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Lung adenocarcinoma (LUAD) is a molecularly heterogeneous disease. In

addition to genomic alterations, cancer transcriptional profiling can be

helpful to tailor cancer treatment and to estimate each patient’s outcome.

Transcriptional activity levels of 50 molecular pathways were inferred in

4573 LUAD patients using Gene Set Variation Analysis (GSVA) method.

Seven LUAD subtypes were defined and independently validated based on

the combined behavior of the studied pathways: AD (adenocarcinoma sub-

type) 1–7. AD1, AD4, and AD5 subtypes were associated with better over-

all survival. AD1 and AD4 subtypes were enriched in epidermal growth

factor receptor (EGFR) mutations, whereas AD2 and AD6 showed higher

tumor protein p53 (TP53) alteration frequencies. AD2 and AD6 subtypes

correlated with higher genome instability, proliferation-related pathway

expression, and specific sensitivity to chemotherapy, based on data from

LUAD cell lines. LUAD subtypes were able to predict immunotherapy

response in addition to CD274 (PD-L1) gene expression and tumor muta-

tional burden (TMB). AD2 and AD4 subtypes were associated with poten-

tial resistance and response to immunotherapy, respectively. Thus, analysis

of transcriptomic data could improve patient stratification beyond geno-

mics and single biomarkers (i.e., PD-L1 and TMB) and may lay the foun-

dation for more personalized treatment avenues, especially in driver-

negative LUAD.
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1. Introduction

Lung cancer is a major global health problem. Accord-

ing to the World Health Organization (WHO), lung

cancer was the leading cause of cancer-related deaths

and the second most frequently diagnosed cancer in

2020 [1]. Regarding histological subtypes, lung adeno-

carcinoma (LUAD) is the most prevalent histological

entity, accounting for almost 55% of the diagnoses [2].

In terms of clinical management, chemotherapy alone

or in combination with immunotherapy is considered

the standard of care for patients with advanced LUAD

not harboring actionable oncogenic alterations [3].

Additionally, recent advances in high-throughput

genomic technologies for molecular profiling have

accelerated the evolution of personalized medicine

[4,5]. For instance, the current management of LUAD

requires molecular testing to detect actionable genomic

alterations predicting clinical benefit to targeted thera-

pies [3]. However, patients with advanced LUAD have

heterogeneous responses and poor survival outcomes

(5-year survival rate = 21%) [6]. These differences

between patient response rates have been attributed to

tumor burden, comorbidities, functional status, or

tumor heterogeneity, such as different immune land-

scapes, activation of signaling pathways, and presence

of different cell types [7]. Thus, improving LUAD

patients’ stratification beyond genomic testing could

move forward precision medicine, but is a major

challenge.

Given the limitations of genomics to capture the

complexity of LUAD and to predict response to spe-

cific treatments, innovative approaches are needed to

improve clinical outcome. In this regard, gene expres-

sion profiling has already been used to further stratify

LUAD into different molecular subtypes [8]. However,

the clinical relevance of those classifications was ques-

tioned due to technical intrinsic limitations, inconsis-

tencies between studies, and the lack of association

with potential therapeutic strategies.

The aim of our study was to develop a novel LUAD

classification based on transcriptomics able to improve

patients’ stratification beyond the current histological

and genomic-based classifications. For this purpose,

we integrated transcriptional profiles from more than

4500 LUAD. To the best of our knowledge, this is the

largest study defining transcriptional LUAD subtypes

[8]. In addition, unlike previous attempts relying on

measuring individual gene expression, we assessed the

activity of a set of well-defined molecular pathways,

which makes it less prone to variability [9,10]. Based

on this, a computational framework was developed to

stratify LUAD into different subtypes based on the

expression of specific signaling pathways. These sub-

types were further characterized at different levels (i.e.,

clinical covariates, genomic features, and immune

landscape). Finally, the analysis of publicly available

large-scale cancer cell line drug screening projects

revealed potential therapeutic vulnerabilities for each

group of LUAD tumors [11–14]. Overall, this classifi-

cation may delineate novel therapeutic strategies

beyond current genomic-based targeted therapies,

which could be especially relevant in the case of

driver-negative LUAD patients.

2. Materials and methods

2.1. Datasets and gene expression data

processing

LUAD transcriptional profiles were obtained from

Gene Expression Omnibus (GEO), Lung Cancer

Explorer, and ArrayExpress public data archives [15–
17]. Subsequent filters were applied to keep human

LUAD tumor samples, exclude datasets with less than

10 samples, and remove those studies using platforms

that do not cover a significant part of the transcrip-

tome (i.e., targeted panels covering a smaller subset of

genes). Overall, 56 datasets were included in this anal-

ysis, constituting more than 4500 LUAD samples

(Table S1, Fig. S1).

Raw transcriptomics data were downloaded when

available and later processed using the recommended

method for each microarray platform (i.e., Affymetrix

(Santa Clara, CA, USA), Agilent (Santa Clara, CA,

USA), and Illumina (San Diego, CA, USA).

2.1.1. Affymetrix platforms data processing

Raw expression data from two-color Affymetrix plat-

forms (Table S1) were processed using robust multiar-

ray average algorithm (RMA) implemented in the

AFFY package version 1.56 available through the BIO-

CONDUCTOR software project (https://bioconductor.org).

Probeset-to-gene mapping was done using BioMart

web services via BIOMART R package version 2.34 [18],

selecting the most expressed probe as representative of

gene expression when multiple mapping probes

occurred to avoid duplicated genes.

2.1.2. Two-color Agilent and CHUGAI platforms data

processing

Raw expression data from two-color Agilent and

CHUGAI platforms (Table S1) were processed using
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minimum background correction method as implemen-

ted in the backgroundCorrection function of the LIMMA

package available in R (https://www.r-project.org/).

Background correction accounts for possible biases

related to non-specific binding or spatial heterogeneity

across the array. The next step in the normalization

process is correcting for dye biases due to the presence

of two colors in the array. This correction was per-

formed using the loess method from the normalize-

WithinArrays function also included in the LIMMA

package. This method returns a matrix of corrected M

and A values using the following expressions:

M ¼ log2 R=Gð Þ ¼ log2 Rð Þ�log2 Gð Þ,

A ¼ 1

2
log2 RGð Þ ¼ 1

2
log2 Rð Þ þ log2 Gð Þð Þ:

The idea is to scale the log-ratios to have the same

median absolute deviation (MAD) across samples. After

normalizing each sample for dye biases, a normalization

step between samples is needed to make them compara-

ble with each other. This is achieved using the quantile

method of the normalizeBetweenArrays function within

the R LIMMA package. Finally, the normalized intensity

values for the sample channel (i.e., red or green depend-

ing on the array design) are retrieved by solving the

above-mentioned expressions, using the already calcu-

lated and normalizedM and A values.

The probe-to-gene annotation was performed using

the R package BIOMART version 2.34. When multiple

probes mapped to the same gene, the most expressed

one was selected to obtain a single representative

probe for each gene. Then, HGNCHELPER package was

used for the identification and correction of obsolete

or invalid gene symbols to harmonize all datasets.

2.1.3. Illumina Beadchip Platforms data processing

Raw expression data from Illumina BeadChip Platforms

(Table S1) were processed using the RMA background

correction method as implemented in the background-

Correction function of the LIMMA package. Secondly,

since this is a single-channel platform there is no need

to perform a within-sample normalization, although

between-sample normalization is still required. In this

case, this is achieved using the quantile normalization

method of the normalizeBetweenArrays function within

the LIMMA package. The quantile approach makes the

distribution of microarray signals the same between all

arrays, making samples comparable between them.

Then, HGNCHELPER package was used for the identifica-

tion and correction of obsolete or invalid gene symbols

to harmonize all datasets.

The probeset-to-gene annotation was performed

using the R package BIOMART version 2.34. When mul-

tiple probes mapped to the same gene, the most

expressed one was selected to obtain a single represen-

tative probe for each gene. Then, HGNCHELPER package

was used for the identification and correction of obso-

lete or invalid gene symbols to harmonize all datasets.

For the case of TCGA-LUAD RNA-seq dataset,

transcripts per million processed data were down-

loaded from TCGA2BED FTP repository [19].

2.2. LUAD consensus pathway transcriptional

subtype definition framework

LUAD consensus transcriptional subtype classification

framework is depicted in Fig. S2. Briefly, Gene Set

Variation Analysis (GSVA) algorithm was used to

evaluate the activity level of the 50 pathways included

in the MSigDB hallmarks collection in each dataset,

using a k-fold approach (k = 5) across 100 iterations

[9,10]. Uniform Manifold Approximation and Projec-

tion (UMAP) dimension reduction method and walk-

trap clustering (Euclidean distance) were subsequently

conducted on the previously obtained GSVA scores

matrices to identify potential LUAD subpopulations

[20]. Summary metrics for each potential LUAD sub-

population were calculated and used to establish final

LUAD consensus subtypes using UMAP and walktrap

method. Finally, tumor samples were assigned to the

subtype to which they had been assigned the majority

of times across the classification framework.

2.3. LUAD molecular subtype characterization

2.3.1. Clinicopathological covariates and overall

survival

Association with clinicopathological variables (e.g., age,

sex, stage, smoking status, and presence/absence genomic

alterations) was assessed using COMPAREGROUPS package

for R (V.4.2.0) [21]. Data regarding the presence/absence

of LUAD oncogenic alterations (e.g., EGFR, KRAS,

ALK, TP53, and STK11) were collected from the clinical

data of the datasets included in this study when available.

The Cox proportional hazards models adjusted for

age, sex, stage, smoking status, and study were used to

test for the impact of our classification on overall sur-

vival (OS) rate.

2.3.2. Genomic characterization

TCGA-LUAD dataset [18] had available somatic alter-

ations data for evaluating tumor mutational burden
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(TMB) and COSMIC v3 mutational signatures [22].

For TMB, the total number of alterations per sample

was assessed excluding synonymous variants. These

values were then divided by the number of megabases

(Mb) covered by the TCGA-LUAD whole-exome

sequencing (WES) panel to obtain the number of

mutations per Mb or TMB. Using somatic single

nucleotide variants (SNV), mutational signatures were

inferred using the R package SIGPROFILEREXTRACTORR

[23].

Copy number alteration (CNA) levels were also

evaluated in the TCGA-LUAD dataset [18]. Finally,

genome instability was assessed using previously calcu-

lated DNA damage repair (DDR) deficiency scores in

the TCGA-LUAD dataset [24].

2.3.3. Impact of the LUAD molecular classification on

the immune landscape and immunotherapy response

The immune infiltrate composition of each LUAD

sample was inferred using GSVA algorithm [10]. Gene

signatures of the 21 evaluated immune fractions were

obtained from a previous study [25]. Due to GSVA

methodological constraints, single-gene signatures were

replaced by their multi-gene counterparts published in

a different study [26]. In addition, we also used specific

cell categories when available, instead of the more

generic supercategory (i.e., M1 macrophages and M2

macrophages instead of the broader macrophages cate-

gory). For each cell type, we calculated the percentage

of enriched tumors. Median GSVA scores for each cell

fraction were used as the cut-off to define whether a

sample is enriched in a specific cell type.

The status of a set of immune checkpoint inhibitors

(ICI), activators (ICA), and T-cell effector and exhaus-

tion markers was also evaluated [27,28]. For each gene

expression dataset, the median gene expression value

of each marker was used as the cut-off point for decid-

ing whether a sample is enriched for a specific immune

biomarker.

The predicted response to immunotherapy treatment

was derived from the Tumor Immune Dysfunction and

Exclusion (TIDE) scores already calculated for

TCGA-LUAD dataset [29]. TIDE-positive scores

indicate that a sample is less likely to respond to

immunotherapy, because of the presence of immuno-

suppressive signals, whereas negative scores indicate

potential response to immune checkpoint treatment

(i.e., anti-CTLA4 and anti-PD-1). Binomial generalized

linear models adjusted for PD-L1 gene expression and

TMB values were used to test the impact of our classi-

fication on potential immunotherapy response.

2.4. Consensus transcriptional subtype

independent validation

Subtyping of new samples in the CPTAC-3

validation cohort was inferred using the predict func-

tion of the umap R package version 0.2.7.0 and a k-

nearest-neighbors approximation [20,30]. In summary,

for each sample we obtained GSVA scores of the

same 50 molecular pathways used to establish the

original classification of LUAD tumors. This step

was performed following the same steps previously

described for the LUAD consensus pathway tran-

scriptional subtype definition (fivefold, 100 iterations).

Then, for each iteration, these GSVA scores were

passed as an input to the predict function that pro-

duces 2D coordinates to map new samples onto the

consensus map of LUAD tumors. New samples’ sub-

type was predicted based on the most frequent label

of the closest neighbors in the original classification.

Therefore, after 100 iterations, each validation sample

had 100 putative group assignations. Finally, samples

were allocated to the AD subtype to which they had

been assigned the majority of times throughout the

classification process.

2.5. Identification of potential therapeutic

vulnerabilities

Drug sensitivity data from three large pharmacoge-

nomics studies were integrated to identify potential

therapeutic vulnerabilities for each subtype using

PHARMACOGX BIOCONDUCTOR/R package [31]. First,

LUAD cancer cell lines (LUAD-CCL) were classified

based on the primary tumor’s classification using the

predict function within umap R package as previously

described for the cancer cell lines classification. Area

above the curve (AAC) sensitivity measures for each

drug and cell line were used to identify potential ther-

apeutic vulnerabilities for the different subtypes.

Importantly, PharmacoGx AAC values were normal-

ized by the concentration range of the experiment in

each study and take values between [0, 1]. Thus, the

greater the AAC the more effective is a drug against

a specific cell line. Subtypes were considered as

potentially sensitive to the treatment if the average

AAC value for the cell lines classified within a certain

group was greater than the mean AAC plus 2 stan-

dard deviations for the drugs assessed in at least 2

out of the 3 pharmacogenomics studies. Also, average

AACs were only calculated if the treatment had been

tested in at least 2 different cell lines within a sub-

type and study.
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3. Results

3.1. Consensus classification based on

expression of 50 landmark molecular pathways

yielded seven transcriptional LUAD subtypes

GSVA was conducted on more than 4500 LUAD in

order to establish a consensus transcriptional classifica-

tion based on the activity levels of 50 signaling path-

ways (see Section 2; Table S1) [9,10]. Using this

approach, we identified seven LUAD transcriptional-

based subtypes, labeled as AD1-7 (Fig. 1A). These

subtypes were not evenly distributed throughout the

whole set of tumors analyzed in this study (Fig. 2B).

The most represented subtype was AD5 accounting

for 20.95% of the tumors, whereas AD7 represented

only 2.86% of the tumors.

Based on the relative activity of the signaling molecu-

lar pathways, each group displayed a specific transcrip-

tional fingerprint (Fig. 1C, Fig. S3). A summary of the

relatively upregulated and downregulated pathways

within each LUAD subtype is depicted in Table 1.

3.2. LUAD transcriptional subtypes are

correlated with clinicopathological covariates,

distinct genomic profile, and overall survival

We evaluated the correlation of these subgroups with

clinicopathological characteristics and whether they

are represented across all the datasets included in the

study (Table 2, Table S2). We observed a significant

association with all evaluated covariates. Subtypes

were represented in the different studies, although

some subtypes may be more represented and underrep-

resented in certain datasets, most likely due to intrinsic

biases of retrospective studies.

We also evaluated the association of the LUAD

subtypes with the presence of clinically relevant driver

oncogenic alterations (Table 2). EGFR mutations

occurred more frequently in AD1, AD4, and AD7

groups, while TP53 mutations were more common in

AD2 and AD6 subtypes, and STK11 alterations were

enriched in AD1 and AD2 subtypes. KRAS mutations

and ALK rearrangements were not correlated with any

of the subgroups.

We also assessed whether this classification was

associated with overall survival (OS) (Fig. 2, Fig. S4).

AD1, AD4, and AD5 patients were associated with

longer OS whereas, overall, AD2, AD3, AD6, and

AD7 showed worse survival outcomes. This analysis

was adjusted for the following covariates: age, gender,

tumor stage, smoking history, and dataset.

3.3. LUAD pathway transcriptional profiling-

based subtypes further subdivide previous

mRNA-based subtypes

We performed a comparison with the previous LUAD

mRNA-based consensus classification (bronchioid,

squamoid, and magnoid) first described by Hayes

et al. and later adopted by Wilkerson et al. and the

TCGA for further exploration [18,32,33] (Fig. S5).

Bronchioid mRNA subtype better aligned with AD1,

AD4, and AD5 subtypes, all of them showing lower

expression of proliferation-related pathways (Fig. 1C).

AD1, AD4, and AD5 had consistently better OS as

described for bronchioid tumors, when compared to

squamoid or magnoid subtypes. Also, bronchioid sub-

type was enriched for EGFR mutations, which was

also observed in AD1 and AD4 subtypes. Squamoid

mRNA subtypes were for the most part associated

with AD3, AD5, and AD6 subtypes, all of them show-

ing higher expression of immune-related functions

(Fig. 1C). This correlates with the higher immune cells

infiltration previously found for squamoid tumors [34].

Moreover, AD6 was found to be enriched in TP53

mutations; a trait also described for squamoid mRNA

subtype. Finally, magnoid subtype mainly overlapped

with AD2 proliferative subtype, which was enriched

for TP53/STK11 mutations (Fig. 1C, Table 2). Over-

all, these results demonstrate concordance among both

LUAD classifications, but previous mRNA-based sub-

types were further subdivided by using our approach.

3.4. LUAD transcriptional subtypes were also

correlated with tumor mutational burden and

DNA damage

Using the TCGA-LUAD dataset, LUAD subtypes

were further characterized at the genomic level [18].

First, using whole-exome sequencing data we evaluated

potential differences in terms of TMB and mutational

signatures included in the COSMIC v3 collection

(Fig. 3A,B) [22]. TMB significantly differed among

LUAD transcriptional subtypes (Fig. 3A). AD2 and

AD6, which are also enriched for TP53 mutations,

had significantly higher TMB values when compared

to the rest of subtypes, except for AD7 (Table S3).

Concerning COSMIC mutational signatures, tobacco

and clock-like signatures were overrepresented across

LUAD subtypes (Fig. 3B). Notably, our results

showed a significant association between the subtypes

and the prevalence of mutational signatures SBS1

(clock-like), SBS4 (tobacco), and SBS13 (APOBEC

activity) (Table S4).
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Using TCGA-LUAD data [18], copy number alter-

ations (i.e., amplifications or deletions) were more

common in AD2 and AD6 subtypes compared to

the rest of the subtypes, except for AD7 (Fig. 3C,

Table S5). We also assessed the level of genomic

instability and DNA damage repair (DDR) capacity

according to these subgroups (Fig. 3D). Again, AD2

and AD6 samples showed significantly higher DDR

deficiency scores than the rest of subtypes

(Table S6).

Fig. 1. LUAD subtype pathway transcriptional landscape. (A) LUAD consensus map of pathway transcriptional profiling-based subpopula-

tions. Each dot represents the summary centroid of the different subpopulations identified during the classification process. Using UMAP

and walktrap clustering method with Euclidean distance on these centroids, seven different consensus groups, represented by different

colors, were identified based on the joint behavior of the 50 studied molecular pathways. (B) Barplots representing the distribution of LUAD

tumors across the seven transcriptional subtypes. (C) Heatmap representing relative activity levels (GSVA scores) of the 50 studied path-

ways (rows) in each of the 4573 LUAD tumor samples (columns) that were assigned to a consensus subtype. Red colors indicate higher rel-

ative activity of a pathway in a certain sample, whereas blue colors indicate lower relative activity of a pathway in a certain sample.
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Fig. 2. Overall survival by LUAD

subtype. Kaplan–Meier curves of

each of the identified pathway

transcriptional profiling-based LUAD

groups. Hazard ratios (HR) and

95% confidence intervals (95% CI)

come from a Cox proportional

hazards model adjusted for age,

sex, stage, smoking history, and

dataset. For this analysis, we used

the subset of datasets with

available survival data and complete

covariates information for the Cox

proportional hazards model (n = 10

datasets, n = 1515 samples).
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Table 1. Molecular pathway landscape across LUAD subtypes.

Consensus subtype Upregulated pathways Downregulated pathways

AD1 Metabolic pathways Angiogenesis

Epithelial–mesenchymal transition

Immune-related pathways

Cell cycle-related pathways

PI3K-AKT–MTOR signaling

AD2 DNA repair

Oxidative phosphorylation

Cell cycle-related pathways

Angiogenesis

Epithelial–mesenchymal transition

Immune-related pathways

Apoptosis

TGF-B signaling

Hedgehog/Notch signaling

IL2-STAT5 signaling

AD3 Angiogenesis

Epithelial–mesenchymal transition

Immune-related pathways

Metabolic pathways

Apoptosis

Hypoxia

Protein secretion

TP53 pathway

KRAS signaling

IL2-STAT5 signaling

TNFA via NFKB signaling

PI3K-AKT–MTOR signaling

TGF-B signaling

Notch signaling

MTORC1 signaling

AD4 DNA repair

Metabolic pathways

Apoptosis

Hypoxia

Protein secretion

Cell cycle-related pathways

KRAS signaling

PI3K-AKT–MTOR signaling

TGF-B signaling

MTORC1 signaling

Unfolded protein response

AD5 Immune system-related pathways

Apoptosis

TP53 pathway

IL2-STAT5 signaling

TNFA via NFKB signaling

Hedgehog signaling

DNA repair

Metabolic pathways

Cell cycle-related pathways

Unfolded protein response

AD6 DNA repair

Interferon-gamma

Interferon alpha

Metabolic pathways

Cell cycle-related pathways

PI3K-AKT–MTOR signaling

MTORC1 signaling

Unfolded protein response

Hedgehog signaling

WNT B-catenin signaling

AD7 Estrogen response

Notch signaling
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3.5. LUAD molecular subtypes had distinct

immune cells infiltration patterns and were

associated with different immunotherapy

responses

The immune infiltrate composition of each sample was

quantified by applying GSVA on 21 immune cell-

specific gene signatures (Fig. 4A, Fig. S6) [25]. On

the one hand, AD3 and AD5 tumors displayed higher

infiltration of most immune cells, including both

immune active and immunosuppressive categories.

Nevertheless, there were also some distinctive features

between AD3 and AD5 LUAD subtypes. For instance,

AD3 subtype comprised a higher percentage of tumors

with high Th2 infiltration when compared to AD5.

AD4 subtype was preferentially infiltrated by innate

immune cells (i.e., NK cells, neutrophils, eosinophils,

and mast cells) and some specific T-cell populations

(i.e., follicular T helper cells, T effector memory cells,

T effector memory cells, T gamma-delta cells, and T

helper 17). However, in AD4 subtype the presence of

immunosuppressive cells (i.e., macrophages M2 and T

regulatory cells) was lower than in other highly infil-

trated subtypes (i.e., AD3, AD5, and AD6). AD6

tumors appeared to be more frequently enriched by T-

cell populations, both with cytotoxic and immunosup-

pressive roles (i.e., cytotoxic T cells, T regulatory, T

helper 1, and T helper 2). AD6 subtype was also com-

monly infiltrated by other immunosuppressive cells

(i.e., macrophages) and other innate cells (i.e., active

dendritic cells and CD56dim NK cells). Finally, AD2

was, overall, the least infiltrated subtype compatible

with an immune desert phenotype.

Regarding immune checkpoint and T-cell expression

markers, AD3, AD5, and AD6 were also enriched in

tumors showing higher expression levels of a wide

variety of the evaluated biomarkers, followed by AD4

(Fig. 4B, Fig. S7).

Finally, we also evaluated the utility of our LUAD

subtypes to predict the predisposition to immunotherapy

Table 2. Correlation of clinicopathological variables with LUAD subtypes. The number of samples with available information in each case is

depicted in the N column. MUT, mutated; WT, wildtype.

N

AD1 (%) AD2 (%) AD3 (%) AD4 (%) AD5 (%) AD6 (%) AD7 (%)

PN = 766 N = 851 N = 473 N = 598 N = 952 N = 774 N = 129

Sex, N (%) 3906 < 0.001

M 324 (50.47) 427 (56.86) 217 (51.91) 223 (42.72) 356 (43.41) 331 (50.46) 48 (49.48)

F 318 (49.53) 324 (43.14) 201 (48.09) 299 (57.28) 464 (56.59) 325 (49.54) 49 (50.52)

Age, N (%) 3609 < 0.001

≤ 50 55 (9.18) 77 (11.16) 33 (8.62) 34 (7.02) 61 (8.07) 61 (10.13) 14 (14.74)

> 50–65 245 (40.90) 325 (47.10) 148 (38.64) 198 (40.91) 282 (37.30) 271 (45.02) 41 (43.16)

> 65 299 (49.92) 288 (41.74) 202 (52.74) 252 (52.07) 413 (54.63) 270 (44.85) 40 (42.11)

Stage, N (%) 3128 0.005

Early-stage (I–II) 472 (86.61) 493 (80.42) 260 (81.00) 319 (85.07) 578 (85.50) 408 (79.53) 67 (78.82)

Late-stage (III–IV) 73 (13.39) 120 (19.58) 61 (19.00) 56 (14.93) 98 (14.50) 105 (20.47) 18 (21.18)

Smoking history, N (%) 2788 < 0.001

Never smoker 152 (30.83) 64 (12.19) 56 (20.29) 99 (26.83) 164 (27.89) 81 (17.16) 16 (24.62)

Smoker 341 (69.17) 461 (87.81) 220 (79.71) 270 (73.17) 424 (72.11) 391 (82.84) 49 (75.38)

EGFR mutation, N (%) 1537 < 0.001

WT 185 (62.93) 231 (79.66) 105 (76.09) 111 (63.43) 248 (71.06) 195 (77.38) 24 (61.54)

MUT 109 (37.07) 59 (20.34) 33 (23.91) 64 (36.57) 101 (28.94) 57 (22.62) 15 (38.46)

KRAS mutation, N (%) 1360 0.239

WT 184 (72.73) 173 (70.90) 79 (63.71) 124 (78.48) 225 (72.12) 169 (73.48) 28 (71.79)

MUT 69 (27.27) 71 (29.10) 45 (36.29) 34 (21.52) 87 (27.88) 61 (26.52) 11 (28.21)

ALK translocation, N (%) 456 0.064

WT 99 (94.29) 67 (83.75) 24 (85.71) 52 (85.25) 83 (91.21) 76 (96.20) 10 (83.33)

MUT 6 (5.71) 13 (16.25) 4 (14.29) 9 (14.75) 8 (8.79) 3 (3.80) 2 (16.67)

TP53 mutation, N (%) 849 < 0.001

WT 128 (85.91) 83 (50.30) 65 (78.31) 69 (75.00) 171 (85.93) 80 (56.34) 14 (73.68)

MUT 21 (14.09) 82 (49.70) 18 (21.69) 23 (25.00) 28 (14.07) 62 (43.66) 5 (26.32)

STK11 mutation, N (%) 598 < 0.001

WT 80 (75.47) 87 (73.11) 53 (92.98) 63 (92.65) 128 (91.43) 87 (91.58) 12 (92.31)

MUT 26 (24.53) 32 (26.89) 4 (7.02) 5 (7.35) 12 (8.57) 8 (8.42) 1 (7.69)
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response beyond PD-L1 and TMB biomarkers using pre-

viously calculated TIDE scores in the TCGA-LUAD

dataset [29]. We used a likelihood ratio test to compare

two binomial generalized linear models (GLM) predict-

ing immunotherapy response (i.e., yes or no). The first

GLM included PD-L1 gene expression (i.e., low and high

based on median cut-off) and TMB values as indepen-

dent variables, and the second GLM was identical but

also considering LUAD subtype as a predictor. Results

showed that LUAD subtype further contributes to

predict the probability of immunotherapy response

(P = 0.0003). Moreover, and although not used as a

stratification criterion in NSCLC in clinical trials or in

the clinical practice, we also added PD-1 expression (i.e.,

low and high based on median cut-off) as a proxy of T-

cell infiltration to the model. Again, the results showed

that our classification further contributes to predict the

probability of immunotherapy response (P < 0.001).

Given this outcome, for each subtype, we assessed the

likelihood of immunotherapy response when compared

AD1 AD2 AD3 AD4 AD5 AD6 AD7

SBS1 (clock−like)

SBS2 (APOBEC activity)

SBS4 (Tobacco smoking)

SBS5 (clock−like)

SBS13 (APOBEC activity)

SBS15 (MMR deficiency)
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% samples with the signature

0

50

100

(A) (B)
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Fig. 3. Genomic characterization in the TCGA-LUAD set. (A) Tumor mutational burden (TMB) across LUAD consensus subtypes. Each dot

represents the TMB value for a specific sample. The black segment represents the median TMB value for each LUAD subtype. The horizon-

tal dotted line represents 10 mutations�Mb�1 TMB value, which is a common cut-off for designating TMB high or low. Kruskal–Wallis test

was used to assess potential differences regarding TMB between LUAD subtypes. P value was corrected using the false discovery rate

(FDR) multiple-comparison correction method. (B) Heatmap representing the percentage of positive samples for each specific COSMIC

mutational signature (rows) in each LUAD subtype (columns). Samples were designated as positive if they harbored at least one mutation

associated with a certain mutational signature. (C) Boxplots of the copy number alterations burden across LUAD subtypes. Each dot repre-

sents the number of altered genes per sample. Kruskal–Wallis test was used to assess potential differences regarding the number of copy

number altered genes between LUAD subtypes. P value was corrected using the false discovery rate (FDR) multiple-comparison correction

method. (D) Boxplots of the DNA damage repair (DDR) deficiency score distribution across LUAD subgroups. Each dot represents the DDR

score per sample. Kruskal–Wallis test was used to assess potential differences regarding DDR scores between LUAD subtypes. P value

was corrected using the false discovery rate (FDR) multiple-comparison correction method. For A–D, only the TCGA-LUAD dataset was used

as it is the only one with associated transcriptomics and genomics data. Number of samples of each subtype are: AD1: 90, AD2: 114, AD3:

34, AD4: 66, AD5: 113, AD6: 85, AD7: 12.
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to the tumors in any other subtypes (Fig. 4C). Tumors

within AD4 subtype were found to be 2.9 times more

likely to respond to immunotherapy compared to the

tumors classified in any other subtype (34.4% predicted

responders in AD4 [n = 64] vs 15.2% in other subtypes

[n = 422]). Despite being among the most infiltrated sub-

types and showing high PD-L1 gene expression (Fig. 4A,

B), only 12.5% of AD3 tumors were predicted as poten-

tial responders. Also, in correlation with its immune

excluded phenotype, AD2 tumors were 80% less likely to

respond to immunotherapy than other subtypes (4.76%

predicted responders in AD2 [n = 105] vs 21.2% in other

subtypes [n = 381]).

3.6. LUAD consensus subtype independent

validation

We conducted an independent validation of the

LUAD subtypes using CPTAC-3 LUAD dataset [30].

The activity level of 50 molecular pathways was
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Fig. 4. Immune characterization

and association with

immunotherapy response. (A)

Heatmap representing the

percentage of samples showing

high relative infiltration of 21

evaluated immune cell types.

Median immune cell abundance

GSVA score values were used as a

cut-off to designate if a sample is

enriched for a specific immune cell.

Different immune cell categories

are represented with different

colors on the left side of the

heatmap. (B) Heatmap representing

the percentage of samples of

samples with high expression of a

set of immune-related biomarkers.

Median gene expression values for

each gene in each gene expression

dataset were used as a cut-off to

designate if a sample is enriched

for a specific biomarker. Different

immune marker categories are

represented with different colors

on the left side of the heatmap. (C)

Forest plot showing the odds

ratios, confidence intervals, and

FDR-adjusted P value for

immunotherapy response in each

LUAD subtype when compared to

all other subtypes. Odds ratio for

AD7 subtype could not be

calculated as 0 patients were

predicted as potential responders in

this subtype. A and B analysis

were performed considering all

gene expression datasets

(n = 4573 LUAD samples). For C,

we used pre-computed TIDE

scores for the TCGA-LUAD dataset

(n = 486, AD1: 86, AD2: 105, AD3:

32 AD4: 64, AD5: 106, AD6: 81,

AD7: 12).
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measured and mapped in 111 LUAD which were clas-

sified based on a k-nearest-neighbors algorithm

(Fig. 5A). All seven subtypes were predicted in this

independent dataset, confirming the robustness of the

classification. Moreover, the pathway transcriptional

footprint of each subtype is conserved between the

original and the validation datasets (Fig. S8). To fur-

ther prove the validity of the predictions, we explored

whether the association between the LUAD subtype

and copy number alterations, and TMB is conserved

in the validation set (Fig. 5B,C). Notably, subtype

TMB and copy number alterations rate are highly con-

cordant between the original and validation sets, con-

firming that previously found associations at the

genomic level are maintained (Figs 3A,C and 5B,C).

3.7. Analysis of drug sensitivity in in vitro data

revealed potential therapeutic vulnerabilities for

the subtypes

Data from three large-scale pharmacogenomics studies

conducted on cancer cell lines were integrated to

explore potential therapeutic vulnerabilities in LUAD.

First, LUAD-CCLs were classified according to the

primary tumors’ classification, and then, we assessed

the impact of our classification on the response to spe-

cific compounds (Fig. 6, Fig. S9).

LUAD-CCL subtypes were considered potentially

sensitive to a specific drug whenever average AAC

values were greater than the mean plus 2 standard devia-

tions of all drugs AAC values in at least 2 out of the 3

evaluated studies. Out of 239 evaluated drugs (i.e., num-

ber of drugs tested in at least two studies), only 5 were

found to be consistently effective (i.e., AAC values

above threshold) in at least two studies for some of the

subtypes and not the others. Overall, cells assigned to

AD2 showed potential sensitivity to vincristine and gem-

citabine chemotherapies, which correlates with its prolif-

erative nature. Also, cell lines classified in AD3, AD6,

and AD7 subtypes, also showing high cell cycle activity,

were found to be potentially sensitive to gemcitabine

treatment. Interestingly, AZD7762 CHK1 inhibitor

could be potentially suitable for AD2 cell lines, which

correlates with the higher genome instability described

for AD2 subtype. Despite a lower cycling nature of sub-

type AD1 and AD4, cell lines classified within these sub-

types appeared to be potentially sensitive to dinaciclib,

based on these data.

4. Discussion

In this study, we integrated the transcriptional profiles

of more than 4500 LUAD, and based on the activity

levels of a set of 50 molecular pathways, we were able

to identify seven LUAD molecular subtypes. Impor-

tantly, the number of samples included in this study

further exceeds that of previous studies, covering the

largest part of the molecular diversity of LUAD [8].

This classification was associated with survival out-

comes and was correlated with relevant clinical charac-

teristics. Besides, at the genomic level, LUAD

transcriptional subtypes were associated with the pres-

ence of oncogenic driver alterations, mutational signa-

tures, CNA burden, and DDR capacity. These results

support the previously described transcriptional het-

erogeneity that exists within LUAD histological entity

[8]. Furthermore, the integration of drug sensitivity

data from three large pharmacogenomics studies unra-

veled potential therapeutic vulnerabilities for the sub-

types. Finally, the transcriptional subtypes showed

distinct patterns in terms of immune cells infiltration

and immune-related biomarkers expression and were

able to predict immune response in addition to PD-L1

gene expression and TMB.

Since early 2000s, there have been several efforts to

define clinically relevant LUAD transcriptional sub-

types, which resulted in various different classifica-

tions [8,30,35,36]. Despite all these studies, LUAD

subtypes have never been translated into the clinical

setting. Reasons for this include intrinsic technical

and analytical limitations, such as low overlap

between the gene signatures, probably due to intrinsic

technical and biological variability of individual gene

expression levels. In our work, we focused on the

activity levels of a set of established molecular path-

ways rather than in the expression of individual

genes. This approach is likely to reduce the effect of

the stochastic sources of variability to which multiple

single-gene measures are subjected [9]. Moreover, the

method used for measuring the pathway activity

(GSVA algorithm) is able to overcome batch effects

compared with other deconvolution methods [10,37].

Importantly, we were able to validate our classifica-

tion framework in an independent set of samples [30].

This approach would therefore be capable to accu-

rately classify new prospective samples into one of

the specific transcriptional subtypes.

Also, we evaluated the correspondence between the

widely accepted Hayes et al. mRNA subtypes and

the present classification [21,32,33]. In summary, we

found that, in most cases, our pathway transcriptional

profiling-based subtypes further stratified the ones pro-

posed by Hayes et al., based on individual genes

expression, suggesting a higher resolution of our classi-

fication to deal with the molecular heterogeneity that

exists within LUAD.
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The lack of association of previously described

LUAD intrinsic subtypes with available therapeutic

strategies prevented their clinical use. We tried to

overcome this limitation by integrating drug sensitivity

data from in vitro pharmacogenomics studies [31].

These databases have greater drug coverage compared
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Fig. 5. LUAD pathway transcriptional profiling-based classification independent validation. (A) New samples from the CPTAC-3 LUAD dataset

were mapped on the previously established LUAD classification. New samples’ subtype status was decided based on the most frequent

label of the 51 nearest neighbors of the original classification. Colored circles represent samples used in the original set, whereas triangles

represent new CPTAC-3 validation set samples (n = 105). (B) Boxplot representing tumor mutational burden (TMB) values across newly

classified CPTAC-3 LUAD samples. Each dot represents the TMB value per sample (AD1:14, AD2: 18, AD3: 10, AD4: 17, AD5: 16, AD6: 17,

AD7: 13). Kruskal–Wallis test was used to assess potential differences regarding TMB between LUAD subtypes. P value was corrected

using the false discovery rate (FDR) multiple-comparison correction method. (C) Boxplot representing copy number burden across newly

classified CPTAC-3 LUAD samples. Each dot represents the number of altered genes per sample (AD1:14, AD2: 18, AD3: 10, AD4: 17,

AD5: 16, AD6: 17, AD7: 13). Kruskal–Wallis test was used to assess potential differences regarding the number of copy number altered
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with other available ones such as CMap, which has

been used for similar purposes [35]. Although signifi-

cant discrepancies can exist between drug response

results obtained from cancer cell lines and clinical

response in patients, we were able to identify some

potential drug candidates for the different LUAD sub-

types, in line with their molecular characteristics. In

this way, chemotherapy alone, or combined with

immunotherapy, is the cornerstone for patients with

driver-negative LUAD. However, clinical responses

upon chemotherapy regimens are highly heterogeneous

and underscore the need for improving patient selec-

tion [38]. In our work, we observed that AD2, AD3,

AD6, and AD7 cell lines might benefit from vincristine

and gemcitabine chemotherapies. Moreover, cancer

cells classified as AD2 showed potential sensitivity to

AZD7762 CHK1 inhibitor, which correlates with the

higher genome instability seen in this subtype.

Genomic profiling is crucial in LUAD tumors to

guide the most appropriate treatment based on the

detection of actionable oncogenic alterations. In fact,

this study does not intend to replace the current classi-

fication based on genomic profiling. However, there is

a non-negligible percentage of patients lacking tracta-

ble genomic alterations, and even patients with onco-

genic drivers show heterogeneous responses to targeted

therapies for reasons that remain unclear, and all

patients will eventually develop treatment resistance

[39]. Our results highlight the significant heterogeneity

of this disease as patients with the same mutational

event were found to be distributed across all subtypes,

being KRAS mutant LUAD the most heterogeneous

entity. In addition to the role of concurrent genomic

alterations, differences in the activation of transcrip-

tional pathways could explain that patients harboring

identical driver alterations might have distinct clinical

outcomes upon targeted therapy. Conversely, the fact

that tumors with different driver alterations coexist in

the same transcriptional subtype suggests that different

oncogenic mutations may give rise to similar transcrip-

tional phenotypes, which could benefit from similar

combinatorial strategies. Therefore, the implementa-

tion of new methodologies beyond genomic testing,

such as those based on gene expression, could help to

deliver more precise and innovative treatments

to patients with LUAD, specially in those patients

without actionable genomic alterations or that have

progressed frontline chemoimmunotherapy.

Immunotherapy alone or in combination with

chemotherapy has become the standard of care for

driver-negative metastatic LUAD [3]. However, dura-

ble clinical benefit is observed only in a reduced frac-

tion of patients (< 20%) [40]. Previous studies have

shown that TMB or PD-L1 expression cannot accu-

rately predict long-term benefit in all patients [41]. The

improvement of patient selection and the definition of

rational combinations are therefore an unmet clinical

need. Transcriptomic data could provide clinically
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relevant information beyond individual markers. In

this regard, our results showed that AD2, despite hav-

ing high TMB was an immune cold subtype, and was

80% less likely to respond to immunotherapy than

tumors classified in other subtypes. This result is con-

cordant with the findings of a previous study that also

identified a LUAD subtype with high TMB but no

apparent immune infiltration [35]. Overall, these results

underline the limitation of TMB to predict potential

response to immunotherapy in LUAD [42]. We also

found that although most patients classified in AD3

subtype showed higher cytotoxic T-cell infiltration and

PD-L1 gene overexpression (CD274), they were also

unlikely to respond to ICI therapy according to TIDE

scores (12% patients were classified as responders in

AD3) [43]. AD3 tumors not only co-express a wide

variety of immune checkpoint inhibitors and T-cell

exhaustion markers but also showed high infiltration

of immunosuppressive cells, such as M2 macrophages

and T regulatory cells, which could contribute to

intrinsic resistance to immunotherapy. Thus,

macrophage-targeted therapy could be a potential

solution for improving AD3 tumor response [44]. Also,

AD3 shows relatively high TGF-β signaling activity,

which has previously been associated with lack of

response to immunotherapy [45]. For this reason,

rational combinations of ICI and immune cell-specific

targeted therapies could probably improve clinical out-

comes in solid tumors. However, most clinical trials

are not yet selecting patients based on the immune

contexture [46,47]. Tumors classified in AD4 subtype

were 2.9 times more likely to respond to immunother-

apy than tumors classified in other subtypes. These

tumors showed infiltration of cytotoxic T cells and

other cells involved in tumor destruction (i.e., B cells,

NK cells, diverse types of T cells, etc.) and lower infil-

tration of immunosuppressive cells (e.g., T regulatory

cells, macrophages M2, etc.), potentially constituting a

less immune evasive microenvironment. Although fur-

ther validation through other techniques that provide

more cellular resolution (i.e., scRNA-seq) would be

needed, these results underscore the need to compre-

hensively characterize the immune contexture, along

with conventional single biomarkers (i.e., PD-L1 and

TMB), to perform an accurate patient stratification

and deliver tailored and effective treatment strategies

for advanced LUAD.

Despite all the obtained results, our study has some

intrinsic limitations that must be acknowledged. This

is a retrospective analysis of multiple microarray and

RNA-seq gene expression studies, which rely on fresh

tissue biopsies. Thus, further research is needed

towards the implementation of this classification in

formalin-fixed paraffin-embedded samples, which are

routinely available in the clinical setting. For instance,

we believe that with the incorporation of new profiling

technologies, such as HTG EdgeSeq, which allows

whole-transcriptome gene expression profiling in FFPE

samples, it will be possible to evaluate the clinical rele-

vance of our framework using clinical samples. More-

over, although later validated in the CPTAC-3 dataset,

results regarding the association with TMB and CNA

were based exclusively on the TCGA-LUAD dataset,

as the rest of the studies did not have associated WES

or CNA data. Most studies included patients who

were surgically resected and did not receive systemic

therapy, or this information was not available. For

instance, this is particularly relevant for the results

regarding immunotherapy response predictions, which

should be further validated in retrospective and pro-

spective studies of patients with LUAD treated with

ICI. Regarding cancer cell lines drug sensitivity results,

potential drug candidates are based on in vitro data

and do not take into consideration the interplay

between cancer cells and TME. However, these models

are continuously used in preclinical research for similar

purposes (i.e., drug screening and hypothesis genera-

tion) and we believe that this exercise could be useful

to prioritize which compounds could be tested in more

advanced preclinical models (i.e., tumoroids and

patient-derived xenografts).

5. Conclusions

To sum up, we have presented and validated a robust

and clinically relevant classification of LUAD tumors,

based on the transcriptional activity levels of impor-

tant cellular pathways. To our knowledge, no previous

LUAD classification has been derived from such a

large sample size. Despite significant challenges, we

believe that the integration of transcriptomic and

genomic data could improve patient stratification

and may pave the way for guiding novel therapeutic

approaches in patients with LUAD.
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45 Batlle E, Massagué J. Transforming growth factor-β
signaling in immunity and cancer. Immunity. 2019;50

(4):924–40.
46 Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA,

Matamala L, Castillo Gutiérrez E, et al. Relatlimab

and nivolumab versus nivolumab in untreated advanced

melanoma. N Engl J Med. 2022;386(1):24–34.
47 Felip E, MajemM, Doger B, Clay TD, Carcereny E,

Bondarenko I, et al. A phase II study (TACTI-002) in first-

line metastatic non–small cell lung carcinoma investigating

eftilagimod alpha (soluble LAG-3 protein) and

pembrolizumab: updated results from a PD-L1 unselected

population. J Clin Oncol. 2022;40(16 Suppl):9003.

Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.

Fig. S1. Flow diagram of included gene expression

datasets search and filtering criteria for this study.

Fig. S2. Computational framework for LUAD consen-

sus subtype definition.

Fig. S3. Relative activity levels (GSVA scores) of the

50 studied landmark pathways across LUAD

subtypes.

Fig. S4. Overall survival between subtypes associated

with better prognosis and worse prognosis in the anal-

ysis by individual LUAD subtype.

Fig. S5. Correlation between pathway profiling-based

subtypes and Wilkerson et al.’s mRNA-based

subtypes.

Fig. S6. Immune cell lines relative abundance across

LUAD subtypes.

Fig. S7. Immune checkpoints expression across LUAD

subtypes.

Fig. S8. Relative activity levels of the fifty studied

pathways in each of the 111 CPTAC-3 LUAD samples

that were assigned to a consensus subtype.

Fig. S9. LUAD cancer cell lines (LUAD-CCL) used

for the potential treatment strategies discovery

analysis.

Table S1. List of gene expression datasets included in

this study.

Table S2. Correlation of dataset ids with LUAD

subtypes.

Table S3. FDR-adjusted p values for pairwise compar-

isons of TMB values between LUAD subtypes.

Table S4. Percentage of positive patients for each sin-

gle nucleotide base substitution mutational signature

across LUAD subtypes.

Table S5. FDR-adjusted p values for pairwise compar-

isons of copy number rate values between LUAD

subtypes.

Table S6. FDR-adjusted p values for pairwise compar-

isons of copy number rate values between LUAD

subtypes.

470 Molecular Oncology 18 (2024) 453–470 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Transcriptomics lung adenocarcinoma classification S. Hijazo-Pechero et al.


	Outline placeholder
	mol213550-aff-0001
	mol213550-aff-0002
	mol213550-aff-0003
	mol213550-aff-0004
	mol213550-aff-0005
	mol213550-aff-0006
	mol213550-fig-0001
	mol213550-fig-0002
	mol213550-tbl-0001
	mol213550-tbl-0002
	mol213550-fig-0003
	mol213550-fig-0004
	mol213550-fig-0005
	mol213550-fig-0006
	mol213550-bib-0001
	mol213550-bib-0002
	mol213550-bib-0003
	mol213550-bib-0004
	mol213550-bib-0005
	mol213550-bib-0006
	mol213550-bib-0007
	mol213550-bib-0008
	mol213550-bib-0009
	mol213550-bib-0010
	mol213550-bib-0011
	mol213550-bib-0012
	mol213550-bib-0013
	mol213550-bib-0014
	mol213550-bib-0015
	mol213550-bib-0016
	mol213550-bib-0017
	mol213550-bib-0018
	mol213550-bib-0019
	mol213550-bib-0020
	mol213550-bib-0021
	mol213550-bib-0022
	mol213550-bib-0023
	mol213550-bib-0024
	mol213550-bib-0025
	mol213550-bib-0026
	mol213550-bib-0027
	mol213550-bib-0028
	mol213550-bib-0029
	mol213550-bib-0030
	mol213550-bib-0031
	mol213550-bib-0032
	mol213550-bib-0033
	mol213550-bib-0034
	mol213550-bib-0035
	mol213550-bib-0036
	mol213550-bib-0037
	mol213550-bib-0038
	mol213550-bib-0039
	mol213550-bib-0040
	mol213550-bib-0041
	mol213550-bib-0042
	mol213550-bib-0043
	mol213550-bib-0044
	mol213550-bib-0045
	mol213550-bib-0046
	mol213550-bib-0047

	mol213550-supitem

