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There is limited guidance on exploiting the genome-wide loss-of-function

CRISPR screens in cancer Dependency Map (DepMap) to identify new

targets for individual cancer types. This study integrated multiple tools to

filter these data in order to seek new therapeutic targets specific to head

and neck squamous cell carcinoma (HNSCC). The resulting pipeline priori-

tized 143 targetable dependencies that represented both well-studied targets

and emerging target classes like mitochondrial carriers and RNA-binding

proteins. In total, 14 targets had clinical inhibitors used for other cancers

or nonmalignant diseases that hold near-term potential to repurpose for

HNSCC therapy. Comparing inhibitor response data that were publicly

available for 13 prioritized targets between the cell lines with high vs. low

dependency on each target uncovered novel therapeutic potential for the

PAK2 serine/threonine kinase. PAK2 gene dependency was found to be

associated with wild-type p53, low PAK2 mRNA, and diploid status of the

3q amplicon containing PAK2. These findings establish a generalizable

pipeline to prioritize clinically relevant targets for individual cancer types

using DepMap. Its application to HNSCC highlights novel relevance for

PAK2 inhibition and identifies biomarkers of PAK2 inhibitor response.

1. Introduction

Results from CRISPR/Cas9 genome-wide loss-of-

function screens are now publicly available for 1865

cancer cell lines on the Cancer Dependency Map

(DepMap) portal [1], which also provides analytic and

visualization tools for this expansive dataset. DepMap

reports the effect of deleting each gene on cell line

viability using the Chronos gene effect score [2], which

normalizes effect sizes using the distributions of non-

essential and pan-essential genes and designates stron-

ger gene dependencies with lower scores. Chronos gene

effect scores derive from a mathematical model that

integrates screen results from multiple biologic repli-

cates while accounting for variations in cell population

dynamics over time upon deleting different genes and
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addressing other sources of bias and noise. Gene prob-

ability score, a second metric provided by DepMap,

measures how likely a given gene effect score is to be

part of the essential distribution by accounting varia-

tions in screen quality among cell lines. The DepMap

Portal also incorporates tools to analyse relationships

between identified gene dependencies and their mRNA

expression, copy number variations, somatic muta-

tions, and gene fusions in the cell lines. The portal also

facilitates further evaluation of gene dependencies

identified by CRISPR by facilitating comparison to

prior RNAi screens.

DepMap has offered new insight into the landscape

of gene dependencies across human cancers [3] and

detected potential synthetic lethalities linked to specific

somatic mutations [4], copy number alterations [5],

and gene fusions [6]. However, the published analyses

of DepMap CRISPR screen data have mostly been

conducted on a pan-cancer basis and offer limited

guidance for pursuing therapeutic vulnerabilities and

predictive biomarkers specific to individual cancer

types. Furthermore, analyses of individual cancer

types in DepMap to date have narrowly focused on

features distinguishing a malignancy of interest from

the pan cancer dataset [7–9], predetermined biological

processes [10–13], or developing prognostic models

[14–17].
The potential utility of DepMap in therapeutic inno-

vation for individual cancer types is explored in a

novel manner in this study using head and neck squa-

mous cell carcinomas (HNSCCs), the 6th most com-

mon cancer globally [18]. The human papilloma virus

negative (HPV(�)) subtype of HNSCC remains the

most common form of this disease [18] and is well-

represented by cell line models in DepMap. For

decades, patients with advanced HPV(�) HNSCCs

have been standardly treated with combinations of sur-

gery, external beam radiation, and cytotoxic chemo-

therapy. Despite receiving aggressive multimodality

therapy, these patients continue to suffer high rates of

cancer recurrence and mortality along with lifelong

disabilities created by treatment toxicity [19]. Few

modern targeted therapies for HPV(�) HNSCC have

emerged, and the approved therapies targeting EGFR

[20] and the PD1/PDL1 axis [21] have had limited

overall impact on treatment outcomes. The DepMap

CRISPR screen data specific to HPV(�) HNSCC

remains to be analysed systematically for potential

therapeutic vulnerabilities and genetic biomarkers of

therapy response that may lead to more effective and

less toxic treatments.

This study sought to integrate the gene dependency

data for HPV(�) HNSCC in DepMap with multiple

other public resources to create a list of targets for this

disease with highest priority for further development.

For each gene dependency, our prioritization pipeline

considered druggability of the target, current status of

drug development against it, existing experimental

inhibitor response data, potential toxicity to normal

cells, and genetic traits associated with favourable

responses. This information is cataloged by us in a

form suitable for guiding efforts toward drug discov-

ery, preclinical therapeutic testing, and clinical trial

design. Our findings identify several targets with drugs

that have been used clinically for other diseases and

thus could readily be repurposed for HPV(�) HNSCC.

We also describe novel utility for targeting the PAK2

serine–threonine kinase, which presently lacks a clini-

cal inhibitor, along with potential biomarkers of

favourable anti-PAK2 therapy responses. In doing so,

our results establish a rational approach to interpret-

ing and filtering the DepMap CRISPR screen data for

HPV(�) HNSCC that is also generalizable other spe-

cific cancer types and ongoing future updates of the

multiple datasets used here.

2. Materials and methods

2.1. Cell line data analysis

Gene dependency data processed by the Chronos algo-

rithm was extracted initially from the 22Q1 public data

release from the DepMap at the Broad Institute [1,2]

for all HPV(�) HNSCC (n = 63) and oesophageal

squamous cell carcinoma (ESCC) (n = 24) cell lines in

this resource. A re-analysis prior to publication was

performed with the 23Q2 release. The Drug Gene

Interaction Database (DGIdb) [22] was used to filter

for the genes predicted to encode for druggable pro-

teins. The DAVID Gene Functional Classification

Tool [23] was used to classify targetable dependencies

based on function. The Open Targets Platform [24]

was used to identify approved or investigational drugs

known to target druggable proteins and describe their

application in clinical trials to date along with their

FDA approval status. Mutation and copy number

data from whole exome sequencing along with

RNAseq-based gene expression data (TPM + 1) were

extracted from the cancer cell line encyclopedia

(CCLE) [3] via the DepMap data portal. Drug

response information was sourced from the GDSC2

dataset of the Genomics of Drug Sensitivity in Cancer

database (GDSC, Release 8.3) [25]. Additional drug

response information and RNAi screen results were

obtained from DepMap PRISM Repurposing Public

23Q2 dataset and Gene Effect RNAi (DEMETER2)

337Molecular Oncology 18 (2024) 336–349 ª 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

M. K. Sannigrahi et al. DepMap reveals PAK2 is a target in HPV(�) HNSCC



data, respectively, via the DepMap data portal. The R

code used to prioritize dependencies and visualize them

as a dot plot showing the number of cell lines with

each dependency vs. median gene effect score in those

cell lines is available in the Github repository at

https://github.com/BasuLab2023/DepMap-2023.

2.2. TCGA data analysis

Data for the Head and Neck Squamous Cell Carci-

noma TCGA cohort (project TCGA-HNSCC,

n = 523 cases) were downloaded from the Genomic

Data Commons via cBioPortal [26] and includes

mRNA expression (RSEM), putative copy-number

alterations (GISTIC), log2 gene copy number, muta-

tions, and overall survival. The 415 HPV-negative

cases were selected from the broader cohort by exclud-

ing the 72 tumours that were HPV-positive and 36

where HPV status was unknown based on mapping of

> 1000 RNA sequencing reads aligning to high-risk

HPV E6 and/or E7 [27].

2.3. Statistical analyses

Significance was evaluated using 2-tailed Mann–Whit-

ney U test or unpaired Welch’s t-test when variances

were unequal when comparing 2 groups for gene

expression, copy number, or drug response. Pearson

correlation coefficients were derived from analysing

the means. Relationships between cancer-related muta-

tions and gene dependencies were defined using two-

sample t-tests that compared the median gene effect

score between cell lines with and without the cancer-

related mutation of interest. A relationship was desig-

nated as significant if P < 0.05 and Cohen’s d effect

size was ≥ 1 or ≤ �1. Log-rank tests were used to

compare group-specific Kaplan–Meier survival curves.

For multiple comparisons of drug responses in cell

lines after 1-way ANOVA, P values were computed

using Dunnett’s or Holm-�Sid�ak procedure. Tests used

are indicated in figure legends. Analyses were per-

formed using PRISM (GRAPHPAD Software). A P value

less than 0.05 was considered significant.

3. Results

3.1. Identification and prioritization of targetable

dependencies in cell line models of

HPV(�) HNSCC

The 63 HPV-negative HNSCC cell lines annotated in

DepMap were selected for analysis, and the size of this

panel was increased to 87 by adding all 24 cell lines

from oesophageal squamous cell carcinomas (ESCCs),

which are nearly identical to HPV(�) HNSCCs in their

aetiology, tissue of origin, and genetic landscape [28].

The overall filtration algorithm used for the 17 387

genes targeted in the DepMap CRISPR screens is

shown in Fig. 1A. Applying the gene probability score

cutoff used by DepMap to designate a gene as essential

(≥ 0.5) [29] identified 5123 genes that were essential in at

least one of the 87 cell lines. The 5123 genes were fil-

tered to the subset of 1001 predicted by the Drug-Gene

Interaction Database to have a protein product that is

therapeutically targetable [22]. These 1001 genes are

visualized on a scatter plot representing the percentage

of cell lines where a gene was essential vs. the median

gene effect score across the cell line panel (Fig. 1B, left).

To provide further prioritization guided by the scatter

plot distribution, we first sought to remove gene depen-

dencies that are shared by normal tissue and thus would

not provide a useful therapeutic window. The 1924

dependencies that are present across > 90% of all 990

cancer cell lines in DepMap have been designated as

“common essential” genes [29] that are predicted not to

be cancer-specific. 256 common essential genes were

present in the list of 1001 targetable dependencies for

HNSCC. These genes clustered to the right of the scat-

ter plot with a median gene effect score of �0.95 (IQR:

�0.62, �1.51), consistent with the scaling of DepMap

gene effect scores to �1.0 as the median for common

essential dependencies. To further exclude dependencies

shared by normal tissue, we removed genes identified as

dependencies across multiple normal cell lineages in

prior pooled loss-of-function CRISPR screens [30,31].

Of the 1580 such “core fitness” genes designated by this

study, 190 were present in the list of 1001 targetable

dependencies. The 190 core fitness genes had a median

gene effect score of �0.92 (IQR: �0.61, �1.44), and the

overlap of 143 of these genes with the 256 common

essential genes provided cross-validation of two inde-

pendent approaches for excluding targets likely to have

a poor therapeutic window. The two groups together

comprised 303 unique genes, which were removed from

the 1001 targetable dependencies. Next, we considered

the large cluster of genes (n = 555) that appeared in

< 9% of the cell line panel (Fig. 1B, left) and had signifi-

cantly lower median effect scores as a group (Fig. 1B,

right). This group was also noted to contain outliers

with high median effect scores, which were interpreted

as most likely arising from stochastic effects due to the

small sample size (< 8 cell lines), further supporting

exclusion of the group. The remaining 143 genes that

were prioritized for further analysis are described in

Table S1, where they are ranked by frequency of essenti-

ality and secondarily by median gene effect score.
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3.2. Functional classification of prioritized

targetable dependencies

The 143 prioritized genes were evaluated for recurring

functional roles in order to identify broad classes of

drug targets meriting preclinical therapeutic evaluation

in HNSCC. Application of the Gene Functional Clas-

sification Tool of DAVID Bioinformatics Resources

[32] with a medium stringency classification (kappa

similarity threshold ≥ 0.30) and enrichment score

threshold of ≥ 1 highlighted four groups with shared

functional annotation (Table 1). The group of receptor

tyrosine kinases included IGF1R and multiple ErbB

family members, which have already been extensively

studied in HNSCC and other solid tumours [33]. The

largest group of enriched dependencies consisted of 8

serine/threonine kinases that have diverse signalling

functions. This group notably included three Rho/Rac

effector proteins: (a) the MAP3K11 gene product,

mixed lineage kinase 3 (MLK3), which is an upstream

regulator of MAPK signalling [34] and phosphorylates

IjB kinase (IKK) a and b, thereby activating NF-jB
(11), (b) PKN2, a promoter of cell cycle progression

previously been explored as a target in HNSCC [35],

and (c) PAK2, a multi-function kinase that integrates

Fig. 1. Identification and prioritization of targetable dependencies in HPV(�) HNSCC. (a) Overall pipeline for prioritization of essential genes

in HPV(�) HNSCC cell line models in DepMap. (b) Median gene effect of identified druggable dependencies (n = 1001) vs. percentage of

cell lines where the gene is essential (left) and the distribution of median gene effect scores in prioritized vs. deprioritized categories of

targets (right). Genes that are essential in < 9% cell lines are demarcated in the area within the yellow shading and vertical broken line.

Adjusted P values were defined by one-way Welch’s ANOVA corrected with Dunnett’s multiple comparisons test.

Table 1. Functional groups enriched among the 143 prioritized

dependencies.

Functional

classification

Enrichment

score

Genes (Median gene effect

score, percentage cell lines)

Serine/

threonine

kinases

2.57 MAP3K11 (�0.61, 25%), PKN2

(�0.58, 36%), MARK2 (�0.55,

29%), PAK2 (�0.52, 24%),

CDK8 (�0.46, 13%), MAP4K2

(�0.45, 15%), RPS6KA4 (�0.42,

9%), RIPK3 (�0.5, 25%), GRK

(�0.48, 22%)

Tyrosine

kinases

2.43 EGFR (�0.60, 66%), ERBB2

(�0.59, 45%), ERBB3 (�0.55,

41%), IGF1R (�0.54, 14%),

TYRO3 (�0.49, 23%)

Mitochondrial

carriers

1.42 SLC25A33 (�0.47, 16%),

SLC25A1 (�0.44, 15%), MTCH2

(�0.41, 9%), SLC25A25 (�0.39,

9%), SLC22A25 (�0.44, 11%),

MRGPRX3 (�0.43, 9%), SPNS1

(�0.54, 28%)

RNA-binding

proteins

1.13 RBM10 (�0.54, 53%), PTBP1

(�0.53, 40%), ELAVL1 (�0.49,

22%), HNRNPA1 (�0.47, 46%),

ZRANB2 (�0.47, 37%), RBM5

(�0.47, 11%)
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cellular stress responses with activation of oncogenic

signalling pathways [36] and proved to be of particular

interest in subsequent analyses in this study. The other

two enriched functional groups were comprised of

mitochondrial carrier proteins and RNA-binding pro-

teins, which have only recently drawn interest as

potential therapeutic targets in cancer. The mitochon-

drial carriers included three members of the SLC25

family, which transport nutrients across the mitochon-

drial inner membrane, and their role in reprogramming

tumour metabolism through overexpression have made

them a new focus of preclinical therapeutic develop-

ment [37]. The functional group of RNA binding pro-

teins included ELAVL1, ZRANB2 and HNRNPA1,

whose role in alternative splicing of transcripts to serve

tumour development have made them a focus of recent

efforts to target altered RNA splicing in cancer

[38,39]. Together, these findings both confirm that our

prioritization pipeline captures known targets in

HNSCC and underscore the relevance of emerging tar-

get classes for other malignancies to this cancer type.

3.3. Several prioritized targets have clinical

inhibitors that are positioned to repurpose

for HNSCC

The subset of the 143 prioritized targets that are best

positioned for near-term testing in HNSCC patients

were cataloged by using the Open Targets Database [24]

to identify the targets with drugs that have been in

clinical trials for other cancers and/or nonmalignant

diseases but not HNSCC. Using this tool to filter for

inhibitors that have reached at least a phase II trial

for any disease identified existing agents for 23 of the

143 targetable proteins. This list contained 9 targets

with drugs in active or previous trials for HNSCC

(Table S2), including current standard agents like cetux-

imab, taxanes, and 5-fluorouracil. Capturing these

currently used drugs supported potential clinical utility

of the 14 targets with inhibitors have only been studied

clinically in other malignant and/or non-malignant dis-

eases (Table 2) but not HNSCC. These findings support

the utility of our prioritization pipeline in identifying

clinically relevant targets, including many with inhibi-

tors that have already been used clinically and thus

could be repurposed in the near term in HNSCC.

3.4. Drug responses of HNSCC models validate

known targets and as well as the novel

target PAK2

The GDSC dataset [25] was used to pursue validation

of select prioritized targets. Response profiles for

HNSCC cell lines were available in this resource for

39 compounds that inhibit 13 targets in the list of 143

prioritized dependencies. The cell lines were divided

into groups with high dependency (top quartile), inter-

mediate dependency (middle half), and low depen-

dency (bottom quartile) for each target based on

Chronos Gene Effect Score [2]. The cell lines with high

dependency showed significantly stronger in vitro

growth inhibition when treated with 12 drugs that

inhibit one of five targets in the list of 13 targets

tested. Four of these five proteins were the well-studied

gene products of EGFR, ERBB2, ERBB3, and

PIK3CA (Fig. S1). The fifth target to be validated by

this method was PAK2 (Fig. 2A), a far less studied

serine–threonine kinase that lacks a clinical inhibitor

but was inhibited in GDSC data using the PAK-5339

tool compound. Complete PAK-5339 dose response

curves in GDSC were available for four HNSCC cell

line models in the top quartile for PAK2 dependency

and for eight models in the bottom quartile. These 12

dose curves are shown in Fig. S2, which illustrates a

clear separation of responses between the groups with

high vs. low dependency based on DepMap CRISPR

results. An additional PAK2 tool inhibitor (FRAX486)

in the PRISM Lab drug screen data [40], which was

recently integrated into DepMap, provided further

pharmacologic evidence to support this dependency

(Fig. 2B). Likewise, additional genetic evidence was

provided by older RNAi screen data in DepMap,

which showed the HNSCC models found to be PAK2-

dependent by CRISPR also to be more susceptible to

siRNA silencing of PAK2 (Fig. S3). The magnitude of

PAK2 gene effect scores in the 24% of cell lines meet-

ing the dependency threshold is contextualized by

comparison to those for the well-studied targets

(Fig. S4). Distributions among these dependencies

were similar, with only EGFR showing significantly

stronger dependency than PAK2. Together, these

results support the effectiveness of our prioritization

pipeline, which not only captured well-studied clinical

drug targets but also highlighted PAK2 as an emerging

target with potential utility for HNSCC therapy.

3.5. Low PAK2 mRNA and diploid status of its

3q amplicon predict favourable PAK2 inhibitor

responses

Additional data sets were integrated to evaluate

whether PAK2 genetic alterations and/or expression

levels are predictors of PAK2 inhibitor responses that

might prove clinically useful in HNSCC. Whereas

PAK2 is rarely mutated in cancer, it is frequently

amplified and/or overexpressed [41]. PAK2 copy
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number and mRNA levels both inversely correlated

with PAK2 gene dependency in the HNSCC cell line

models annotated in DepMAP, where cell lines with

high dependency had both lower PAK2 expression and

diploid gene status (Fig. 2C). Copy gains in PAK2

were detected in 70% of the 415 HPV(�) HNSCCs in

TCGA based on GISTIC score [42], with 12.3% also

meeting the GISTIC score threshold for amplification

[43]. PAK2 notably resides on the 3q amplicon con-

taining the oncogenes PIK3CA, SOX2, ETV5, BCL6,

and TP63. These five other genes were consistently co-

amplified with PAK2 (Fig. 2D), suggesting that

absence of 3q amplification predicts higher PAK2 gene

dependency and more favourable inhibitor responses.

Fig. 2. PAK2 inhibitor response vs. PAK2 dependency, genetic alteration, expression, and 3q status. (A) PAK-5339 and (B) FRAX486 inhibitor

responses in vitro in GDSC vs. strength of PAK2 dependency in cell line models of HPV(�) HNSCC. High and low dependencies are defined

by the top and bottom quartile of gene effect scores, respectively. Adjusted P values were defined by one-way Welch’s ANOVA corrected

with Dunnett’s multiple comparisons test. (C) PAK2 dependency vs. mRNA expression and copy number in the cell line models. Pearson

correlation coefficients were used to calculate r values, and P value was determined by t distribution. (D) Frequency of co-amplification of

other oncogenes on 3q with PAK2 in the HPV(�) HNSCCs in TCGA (n = 415). (E) PAK2 dependency in cell lines with ABSOLUTE copy

number data (n = 48) stratified by presence or absence of amplified 3q. (F) PAK-5339 responses in subset of cell lines in (E) with inhibitor

data in GDSC (n = 26). P values were calculated by Mann–Whitney U test.
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This possibility was tested using the 48 HPV(�) cell

line models of HNSCC whose copy number data is

reported in DepMap. Whereas most of these cell lines

(n = 47, 98%) had 3q copy gains, the subset meeting

the threshold for amplification defined by the ABSO-

LUTE package [44,45] (n = 10, 21%) had signifi-

cantly reduced dependency on PAK2 (Fig. 2E).

Likewise, among the 26 of 48 cell lines with drug

response data in GDSC, the 4 lines (15.4%) with 3q

amplification exhibited significantly weaker responses

to the small molecule PAK2 inhibitor PAK-5339

(Fig. 2F). Of note, the HPV(�) HNSCC patients in

TCGA with 3q copy gain or amplification showed no

differences in overall survival relative to 3q diploid

cases (Fig. S5). The findings underscore potential rele-

vance of PAK2 inhibitors for the large fraction of

HPV(�) HNSCCs that maintain diploid 3q and carry

similarly poor prognosis to those with PAK2 copy

gains via the 3q amplicon.

3.6. Wild type p53 predicts favourable PAK2

inhibitor responses in HNSCC

To pursue additional predictors of inhibitor responses

for PAK2 and other targets, we evaluated the 143 pri-

oritized dependencies for association with the common

cancer-related gene mutations present in HPV(�)

HNSCC. This analysis used the five genes with com-

mon hotspot and/or driver mutations in HPV(�)

HNSCCs that were both identified by TCGA and were

also present in ≥5% of cell line models in DepMap,

specifically PIK3CA, CDKN2A, NOTCH1, FAT1 and

TP53 (Table S3). Three significant associations were

observed (Fig. 3A), including the anticipated associa-

tion of oncogenic PIK3CA mutation with PIK3CA

gene dependency. An association of NOTCH1 loss of

function mutation with TAP1 dependency was present

but of unclear significance given that the TAP1 gene

product’s role in antigen presentation is not predicted

to impact cancer cell line viability or growth in stan-

dard culture. More notably, an association between

PAK2 dependency and wild-type (WT) TP53 status

was detected based on comparison of the 20.6% of cell

line models with WT TP53 to the 80.4% with TP53

hotspot and/or damaging mutations (Fig. 3B). The

predicted increase in PAK2 inhibitor sensitivity in

presence of WT TP53 was confirmed by enhanced

responses to PAK-5339 observed in the 5 HPV(�)

HNSCC models with WT TP53 in GDSC data

(Fig. 3C). Therefore, we explored whether TP53 status

might offer clinical utility in addition to PAK2 copy

number in predicting inhibitor responses by assessing

the overlap between PAK2 amplification and TP53

mutation in the 415 HPV(�) HNSCCs in TCGA

(Fig. 3D). This analysis shows that WT TP53 alone

may predict favourable PAK2 inhibitor responses in

the 17.8% of HPV(�) HNSCCs in TCGA with WT

TP53 because almost all the WT cases (97.3%) con-

tained a diploid PAK2 locus and had reduced PAK2

levels as a group relative to those with mutant TP53

Fig. 3. Association of PAK2 inhibitor responses with wild type TP53. (A) Evaluation of associations between median gene effect score of

143 prioritized targets and mutation status of PIK3CA, CDKN2A, NOTCH1, FAT1 and TP53 using Cohen’s d effect size cutoff of ≥ 1 or ≤ �1

and significance cutoff of P < 0.05. (B) TP53 mutation status vs. PAK2 Gene effect score in DepMap. (C) TP53 mutation status vs. PAK-

5339 inhibitor response in GDSC. P values were calculated by unpaired t test. (D) The 415 TCGA HPV(�) HNSCC tumours in TCGA

subdivided by TP53 mutation status and presence or absence of PAK2 amplification.
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(Fig. S6). However, most HPV(�) HNSCCs (82.2%)

harbour mutant TP53, and consideration of PAK2

copy number appears relevant in them in order to pre-

dict responses to PAK2. Despite insufficient HNSCC

cell line data to test the interaction between TP53 and

PAK2 in determining PAK-5339 sensitivity, these find-

ings support considering the status of both gene loci in

prediction of PAK2 inhibitor responses.

3.7. Re-evaluation of the prioritization pipeline

using an updated DepMap data release

To assess reproducibility of our findings in recently

updated DepMap data prior to publication, the priori-

tization pipeline was reapplied to the 23Q2 data

release. The pipeline prioritized 143 genes that

included 103 genes in common with the previous prior-

itized list of 143 genes shown in Table S1. The new list

is provided in Table S4, in which the 40 genes added

to the list are highlighted and the 40 genes no longer

meeting the dependency threshold are footnoted.

Despite these changes, repeating functional analysis of

the new prioritized gene list with the Gene Functional

Classification Tool of DAVID Bioinformatics

Resources (Table S5) yielded comparable results. Ser-

ine/threonine kinases including PAK2 remained among

the most enriched dependencies along with tyrosine

kinases and RNA binding proteins. The previously

identified mitochondrial carriers were regrouped into

broader category of transmembrane receptors and car-

riers, and two new groups were comprised of immuno-

regulatory and unfolded protein response proteins.

Evaluating the new list in the Open Targets Database

for drugs reaching at least phase II identified 10 tar-

gets with inhibitors only studied clinically in other

malignant and/or non-malignant diseases (Table S6),

including 7 preserved from the prior list (Table 2) and

3 additional agents. The relationship between PAK2

gene effect scores and drug responses using both PAK-

5339 (Fig. 4A) and FRAX486 (Fig. 4B) was

Fig. 4. Confirmation of findings related to PAK2 in the recent Depmap 23Q2 data release. (A) PAK-5339 and (B) FRAX486 inhibitor

responses in vitro in GDSC vs. strength of PAK2 dependency in cell line models of HPV(�) HNSCC. High and low dependencies are defined

by the top and bottom quartile of gene effect scores, respectively. Adjusted P values were defined by one-way Welch’s ANOVA corrected

with Dunnett’s multiple comparisons test. (C) PAK2 dependency vs. mRNA expression in the cell line models. Pearson correlation

coefficients were used to calculate r values, and P value was determined by t distribution. (D) PAK2 dependency in cell lines with

ABSOLUTE copy number data (n = 48) stratified by presence or absence of amplified 3q. (E) PAK-5339 responses in subset of cell lines in

(D) with inhibitor data in GDSC (n = 26). P values were calculated by Mann–Whitney U test.
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unchanged in the updated data release. Likewise, low

mRNA levels of PAK2 (Fig. 4C) and diploid status of

the 3q amplicon (Fig. 4D) retained association with

PAK2 gene dependency, and the cell lines with diploid

3q exhibited enhanced drug responses (Fig. 4E).

Lastly, a significant association was retained between

PAK2 gene dependency and TP53 WT status was

retained (Fig. S7), although the effect size (�0.96) fell

just short of the previous arbitrary effect size cutoff of

�1 used in the analysis for 22Q1. These results show

our key findings remained relatively stable using the

updated DepMap 23Q2 release in spite of a ~ 33%

change in the genes prioritized by our pipeline. Despite

ongoing updating multiple public databases used in

this study, this re-analysis further underscores that the

developed pipeline can easily be applied to subsequent

data releases and other cancer types.

4. Discussion

This study used CRISPR screen data for HPV(�)

HNSCC as a platform to create a pipeline for priori-

tizing new therapeutic targets in a manner generaliz-

able to the other cancer types in DepMap. The in vitro

CRISPR screens of cancer cell lines in DepMap inevi-

tably miss gene dependencies that arise from the in

vivo interface with the tumour microenvironment (e.g.

PD1/PDL1). They are also predicted to miss targets

derived from multiple genes with redundant function

and those that can only provide anti-tumour responses

via combination therapies. Nevertheless, the efficacy of

our pipeline is illustrated by its ability to capture the

molecular targets for current HNSCC drugs including

cetuximab, taxanes, and 5-fluorouracil as well as genes

for other well-studied targets in HNSCC including

other ErbB family members and PIK3CA. Favourable

performance of the pipeline with these known targets

supports the potential utility of other prioritized tar-

gets with clinical inhibitors that are well-studied in

other diseases and thus readily testable in HNSCC

patients. Our prioritized list also reveals functional cat-

egories of genes that are much earlier in development

as cancer therapy targets to be relevant to HPV(�)

HNSCC. These include RNA-binding proteins that

regulate alternative mRNA splicing to serve cancer

progression [39] and the SLC25 mitochondrial mem-

brane nutrient transporters [37]. Immediate validation

of hits in the screens was facilitated using existing

inhibitor response data in GDSC. Although the cur-

rent GDSC dataset is limited, we were able to validate

the PAK2 serine–threonine kinase as a druggable

dependency that is not well studied in HNSCC and to

identify two potential genetic biomarkers of PAK2

inhibitor response. In comparing pipeline output

between the 22Q1 and 23Q2 DepMap releases, it is

noted that the updated dataset still prioritized PAK2

and the same total number of genes but altered con-

tent of the gene list by 33%. The large change

included addition of some new genes with fairly high

gene effect scores, and the reason for this effect is not

immediately apparent from the reported changes to

the Chonos algorithm, which were focused on creating

a 5% reduction in false positives meeting the depen-

dency threshold. Nevertheless, we anticipate our pipe-

line will remain applicable to future updates that

continue to refine the Chronos algorithm. Together,

these findings provide a template for integration of the

continuously updated DepMap CRISPR screen data

with other emerging in silico resources to accelerate

therapeutic development for both HNSCC and other

cancer types.

PAK2 has both functional redundancies with the

other group I PAK family members (PAK1 and 3)

plus distinct roles that may jointly contribute to its

utility as a target for HPV(�) HNSCC. The three

group I PAK kinases all act downstream of Rho/Rac

signalling [36] to activate b-catenin [46] and other sub-

strates involved in cell cycle progression (c-myc, Raf,

MEK1, LIM domain kinase), cytoskeletal dynamics

(myosin light-chain kinase, Merlin, b-catenin), and

apoptosis (CRAF, BAD) [36,41,46]. PAK2 also has

distinct roles in inhibiting apoptosis by phosphorylat-

ing caspase 7 [47] and inhibiting caspase 3 activity [48],

which may help explain why the knockout of PAK2

but not PAK1 or PAK3 is embryonic lethal in mice

[49]. Notably, the current group I PAK inhibitors

(PAK-5339, FRAX597, FRAX1036, and IPA-3) are

not PAK2 selective but have been shown experimen-

tally to have direct antitumour effects [50–52] as well

as ability to overcome chemoresistance [53,54] in other

cancer types.

On the surface, the associations of diploid PAK2

plus low PAK2 expression with PAK2 gene depen-

dence and favourable inhibitor responses seem para-

doxical. One possible explanation is that deletion of all

PAK2 copies in CRISPR screens is less efficient in cell

lines where PAK2 is amplified. In addition, high PAK2

expression in absence of PAK2 addiction might

impede the efficacy of PAK-5339. This scenario may

arise if PAK2 is amplified primarily as a passenger

effect due to stronger selective pressure for copy gain

in the adjacent oncogenes on the 3q amplicon. This

situation appears related to the mechanism by which

CYCLOPS (Copy-number alterations Yielding Cancer

Liabilities Owing to Partial losS) genes become favour-

able targets for cancer therapy [55]. The CYCLOPS
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phenomenon occurs when copy loss across a region

containing a tumour suppressor decreases expression

of an adjacent essential gene and thereby sensitizes to

inhibition of the adjacent gene product. Despite

absence of PAK2 copy losses in HNSCC, lack of upre-

gulated PAK2 expression may improve inhibitor

responses by similar mechanism in the 30% of

HNSCCs without PAK2 copy gain on 3q in TCGA.

The reasons for association of WT TP53 status with

PAK2 dependency and favourable PAK2 inhibitor

response also remain unclear. One possibility is that

WT p53 provides protection from the genomic insta-

bility needed to amplify the 3q region containing

PAK2. In addition, WT p53 positively regulates the

promoters of two microRNAs, miR-7-5p [56] and

miR-455-3p [57], that deplete the PAK2 mRNA [58,59]

and thus could sensitize to inhibition by limiting

PAK2 expression. Of note, the individual vs. combined

effects of TP53 status and PAK2 copy number on

inhibitor response could not be assessed here because

too few cell lines had complete annotation for these

genetic features in combination with PAK-5339 inhibi-

tor response data. Nevertheless, our results support

making PAK2 a focus for clinical drug development

and indicate that TP53 mutation status and PAK2

copy gains within the 3q amplicon should be jointly

considered in future studies evaluating efficacy of

PAK2 inhibition in HPV(�) HNSCC.

Another feature of our pipeline was incorporation of

the Open Targets Database to prioritize targets with

existing clinical inhibitors whose use for other diseases

leaves them well positioned for clinical trial develop-

ment in HPV(�) HNSCC. Another feature of our pipe-

line was incorporation of the Open Targets Database to

prioritize targets with existing clinical inhibitors whose

use for other diseases leaves them well positioned for

clinical trial development in HPV(�) HNSCC. Among

the 7 targets prioritized under both the 22Q1 and 23Q2

DepMap releases, there were two genes for targets with

FDA-approved agents that have been tested clinically in

non-malignant diseases but not in cancer (UGCG,

P2RY6). Interestingly, the ceramide glucosyltransferase

encoded by UGCG, which is involved in glycosphingoli-

pid biosynthesis, has previously been linked to poor

prognosis in HNSCC [60]. Another five targetable gene

dependencies had clinical inhibitors that have reached at

least a phase II trial (BIRC2, ITGB1, MAP3K11,

LDHA and PTPN1), with 3 having been applied to

other cancer types (BIRC2, ITGB1, and LDHA). These

observations underscore the potential utility of our pipe-

line in guiding cancer type-specific drug discovery and

development in the near term.

5. Conclusion

This study catalogs the targetable gene dependencies

that are most likely to be therapeutically relevant to

HPV(�) HNSCC by integrating DepMAP CRISPR

screen data with multiple other resources. Based on

this analysis, several currently actionable targets for

other diseases and multiple targets in earlier phases of

development represent promising strategies for treating

HNSCC. Of particular interest is PAK2, which was

validated using existing PAK2 inhibitor response data

and had identifiable genetic biomarkers of response.

Our pipeline for HNSCC establishes a generalizable

approach to filtering gene dependency data for other

cancer types with a focus on accelerating therapeutic

development.
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