z

Z
Ω
AðrÞ exp � EðrÞ

KBT

� �
dr ð2Þ

F ¼ �KBT lnðZÞ ð3Þ

S ¼ � ∂F
∂T

� �
V

ð4Þ

On the contrary, properties like transition rates to and from
unlikely regions of Ω depend explicitly on the probability values
of those regions and, thus, do require their thorough exploration.
In this sense, a system can be in partial equilibrium so that some
properties have already reached their converged values, while
others have not. This is not the standard physical definition of
the concept of equilibrium, where one studies a perfect thermo-
dynamic equilibrium (full exploration of Ω) but, as argued later, it
may be appropriate for biomolecular systems and, specifically, for
MD applications. This point is suggesting that free energy and
entropy–the fundamental physical magnitudes directly related to
equilibrium–may not be ideal metrics in the present case. The
reason is that the statistical mechanical expressions for those
quantities (Eqs. (3–4)) depend explicitly on the partition function,
and are not formed as averages, so they need to keep all con-
tributions from the conformational space, including low prob-
ability ones. Consequently these quantities cannot, in principle,
be separated into partial contributions of a given region or a
specific motion of the protein and, thus, cannot be used to study
partial equilibrium.

Guided by the these ideas, we give here a clear working definition
of the concept of equilibrium, as applied in this study to MD
simulations: “Given a system’s trajectory, with total time-length T,
and a property Ai extracted from it, and calling 〈Ai〉(t) the average
of Ai calculated between times 0 and t, we will consider that
property “equilibrated” if the fluctuations of the function 〈Ai〉(t),
with respect to 〈Ai〉(T), remain small for a significant portion of the
trajectory after some “convergence time”, tc, such that 0 < tc < T. If
each individual property, A1,A2,…, of the system is equilibrated,
then we will consider the system to be fully equilibrated”.

This definition makes a clear distinction between the concepts
of partial and full equilibrium, in preparation to find systems
where only some properties have reached convergence, but others
have not. This is precisely what is needed when calculating, for
example, a distance between two domains of a protein (an average
property that depends mostly on high probability regions of Ω),
and the free energy of the entire protein (a property that depends
on all regions of Ω). But there are two main problems with this
definition: (1) The meaning of the phrase "remain small for a
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significant portion of the trajectory” is vague and relative, as the
fluctuations should go to zero as the thermodynamic limit is
approached, but MD simulations are far from reaching it. MD
ensemble sizes are small, due to the short times usually simulated
(very long runs for today standards–on the order of
milliseconds–still represent ensembles very far from the ther-
modynamic limit). (2) 〈Ai〉(T) should be changed to 〈Ai〉(t=∞),
the infinite-time average. But these averages can only be known
experimentally (or theoretically in an analytical case); hence, in
the event where it is unknown, there is no way to clearly establish
how far a finite-time average is from the infinite-time one. And
even if a known value is available, simulated systems are seldom
true representations of experimental ones, as the conditions in
which they are carried out are different and, thus, their averages
may be different (although good models and simulations should
keep the difference to a minimum). So, in order to make sense of
the definition, we will take 〈Ai〉(T) as the “correct value”. These 2
problems make the estimation of the convergence of properties
more of an art than a precise determination. Even in an ideal case,
where some property is found to approach a fixed value, with
small fluctuations, it is not possible to affirm that it will stay at
that value if the simulation is continued; the system may be stuck
at some deep local minimum of energy, from which it could
eventually escape in a longer simulation.

Keeping the previous caveats in mind, here we examine the
convergence of multi-microsecond simulations of several pro-
teins, by analyzing different metrics. We also include auto-
correlation functions, and try to discern what they tell about the
equilibrium of a system, by first studying them in analytical cases.

Results
Dialanine - Unconverged properties in a mostly
converged system. The first system analyzed was dialanine, a very
simple, 22-atom toy model of a protein. It is reasonable to hypo-
thesize that, due to its very small size, this molecule would reach
equilibrium within the usual time-lengths used in MD simulations,
making it an ideal study-case11,12. On the other hand, if equili-
brium is not reached, it could then be assumed that it will neither
be generally attainable for larger, more complex proteins. With this
in mind, Fig. 1 presents structural results from the analysis of a
20 μs trajectory. It shows the distributions of the ψ and ϕ dihedral
angles as a function of time, aligned with a plot of the free energy
landscape in terms of those two angles. ψ populates two main
regions, around (−50, 50) and (120, 190), with a very high fre-
quency of transitions between them, while ϕ also visits two regions,
(−180, −50) and (30, 80), with the latter being barely explored.
This is clearly observed in the free energy plot, where six regions are
visible (the most populated ϕ region appears broken into two sub-
regions), but the two corresponding to the positive values of ϕ have
a greater free energy and, thus, lower probability. Notice the very
fast transitions between ϕ regions, where no intermediate micro-
configurations were observed, as opposed to the ψ ones, with many
events clearly visible in the graphs.

This is indicating that ψ has two comparable minima in the
ψ subspace (the (120, 190) is the global minimum, by about 1
kcal/mol), but the barrier between them is not high enough
(~3 kcal/mol) to disallow a very large number of transitions
between the two. On the other hand, the ϕ regions are much more
isolated from each other, with significantly different minima
(by about 3–4 kcal/mol) and larger barriers (~5 kcal/mol).

In terms of transition rates, there is a clear difference between
the two angles: ψ stabilizes very quickly, reaching convergence in
a small fraction of the whole trajectory, but ϕ takes a much longer
time to achieve convergence, and it could be concluded from
the plots that it does not reach it. This is an illustration of the

well-known fact that different mechanisms in a given system can
have, and usually do have, very different convergence times.

Is this indicating that the trajectory did not achieve
convergence and, thus, no equilibrium properties can be obtained
from it? In fact, equilibrium properties of dialanine can be clearly
extracted, such as the aforementioned transition rates between ψ
regions (see Table 4), or any other property that does not depend
on the exploration of the ϕ sub-space, such as the relative energy
or free-energy of the four most stable macro-states (those
with− 180 < ϕ <− 50). As previously mentioned, in order to
accurately calculate equilibrium properties, a simulation should
be allowed to thoroughly explore all of the system’s available
phase space, including all local minima in the rugged landscape of
a complex system. But if a local minimum is very unlikely–like
the ϕ ~ (30, 80) region–then its contribution to the partition
function and its derivable properties, will be very small and
possibly negligible, making the calculation a very appropriate one.

The results related to the other metrics mentioned in Table 1
are analyzed in the Supplementary Information, and displayed in
Supplementary Fig. 1. They all show very good convergence,
starting with time-lengths as short as tens of ns. A movie of the
trajectory of dialanine and of all the other proteins studied can be
found in Supplementary Movies 1–8, along with pdb files
containing first and last frames of each simulation, as
Supplementary Data files 1–16.

PGK. Phosphoglycerate kinase (PGK) is the 415 residues kinase
studied by Hu et al., that inspired the present work. Its

Fig. 1 Free energy and dihedral angle transitions in dialanine. Structure of
dialanine with definition of dihedral angles ψ, ϕ, along with their time
evolution and free energy landscape (with labeled minima).

Table 1 Metrics used to study equilibrium.

GLOBAL DYNAMICAL
CONVERGENCE

Partial components (PCs)
PCs cumulative overlap (CO)

LOCAL DYNAMICAL
CONVERGENCE

Atomic fluctuations (RMSF)

STRUCTURAL CONVERGENCE Cluster analysis
CUMULATIVE CONVERGENCE Autocorrelation functions (ACF)
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corresponding results are presented in Fig. 2. CO and RMSF
(panels A and D) show good convergence as the length of the MD
increases, and panel C also represents good convergence. Mean-
while, panel B appears to somewhat question this, since PC2
(although the same conclusion is valid for the rest of the first 5
PCs) reveals that the population of its two highest maxima
(around −100 and 0Å) is still changing in the last two time
lengths. While the cluster distribution in panel C shows C0 being
the only cluster in the last half of the trajectory, a cluster study of
only this part (last 17 μs)(inset) shows several clusters; this can be
interpreted as a subcluster distribution of C0 (of the 30 μs cluster
distribution). This explains that once the system settles in cluster
0, at around 11 μs, it is still going through other internal trans-
formations which bring up this substructure, generating varia-
tions in the PC2 distribution (the same happens with the other
global PCs, not shown).

SARS-CoV-2 3CLpro. The 3C-like proteinase (3CLpro), also
known as the nonstructural protein 5 (nsp5), is the main protease
of coronavirus. SARS-CoV-2 3CLpro is a dimer of 302 aminoacids
per chain which, in its apo state (pdb code: 6Y84), was simulated
for 100 μs13, making it the longest trajectory in the present study.
The results, displayed in Fig. 3, show a good convergence of the
simulation, just like in previous cases, particularly panels A, C
and D. Panel B illustrates an interesting point, as PC1 shows a
clear difference in its distribution when going from the 10 to the
50 μs simulation (general shape somewhat similar, but with a
different location of the peak), whereas PC2 shows a much
quicker convergence, with those two times having practically the
same distribution, even of the peak. In both cases, the 1 μs case
appears far from convergence.

Panel C reveals a distribution of clusters in relative equilibrium
but, at the end, around 90 μs, a new cluster emerges. It appears to
correspond to a localized conformational change, given by a 7
aminoacid-long region, which folds into a helix at this time.
Visually (see Supplementary Movie 3), this is a minor change that
does not appear to perturb the rest of the molecule. But,
unfortunately, there is no way of knowing if it would not affect
the system in a longer run, past the 100 μs. This is a point that
should always be kept in mind when analyzing MD trajectories.

Other systems. The other systems appearing in Table 3 and not
mentioned so far, Trp-Cage, VHP, GAAC, Barnase and Elastase,
are analyzed in the Supplementary Discussion (see Supplemen-
tary Figs. 2, 3, 4, 5, 6). But summarizing their results, it was found
that they behave very similarly to the ones already presented,
showing a good convergence in all metrics, as the simulation
times increases, with mostly very good convergence of properties
after times on the order of the microsecond. Also, all initial and
final frames of the MD simulations are available as Supplemen-
tary Data 1–16.

Autocorrelation functions. In order to directly compare the
results of the present study with those presented by Hu et al.3, we
calculated the ACFs for different properties of each of the studied
systems. Figure 4 shows the Decorrelation Curves (DC), i.e.,
characteristic decorrelation time (τc) of the eight studied proteins,
as a function of the simulation time (t), in a log-log scale. It is
clearly seen how, for all systems, τc increases with the simulation
time–an expected fact, as the simulations tend to reach an equi-
librium state–until log(t) ~ 7, where a convergence in τc seems to
be appearing in every case, except for dialanine and GAAC, where

Fig. 2 Metrics of convergence in PGK. a Cumulative overlap of first 3 three ANM modes, in terms of MD PCs, for several simulation times. b Frequency
distribution of selected PC for several simulation times. c Cluster cumulative population (left) and cluster time-distribution (right). The main graph on the
right shows clusters of the entire 30 μs simulation, while the inset considered only the last 17 μs of it, showing a sub-structure of cluster 0 from the main
graph. d Residue root-mean square fluctuations for several simulation times.
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Fig. 3 Metrics of convergence in 3CLpro. a Cumulative overlap of first 3 three ANM modes, in terms of MD PCs, for several simulation times. b Frequency
distribution of selected PCs for several simulation times. c Cluster cumulative population (left) and time-distribution (right). d Residue root-mean square
fluctuations for several simulation times.

Fig. 4 Decorrelation curves of protein systems. The studied magnitudes are: dihedral angle ψ (dialanine), end-to-end distance (Trp-cage, Vhp, GAAC),
inter-domain separation (Barnase, Elastase, PGK, 3CLpro). a: Decorrelation curves for three properties of 3CLpro. b: detail of PGK’s decorrelation curves,
from this work and from Hu et al.3.
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convergence occurs before. Inset panel a in the figure depicts the
DC for three different properties of 3CLpro: interdomain distance
(separation between center-of-mass, CoM, of each domain),
interdomain dihedral (taking the CoM of four helices, two in one
domain, two in the other), and RMSD of the whole protein. They
are qualitatively similar, but as different between them as the
graphs of other proteins. This shows, once again, how different
types of motion (or different modes) of the same protein can
behave quite differently.

To better understand some details of ACFs, Fig. 5 displays the
DCs of a few analytical systems, all described by the same
function–an exponential with three sines added–each with
varying parameters, so that the different parts of the function
are included or not, and made to converge with different speeds.
The coefficients are specified in Table 2. Panel b in the Figure
displays the full function, with all non-zero parameters. In the
main graph, the low frequency sine is clearly seen, while the mid
frequency one is partially visible; the exponential and fast
frequency sine are not observable at all. On the other hand, the
inset in this panel shows a fast initial increase, due to the
exponential part, and the oscillations of the high and mid
frequency sine functions; here, it is the low frequency sine that is
not visible. Panel a of the Figure shows the DCs of all the
combinations of parameters in Table 2, with the thick line
representing the full function. It is interesting to see how a
composite function is guided by the DCs of its components. This
is clear in the case of the sine with the three frequencies (sin-
HMLfreq); it shows a first convergence attempt at log(t) ~ 3,
where sin-Hfreq converges, followed by a second attempt around
4, where sin-Mfreq converges, and it finally fully converges

around 5, where sin-Lfreq also plateaus. The full function,
including the exponential part, also shows this guidance by its
components, although the exponential garbles the interpretation,
since its convergence takes longer than the mid and high
frequency sines, partially hiding their effects. But still, it shows 4
convergence attempts, with the last one coinciding with the
previous no-exponential function (since the exponential is
completely converged at that final time). In summary, this
analytic system shows that the ultimate convergence of a
composite function’s DC is subjected to the convergence of its
slowest converging part.

An interesting conclusion can be drawn from this analysis,
regarding the time it takes for an oscillation to reach convergence.
The motion with the longest convergence time is the low
frequency sine, sin-Lfreq, with a period of 63,000 ps. Its DC’s
convergence time is close to 100,000 ps, which is about 1.5 times
its period. Thus, a property characterized by an oscillation with
period T could be expected to necessitate a simulation of about
1.5 ⋅ T, in order to reach convergence. This may sound short, as
intuitively one might have expected to need several full
oscillations before reaching equilibrium, but this is not the case
for an ideal sine motion, and may be used as a guide for other
cases.

Discussion
Functional dynamics converges in the tens of μs time-scale of
MD. The central question this work aims to answer, is if proteins
simulated via MD–in today’s usual time ranges of hundreds of ns
to a few tens of μs–reach equilibrium. But this is a tricky question,
since proteins are complex objects, composed of thousands of
atoms forming domains and sub-domains, with many different
processes contributing to their relaxation (interactions with
neighboring molecules, rotation of side-chains, linear and angular
oscillation of bonds, large conformational changes, etc), each with
its own characteristic time. These motions can be modeled by the
harmonic normal modes, which are, in a sense, the most fun-
damental types of motion of the system. But therein lies the crux
of the problem: each mode has a defined and different natural
frequency. Hence, at any given time, some modes may be equi-
librated while others are not. Although, physically speaking, one
should avoid talking about equilibrium in such a case, biologically

Fig. 5 ACF of a composite function. a shows the decorrelation vs the observation time, in a log-log scale. b shows the composite function being analyzed,
f(x)= A− A ⋅ exp(− B ⋅ t)+ sin(C ⋅ t)+ sin(D ⋅ t)+ sin(E ⋅ t) (see text for specific value of coefficients), with a zoomed-in region that displays the high-
frequency sine component.

Table 2 Analytical systems used to check convergence:
f(x)= A− A ⋅ exp(− B ⋅ t)+ sin(C ⋅ t)+ sin(D ⋅ t)+ sin(E ⋅ t).

Function type A B C D E

Exp 10 0.0005 0 0 0
Sine-L 10 0 0.0001 0 0
Sine-M 10 0 0.001 0 0
Sine-H 10 0 0.01 0 0
Sine-LMH 10 0 0.01 0.001 0.0001
Exp-Sine-LMH 10 0.0005 0.01 0.001 0.0001
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it makes sense to do so, since those converged modes may be the
ones relevant for a given property of the protein. For example, as
mentioned earlier, there is this emerging paradigm in molecular
biology of structure governing dynamics governing function, and
it has been well studied14–18 that the dynamics involved with
function is mostly the one described by the global normal modes.
Therefore, it stands to logic that a trajectory where these modes
have converged, represents a system that has reached equilibrium
in terms of functional dynamics. Yet, in this work several other
metrics were tested, including global dynamical convergence, but
also local, structural and cumulative convergence (Table 1). All of
them showed very good convergence at the longest simulation
times, on the order of the few μs, with the DCs converging a little
later, around 10 μs for most systems. Since the studied proteins
had different sizes, up to 612 residues, we may conclude that
other systems in this range are also likely to find convergence in
their properties, in μs-long MD simulations.

Is this conclusion disagreeing with that of Hu et al.3, that
proteins are non-equilibrium and self-similar for much longer
times than these? In terms of numerical results, comparing the
DCs for PGK (inset panel b in Fig. 4), they appear to be very
similar: the dashed line is the power-law that Hu et al., showed to
fit the behavior of the studied proteins. But when looking with
more detail at the top region of the curve (log(t ⋅ ps−1) ~ 7), it is
seen that it starts to show convergence; plotting only one point, as
done in the cited work, hides this convergence. In conclusion, in
the region of the DC for which there is data, Hu’s and this work’s
curves coincide very well (as they should, since they are both
based on the same data), but the difference appears in the
extrapolation that the curve will continue following the power
law; here we found that convergence starts to appear at the end of
it, so the power law prediction breaks. It should be mentioned
that this power law describes sub-diffusive dynamics; this is
represented by the τc ~ t0.9 dashed line of the Figure. Several
studies3,19–21 have analyzed this phenomenon in protein
dynamics, finding many examples of it, and concluding that the
mechanisms that give rise to sub-diffusivity are varied (fractal
topology of the energy landscape, trapping models, fractional
Brownian motion, etc). The phenomenon is also present in our
study, but it ends in all studied cases–at least in relation to the
inspected properties–and is replaced by a stationary or converged
value of that characteristic.

But our results also appear to contradict other studies. Yang
et al.22 did a single-molecule electron-transfer (ET) experiment to
measure the ACF of the fluorescence-lifetime-fluctuation of a
flavin reductase (Fre) in complex with a flavin adenine
dinucleotide (FAD). They argued that the measurement is
directly related to the ACF of the distance between FAD and

Fre’s Tyr35, resulting in a point in its DC with coordinates
(14.5, 10.5). Also, Min et al.23 measured the distance fluctuations
between a tyrosine in a monoclonal antifluorescein (Anti-FL) and
a fluorescein (FL), via photoinduced ET. The resulting point in a
DC graph is (14.5, 12.0). These points from two different
experimental works, if included in Fig. 4, would fall close to Hu’s
fit, τc ~ t0.9, apparently implying that the two systems are not
converged for times up to the order of a hundred seconds. But it
must be stressed that both studies measure the ACF related to the
distance between a small molecule (FAD or FL) and a specific
tyrosine; this is a local measurement, that takes into account only
a few atoms, and is qualitatively different from the cases
considered in our study like, e.g., the inter-domain distance in
PGK. As previously argued, the latter is a global property, the
kind that is thought to be involved in the functional dynamics of
the protein. As an example of local measurements in one of our
proteins, PGK, panel C in Fig. 6 shows the DC for a few residue-
residue distances: K217-E401 and V98-E118 show no conver-
gence and loosely follow the power-law, while R65-D384 behaves
similarly to the full inter-domain distance, showing good
convergence at the end of the curve. This suggests an intuitive
way of thinking of the local vs global points of view. The inter-
domain distance (or similar magnitudes) are an average of many
individual residue-residue distances, so that the fluctuation of the
average–due to statistical reasons–must be much smaller than the
individual fluctuations. Hence, the points of Yang and Min’s
studies are qualitatively different to the ones presented in this
work, and should not be compared with them, as they represent
different types of mechanisms in the protein.

Long plateaus in DCs strongly suggest full convergence. Is,
then, a DC reaching a plateau a sufficient indication of con-
vergence? In principle, the answer is no; several processes may
have already reached equilibrium but some others, with a much
longer time-scale, may still be developing. In this case, no
plateau–no matter how long–would be enough to declare the
trajectory converged. But modes of large flexible systems, like
biomolecules, have a wide and overlapping distribution of char-
acteristic times, as opposed to discrete and separated values. This
is a consequence of the very large number of vibrational, rota-
tional and torsional modes such a molecule posses (see Walton
and Vanvliet’s analysis2 and references therein). Hence, reaching
a clear (flat) plateau that extends for a significant time, strongly
suggests that the modes related to the considered motion have
already reached their decorrelation time. In Fig. 5, where analy-
tical convergence was fully achieved (by design), this is clearly
seen in the perfectly flat plateaus of the three individual sines and
the exponential, and in the composite sin-HMLfreq function. The

Fig. 6 Some conclusions. a: PGK’s inter-domain distance. b: Dialanine transition rates for dihedral angles ψ and ϕ (left and rigth axes, respectively). c: DC
for several residue-residue distances in PGK.
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other composite function, exp-sin-HMLfreq, does not reach
such perfect convergence until a little later (not shown), but it
can be seen that it is fastly approaching it. This analysis applied
to Fig. 4 indicates that dialanine and GAAC are completely
converged, while the others show a good general convergence,
but still contain some not fully equilibrated processes. All of the
latter systems suggest being close to the full convergence, with
the exception, perhaps, of 3CLpro–and elastase to a lower
degree–which would require an extended simulation to make sure
that last variation finally subsides.

Convergence time is on the order of the period of the slowest
oscillatory motions. Panel A in Fig. 6 shows the inter-domain
separation in PGK (excluding termini residues), where a period of
oscillation of about 12 μs appears to be revealed, once the initial
non-equilibrium fluctuations disappear, around 13 μs. Assuming
a behavior like that showed in section II E, when analyzing the
periodic components of the composite function (Fig. 5), we could
estimate a convergence time, related to this oscillation, of
1.5 ⋅ 12 μs ~ 18 μs which, converting to ps and taking its log,
results in ~ 7, coinciding with the convergence time obtained
from the actual calculation in Fig. 4.

A similar analysis helps to understand dialanine’s DC: Table 4
shows the transition rates between the three main regions,
B= (−100∘, 32∘), M= (32∘, 112∘), and T= (112∘, 260∘), defined in
the ψ domain. From them, it can be expected that the equilibrium
of transitions will be reached once the corresponding three
processes (transitions between regions) converge. And since the
limiting rate is given by the MB/BM transitions–one per
9.9 ns–this implies an average period of 19.8 ns and a conver-
gence time of 29.7 ns, resulting in a log(t.ps−1) of ~ 4.5. Just as in
the previous case, for dialanine too, the convergence time found
via the estimation of the largest period of motion results in the
same order of magnitude as the rigorous calculation represented
in Fig. 4.

Is the given working definition of equilibrium good enough for
an MD simulation of a protein? - theoretical considerations.
The dialanine study allowed us to understand that in the MD
simulation of a small system, where one property such as the
transition rate of ψ is fully converged, there may be another one
that is still very far from it. This is represented in Panel B of
Fig. 6. Notice the curve for ψ is very well converged, and the
fluctuations in about 3/4 of the trajectory (after 7 μs) represent
the minimal possible change (one event, 1/5 vs 1/6). On the other
hand, the fluctuations in ϕ are extremely large, as from the local
maximum at about 12.5 μs, the curve decreases by constant
amounts, since there are no more observed transitions. Some-
thing similar happened with PGK, as previously shown, where the
substructure of cluster 0 is not converged, as it was still changing
at the end of the trajectory, but all other metrics (Fig. 2),
including the DC, are clearly converged.

Both cases, dialanine and PGK, can be easily explained in terms
of the previously discussed concept of the partition function and
the irrelevance of requiring a full exploration of unlikely regions
of the phase space, when what one wants is to explain or predict
properties of the most probable regions. The same conclusion can
be drawn from the concept of ergodicity and the ergodic
hypothesis (of course, since the partition function and the
ensembles that use it are a mathematical formalism that
instantiates the ergodic hypothesis). Paraphrasing J. R. Dorfman
in his lucid explanation of equilibrium24, the ergodic hypothesis
states that a mechanical system’s trajectory in phase-space spends
equal amounts of time, in equal volumes of that space. As a direct
consequence, if a region of the phase-space is hardly reached in a

simulation, it must be due to its small volume, which makes it an
unlikely region, and the values of some property there, thus, are
also going to be unlikely. In other words, any system will spend
most of its time in regions of the phase-space where the values of
the interesting macroscopic properties are extremely close to their
equilibrium values. A reasonable step from here is to think that
practical uses of statistical mechanics only require a soft version of
the ergodic hypothesis, that only applies to the low-dimensional
phase-space that deploys the property under study. Apart from a
few examples (transition rates in dialanine, sub-cluster structure
in PGK, etc.) shown in this work, that support this soft version of
the hypothesis, there exist analytical examples that display the
same behavior of clear convergence of a given property (or in a
given subspace of the phase-space), but not of other properties
(the full space), such as the well-known Baker’s transformation
and the Arnold cat map24.

In summary, following a rigorous physical definition of
equilibrium and considering a full equilibration of the system
could be inappropriate, since valuable information–such as ψ’s
transition rate–would be lost, and in fact, the property may be
perfectly well-defined in that low-dimensional phase-space.
Hence, we posit our initial working definition of equilibrium in
an MD is satisfactory.

Conclusions
How should the working definition of equilibrium be applied?
Given a specific property as a function of time (calculated from a
simulation), one should calculate its DC and inspect it in order to
decide if it ends in a plateau and, if it lasts for a significant time,
conclude that all modes related to the subspace of the property
have already converged. This conclusion is supported by the fact
mentioned in section III (in Long plateaus in DCs strongly suggest
full convergence), where it was discussed that large and flexible
systems, like biomolecules, tend to present wide and overlapping
distributions of characteristic times, so that when a plateau is
found, it is likely that all modes have already reached con-
vergence; and the longer the plateau, the more likely convergence
was achieved.

Bear in mind that this is a reasonable, but not a rigorous,
method. One could imagine a simple system, maybe a small
molecule, where the distribution of decorrelation times could
have some gaps; this seems more unlikely in large complex
molecules, with many degrees of freedom. The decorrelation
curve for GAAC (in Fig. 4) shows a mild counter-example: there
is an apparent plateau between log(t ⋅ ps−1) ~ 5.7 and 6.7. So, if
the simulation lasted until, say, 6.5, one would be led to think that
the property was converged. But having a longer trajectory, a
small jump is observed at 7.0, indicating that the run was not
converged at 6.5. It could be argued that this is, actually, not a
counter-example, since between 5.7 and 6.7 the curve does not
really represent a constant value, so it should not be taken as a
plateau. In any case, this example is presented to show that clearly
establishing convergence could be challenging.

To conclude, this work is suggesting that, from a biological
point of view, where one is mostly interested in the function of a
biomolecule and how it moves through its most likely con-
formations, the full convergence of a MD trajectory is not too
relevant, as many specific properties of the system may be per-
fectly well-converged. For example, average properties, such as
the energy, inter-domain distance or rotation, RMSD, RMSF,
cluster distribution, do not depend much on the small con-
tributions of low probability regions to the partition function, so
they should be well described even if the full phase-space is not
explored. On the contrary, there are properties that measure or
depend directly on those contributions, like the transition rates to
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and from those regions, or any specific property of those areas
(e.g., their energy). Along these lines, our findings show that all
the properties that we studied in different systems, with varying
number of aminoacids, tend to converge for trajectories on the
order of tens of μs (some converge faster, even in the range of ns).
In this sense, proteins appear to show equilibrium behavior for
such time ranges.

Finally, it should be mentioned that the relevance of the stu-
died convergence to in-vivo proteins is not direct and should be
studied further, since they are not only in the presence of a static
thermal bath, like in typical MD simulations, but are constantly
driven by the inter-conversion of chemical, mechanical and
thermal energy25, that can drive the system out of equilibrium.

Methods
Metrics and systems. We chose several metrics of convergence
(Table 1), that test different aspects of the systems’ behavior,
including its global and local dynamical properties, as well as its
structural properties. Notice that none of them explicitly tests
thermodynamic aspects, like free energy, due to the complexity
and long simulation times they require, but also due to the fact
that they typically describe the equilibrium of the entire molecule,
which is not what is needed in the present context. Nevertheless,
thermodynamics appears implicitly in the probability distribu-
tions that we do test.

These metrics were applied to study the convergence of several
proteins with a varying number of aminoacids, with the goal of
probing the relation between the size of a protein and the time it
needs to reach equilibrium. We also tested a few analytical
systems, in order to better comprehend the nature of the
convergent behavior (see Tables 2 and 3).

Molecular dynamics. Five of the systems mentioned in Table 3
(Dialanine, Trp Cage, VHP, Barnase and Elastase) were prepared
and simulated by us, using the AMBER1826 package of MD
simulations. The initial structure of dialanine was built starting
from its sequence, using the tleap program (part of AMBER),
while the others were prepared, also with tleap, but starting from
the structures corresponding to the following PDB codes: 1L2Y,
1YRF, 1BRS and 1PPF, respectively. After parametrizing the
systems with the Amber force field ff14SB27, solvating with TIP3P
water and equilibrating the electric charge with counter-ions, the
following protocol was applied: (1) 5000 cycles of steepest des-
cent, followed by 5000 steps of conjugate gradient minimization;
(2) 1 ns of heating, to 298 K, followed by 20 ns at constant tem-
perature and pressure (1 atm) starting with soft harmonic

restraints (k= 1 kcal ⋅ (mol ⋅Å)−1) on the protein, and slowly
releasing them; (3) 10 ns restraint-free equilibration with constant
temperature and volume (NVT ensemble); (4) several μs in the
same ensemble (see Table 3 for specific lengths). All these
simulations were run using the SHAKE algorithm, with a time-
step of 2 ns, and with periodic boundary conditions with the
Particle Mesh Ewald method, with a cut-off of the sums in direct
space of 12Å. All runs were performed using the GPU version of
AMBER’s PMEMD module.

The trajectories for the other three systems in Table 3 were
taken from other sources: those of GAAC and 3CLpro are publicly
available13,28, while the trajectory of PGK was shared by its
creators3 upon request.

Normal modes. Normal mode analysis (NMA) is a well-known
physical technique that, assuming a system is bound together by
harmonic potentials, allows the extraction of the natural motions
of a system, i.e., a set of independent motions that form an
orthonormal basis of the vector space of physically accessible
conformations of the system. In the last couple of decades, the
method was successfully applied to proteins, under different
versions, like Partial Component Analysis (PCA) extracted from
MD simulations, and Elastic Network Models (ENM) using
coarse-grained models of a protein, and using just the coordinates
of one crystal structure (as opposed to using a whole trajectory
from a simulation).

In this work, we model our systems using a particular version
of ENMs, the Anisotropic Network Model (ANM)29,30, where an
N-residue protein is modeled in a coarse-grained way, each
residue is taken as a single node (or pseudo-atom) located at the
coordinates of the corresponding Cα-atom, and the inter-residue
interactions between them–only up to a cutoff distance of
12Å–are represented by springs. The collective dynamics of the
network is expressed by the normal modes, i.e., the 3N
eigenvectors of the inverse Hessian matrix, H−1, where the
elements of H are given by the second derivatives of the harmonic
ANM potential.

ANM has been tested and used in many different proteins, and
it has been shown to correctly describe their global motions
which, in turn, have a strong effect in the function of the
protein14–18. This has set the basis for an emerging paradigm:
structure encodes dynamics, which encodes function. This suggests
that, in biological terms, it makes sense to evaluate methods by
looking at their resultant global motions. Consequently, we deem
as reasonable to use the ANM results as a proxy of what should be
obtained by other methods (MD) in order for them to be
considered correct (or converged). In particular, a good way to
estimate how much the modes obtained from MD overlap with
those of ANM, is by using the Cumulative Overlap (CO) metric,

COiðjmaxÞ ¼ ∑
jmax ≤ 3N

j¼0
Pj �Mi; ð5Þ

where Pi andMi refer to normal mode i, obtained from PCA of an
MD trajectory, and from ANM applied to a given conformation,
respectively. This metric is used below to check for convergence
of the MD trajectories; for each studied protein we calculate CO
curves for different lengths of the trajectory (such that each one
contains the previous one), expecting to see that, starting at some

Table 3 Protein Srgence.

PROTEINS Dialanine Trp Cage VHP GAAC Barnase Elastase PGK 3CLpro

MD length [μs] 20 22 22 44 15 12 30 100
number of residues 3 20 35 36 199 274 415 612

Table 4 Dialanine’s ψ transition rates.

Transition type TB/BT TM/MT BM/MB

Transition rate [ns−1] 1/0.9 1/7.5 1/9.9

T (top) stands for the ψ > 112∘ region, B (bottom) for ψ < 32∘, and M for the middle region. XY/
YX is the rate for the combined X→ Y and Y→ X transitions. The bounds of the intervals were
chosen so as to cover the three main populated regions in ψ, as observed in the free energy plot
in Fig. 1, while keeping a significant amount of events in each of them (not less than 2%).
Altering these bounds within reasonable limits does not change the order of magnitude of
calculations based on them, shown later.
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particular length, they won’t change anymore; this would indicate
convergence of the CO, and suggest convergence of the trajectory.

RMSF. The well-known Root Mean Square Fluctuation (RMSF)
of a atom i is defined by

RMSFi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N

j¼1 riðt ¼ jÞ � hrii
� �2r

; ð6Þ

where ri represents its position vector, N is the total number of
steps in the trajectory, and 〈〉 is the time average. Just as in the CO
metric, it is expected that, as the MD length increases, the RMSF
curves tend to converge to their equilibrium curve.

Clusters. Clustering is a method that classifies points in a dis-
tribution (e.g., protein micro-configurations) according to how
they differ from each other. In this way, conformations in a
trajectory can be divided into a few clusters, according to their
similarity. In this work we used the hierarchical agglomerative
and the k-means algorithms to perform the analyses.

Auto-correlation functions. The normalized ACF of a given
property, R(t), such as a specific distance, is given by

CðΔ; tÞ ¼ C0ðΔ; tÞ
C0ð0; tÞ

C0ðΔ; tÞ ¼ 1
t � Δ

Z t�Δ

0
δRðt0ÞδRðt0 þ ΔÞdt0;

ð7Þ

where δR(t)= R(t)− 〈R〉, Δ is the lag time, and t is the total time
of the trajectory.

The ACF determines how points in a time series relate, in
average, to those occurring some lag time, Δ, later. Hence, a
function of Δ can be constructed, to show how that relation
evolves with the lag-time. A large value of C(Δ, t), for a fixed t,
indicates a self-similarity between the current and lagged points,
while a small value indicates low correlations between them. In a
dynamical process, like the time evolution of residues in a
protein, it is expected that nearby measurements of a property
will show a slow change; but that is not the case for (time) distant
data points. Therefore, the C(Δ, t) should decrease as Δ increases.
On the contrary, a random process would show no correlation
between data points whether they are close or far away, making
the ACF vanish for all Δ. In this sense, the ACF can be thought of
as a measure of the memory of the process.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Movies of protein trajectories are available as
Supplementary Movies 1–8, and pdb files containing first and last frames of each
simulation are available as Supplementary Data files 1–16.
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