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Short report
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ABSTRACT
Background  Intronic GAA repeat expansions in 
the fibroblast growth factor 14 gene (FGF14) have 
recently been identified as a common cause of ataxia 
with potential phenotypic overlap with RFC1-related 
cerebellar ataxia, neuropathy and vestibular areflexia 
syndrome (CANVAS). Our objective was to report on the 
frequency of intronic FGF14 GAA repeat expansions in 
patients with an unexplained CANVAS-like phenotype.
Methods  We recruited 45 patients negative for 
biallelic RFC1 repeat expansions with a combination 
of cerebellar ataxia plus peripheral neuropathy and/
or bilateral vestibulopathy (BVP), and genotyped the 
FGF14 repeat locus. Phenotypic features of GAA-
FGF14-positive versus GAA-FGF14-negative patients 
were compared.
Results  Frequency of FGF14 GAA repeat 
expansions was 38% (17/45) in the entire cohort, 
38% (5/13) in the subgroup with cerebellar ataxia 
plus polyneuropathy, 43% (9/21) in the subgroup 
with cerebellar ataxia plus BVP and 27% (3/11) in 
patients with all three features. BVP was observed 
in 75% (12/16) of GAA-FGF14-positive patients. 
Polyneuropathy was at most mild and of mixed 
sensorimotor type in six of eight GAA-FGF14-
positive patients. Family history of ataxia (59% vs 
15%; p=0.007) was significantly more frequent 
and permanent cerebellar dysarthria (12% vs 54%; 
p=0.009) significantly less frequent in GAA-FGF14-
positive than in GAA-FGF14-negative patients. Age 
at onset was inversely correlated to the size of the 
repeat expansion (Pearson’s r, −0.67; R2=0.45; 
p=0.0031).
Conclusions  GAA-FGF14-related disease is a common 
cause of cerebellar ataxia with polyneuropathy and/or 
BVP, and should be included in the differential diagnosis 
of RFC1 CANVAS and disease spectrum.

INTRODUCTION
Dominantly inherited intronic GAA repeat 
expansions in the fibroblast growth factor 
14 gene (FGF14) have recently been shown 
to be a common cause of hereditary ataxia 

(GAA-FGF14-related disease; spinocerebellar 
ataxia 27B (MIM: 620 174)).1 2 Initial observa-
tions of cerebellar ataxia and bilateral vestibu-
lopathy (BVP) in a subset of patients carrying an 
FGF14 GAA repeat expansion suggested partial 
phenotypic overlap between GAA-FGF14-
related disease and cerebellar ataxia, neuropathy 
and vestibular areflexia syndrome (CANVAS).1 2 
Biallelic intronic pentanucleotide repeat expan-
sions in the replication factor C subunit 1 
gene (RFC1) are a frequent cause of CANVAS, 
accounting for 70% to 100% of cases in various 
series.3 4 Phenotypic analysis of RFC1-positive 
patients has shown that CANVAS is not a strictly 
delineated disease entity but rather a phenotypic 
cluster occurring along a continuum of vari-
able involvement of the cerebellar, sensory and 
vestibular systems.5–8 While biallelic RFC1 repeat 
expansions are the main cause of CANVAS-
spectrum disease, other causative genes are yet 
to be identified, especially in the subgroup of 
patients with partial features of CANVAS.4 9

Here, we studied the frequency of FGF14 GAA 
repeat expansions in patients with a combination 
of cerebellar ataxia plus peripheral neuropathy and/
or BVP negative for biallelic RFC1 repeat expan-
sions, and report on the phenotypic spectrum of 
GAA-FGF14-positive patients.

METHODS
Patient enrollment
Forty-five index patients with neurodegener-
ative ataxia for which an underlying genetic 
cause had not yet been identified were recruited 
from seven different centres in Europe (France: 
1, Germany: 4, Spain: 1, UK: 1 centre). To 
be eligible for inclusion in the study, patients 
needed to have cerebellar ataxia plus polyneu-
ropathy confirmed by nerve conduction studies 
(excluding focal entrapment neuropathies) and/
or BVP evidenced by reduced bilateral vestibulo-
ocular reflex by bedside head impulse test or 
video head impulse test (vHIT); and negative 
results on screening for biallelic RFC1 repeat 
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expansions. The bedside head impulse test, performed by 
experienced neurologists with expertise in ataxia, was avail-
able in 38 of 45 (84%) patients, the vHIT was available in 
21 of 45 (47%) patients and either test was available in 39 of 
45 (87%) patients. Results of brain MRI and nerve conduc-
tion studies were available for review in 82% (37/45) and 

80% (36/45) of patients, respectively. Deep phenotyping 
was performed through review of medical records and, 
when possible, patient re-evaluation using a standardised 
data sheet for both GAA-FGF14-positive and GAA-FGF14-
negative patients.
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Figure 1  Frequency of the FGF14 GAA repeat expansion, age at onset correlation and clinical features of GAA-FGF14-positive patients. (A) Percentage of 
patients who carried an FGF14 (GAA)≥250 repeat expansion in the subgroups with (1) cerebellar ataxia plus polyneuropathy (CA+PN) (5 of 13 patients), (2) 
cerebellar ataxia plus bilateral vestibulopathy (CA+BVP) (9 of 21) and (3) cerebellar ataxia plus polyneuropathy and bilateral vestibulopathy (CA+PN+ BVP) 
(3 of 11). (B) Inverse correlation between size of the FGF14 repeat expansion and age at disease onset in 17 patients (Pearson’s r, −0.67; R2=0.45; 
p=0.0031). The grey area displays the 95% CI. Simple linear regression fitting (slope, −0.079 and intercept, 89.84) suggests that age at onset decreases by 
about 3.96 years (95% CI: 1.56 to 6.37 years) for every increment of 50 GAA repeats above the pathogenic threshold of 250 repeat units. (C) Frequency of 
individual phenotypic features in 17 GAA-FGF14-positive patients. Numbers in brackets indicate the number of affected patients over the total number of 
patients assessed for this feature. FGF14, fibroblast growth factor 14 gene.
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Genetic screening for RFC1 and FGF14 repeat expansions
Screening for RFC1 repeat expansions was performed as 
described previously.3 The FGF14 repeat locus was geno-
typed by long-range PCR. Repeat sizes were measured by 
capillary electrophoresis of fluorescent long-range PCR 
amplification products, as described previously.10 Results 
of fragment length analysis were confirmed by agarose gel 
electrophoresis of PCR amplification products. Patients who 
had large amplification products by PCR underwent bidi-
rectional repeat-primed PCRs targeting the 5’-end and the 
3’-end of the locus to ascertain the presence of a GAA repeat 
expansion.10 Expansions of at least 250 GAA repeat units 
were considered pathogenic.1 2

Data availability
Individual deidentified patient data may be shared at the request 
of any qualified investigator on reasonable request.

RESULTS
Of the 45 patients enrolled in this study, 17 (38%) carried a 
heterozygous FGF14 (GAA)≥250 repeat expansion (median size 
of expansion, 343 repeat units; range, 258–637 repeat units). 
Repeat expansions were present in 38% of patients with 

cerebellar ataxia plus polyneuropathy (5/13), 43% of patients 
with cerebellar ataxia plus BVP (9/21) and 27% of patients with 
all three features (3/11) (figure 1A). While no patient met the 
proposed diagnostic criteria for clinically probable or definite 
CANVAS, 1 GAA-FGF14-positive and 2 GAA-FGF14-negative 
patients fulfilled the criteria for clinically possible CANVAS.9

Median age of onset was 63 years (range, 28–78 years) in the 
GAA-FGF14-positive cohort. We observed an inverse correla-
tion between the age at onset and the size of the repeat expan-
sion (17 patients; Pearson’s r, −0.67; R2=0.45; p=0.0031) 
(figure 1B). Clinical cerebellar features predominantly included 
gait ataxia (100%), cerebellar oculomotor signs (94%) and 
upper limb ataxia (71%) (figure 1C). Brain MRI of 10 patients 
showed cerebellar atrophy (10/13; 77%), which was limited to 
the vermis in 3 patients and extended to the hemispheres in 7 
patients. The vHIT confirmed bilateral vestibular hypofunction 
in all eight patients in whom it was performed. Chronic cough 
was rarely observed in GAA-FGF14-positive patients (1/10; 
10%). Of the eight patients with polyneuropathy confirmed 
by nerve conduction studies, two had mild length-dependent 
sensory axonal neuropathy (2/8; 25%) and six had mild mixed 
sensorimotor axonal neuropathy (6/8; 75%). Mild distal muscle 
weakness and/or atrophy of the lower extremities was observed 
in three of six patients with sensorimotor neuropathy. Alterna-
tive causes of neuropathy were not identified. The polyneurop-
athy was limited to the lower extremities in five patients and 
was generalised in three patients. None had electrodiagnostic 
evidence of sensory neuronopathy, a hallmark of RFC1-related 
disease.11 Otherwise unexplained urinary urgency was present in 
57% of patients, suggesting that autonomic dysfunction might 
be a feature of GAA-FGF14-related disease. Walking aids were 
used by 50% of patients (8/16) after an average disease duration 
of 10.8 years, whereas use of a wheelchair was rare and occurred 
after long-standing disease (~20 years) in two patients (2/16; 
12%). Treatment with 4-aminopyridine resulted in objective 
and/or subjective improvement in ataxia in four of five (80%) 
patients.

Table 1 presents the baseline characteristics of the GAA-FGF14-
positive and GAA-FGF14-negative cohorts. Comparison of all 
clinical features in the two cohorts revealed significantly less 
frequent permanent cerebellar dysarthria (2/17; 12% vs 14/26; 
54%; Fisher’s exact test p=0.009) and non-significantly more 
frequent episodic symptoms (10/17; 59% vs 7/26; 27%; Fish-
er’s exact test p=0.06) in GAA-FGF14-positive compared with 
GAA-FGF14-negative patients. Family history of ataxia, which 
was positive in 59% of GAA-FGF14-positive patients, was 
significantly more frequent in GAA-FGF14-positive compared 
with GAA-FGF14-negative patients (59% vs 15%; Fisher’s exact 
test, p=0.007).

DISCUSSION
Our study demonstrates that FGF14 GAA repeat expansions are 
common in patients negative for biallelic RFC1 repeat expan-
sions presenting with a combination of cerebellar ataxia plus 
polyneuropathy and/or BVP. Compared with European cohorts 
of late-onset ataxia in which the frequency of GAA-FGF14 ataxia 
is 10–18%,1 2 the frequency of 38% observed in this cohort 
suggests that FGF14 repeat expansions are enriched in patients 
partially fulfilling criteria for CANVAS. These results may 
suggest a combined vulnerability of the cerebellar, peripheral 
nerve and vestibular systems in GAA-FGF14-related disease. Our 
study thus confirms and extends previous findings showing that 
BVP is part of the phenotypic spectrum of GAA-FGF14-related 

Table 1  Characteristics of the GAA-FGF14-positive and GAA-FGF14-
negative patients

GAA-FGF14-positive
(n=17)*

GAA-FGF14-negative
(n=28)†

Male sex—no. (%) 13 (76) 13 (46)

Triplet repeat count of the larger 
allele

343 (258–637) 62 (8–247)

Age at disease onset—years 63 (28–78) 60 (15–80)

Age at onset of gait ataxia—
years

63 (37–78) 61 (30–80)

Disease duration—years 14 (4–24) 8 (2–56)

Age at last examination—years 77 (44–86) 77 (49–91)

Positive family history—no./total 
no. (%)

10/17 (59) 4/26 (15)

Presenting symptoms at disease onset—no. (%)‡

 � Gait unsteadiness 14 (82) 26 (93)

 � Vertigo or dizziness 7 (41) 5 (18)

 � Visual disturbances (diplopia, 
oscillopsia, blurring)

3 (18) 1 (4)

 � Episodic dysarthria 3 (18) 0 (0)

 � Sensory symptoms 0 (0) 2 (7)

Phenotypic classification—no. (%)

 � Cerebellar ataxia plus 
polyneuropathy

5 (29) 8 (29)

 � Cerebellar ataxia plus bilateral 
vestibulopathy

9 (52) 12 (43)

 � Cerebellar ataxia plus 
polyneuropathy and bilateral 
vestibulopathy

3 (18) 8 (29)

Ancillary tests—no. (%)

 � Brain MRI 13 (76) 24 (86)

 � Nerve conduction studies 15 (88) 21 (75)

 � Video head impulse test 8 (47) 13 (46)

Unless specified, data are reported as median (range).
*Data on vestibular system function were missing for one patient.
†Data on vestibular system function were missing for five patients.
‡Patients may present with multiple symptoms at disease onset.
FGF14, fibroblast growth factor 14 gene.
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disease.1 2 Our estimate of the frequency of BVP in GAA-FGF14-
related disease may even represent an underestimate, as only a 
relatively small proportion of patients underwent vHIT. More-
over, given the inclusion criteria of our study, the true preva-
lence of BVP in unselected cohorts of GAA-FGF14-positive 
patients fully assessed with vHIT remains to be established. 
Although the prevalence of vestibular impairment in spinoc-
erebellar ataxias has not been well studied, this feature is not 
specific to GAA-FGF14-related disease, as it is found with vari-
able frequency in other inherited ataxias such as RFC1-related 
disease (87–90%),5 6 Friedreich ataxia (53–55%)12 13 and spinoc-
erebellar ataxia 3 (57–100%).14–16

Despite phenotypic overlap between RFC1-related disease and 
GAA-FGF14-related disease, certain features may help differ-
entiate these disorders. Chronic cough, a prevalent feature in 
RFC1-related disease,5 6 was uncommon in our cohort. While 
motor neuropathy is typically absent or minimal in RFC1-
positive patients,5 11 17 it co-occurred with sensory neuropathy 
in six of eight GAA-FGF14 patients. Our findings also suggest 
that episodic symptoms—which were common in previously 
reported cohorts1—are a frequent feature in GAA-FGF14-
positive patients, which may help to discriminate these patients 
from RFC1-positive patients in whom episodic symptoms are 
rare. Finally, the pattern of inheritance, which is autosomal 
dominant in GAA-FGF14-related disease and autosomal reces-
sive in RFC1-related disease, may help differentiating both disor-
ders, although acknowledging that in comparison with other 
dominant spinocerebellar ataxias18 a substantial proportion of 
patients with GAA-FGF14-related disease present sporadically 
(15–50%, depending on cohorts)1 or with seemingly recessive 
inheritance.

Limitations of this study include its small cohort size and 
the fact that only 29% (13/45) of patients underwent brain 
MRI, nerve conduction studies and vHIT. Since bedside head 
impulse test has a sensitivity of less than 70% for detecting 
vestibulopathy compared with vHIT,19 a systematic assess-
ment of the vestibular function in phenotypically unselected 
GAA-FGF14-positive cohorts using vHIT will be necessary 
to fully define the frequency of vestibular hypofunction in 
GAA-FGF14-related disease in future studies. Larger natural 
history studies are needed to fully define the phenotypic spec-
trum of GAA-FGF14-related disease (for first in-depth pheno-
type and progression study, see Wilke et al20) and to assess its 
frequency in patients meeting the proposed diagnostic criteria 
for clinically definite CANVAS negative for biallelic RFC1 
repeat expansions. Such studies will also be critical to evaluate 
the degree to which polyneuropathy is pathologically related 
to GAA-FGF14-related disease—a late-onset disorder—rather 
than an age-related process, given its high prevalence in the 
general elderly population.21

In conclusion, we showed that FGF14 GAA repeat expansions 
are a common cause of cerebellar ataxia plus polyneuropathy 
and/or BVP in patients negative for biallelic RFC1 repeat expan-
sions, thus expanding the phenotypic spectrum of this recently 
described disorder. Our results further suggest that GAA-FGF14-
related disease should be included in the differential diagnosis of 
RFC1 CANVAS and disease spectrum.
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