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Tyrosine-protein kinase (janus kinase; JAK)–signal transducer and activa-

tor of transcription (STAT) signaling plays a pivotal role in the develop-

ment of myeloproliferative neoplasms (MPNs). Treatment with the potent

JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor bur-

den; however, ruxolitinib treatment does not fully eradicate the malignant

clone. As the molecular basis for the disease persistence is not well under-

stood, we set out to gain new insights by generating ruxolitinib-resistant

cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM-

JAK2) consisting of the N-terminal FERM domain directly fused to the C-

terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the

molecular level, FERM-JAK2 is able to directly bind and activate STAT5

in the absence of cytokine receptors. Furthermore, phosphorylation of

activation-loop tyrosines is dispensable for FERM-JAK2-mediated STAT5

activation and cellular transformation, in contrast to JAK2-V617F. As a

result, FERM-JAK2 is highly resistant to several ATP-competitive JAK2

inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A

murine model of FERM-JAK2 leukemogenesis showed an accelerated

MPN phenotype with pronounced splenomegaly. Notably, most current

protocols for the monitoring of emerging JAK variants are unable to

detect FERM-JAK2, highlighting the urgent need for implementing next-

generation sequencing approaches in MPN patients receiving ruxolitinib.

1. Introduction

The cytoplasmic tyrosine kinase JAK2 plays a major

role in the normal development of hematopoiesis and

cytokine mediated signaling [1,2]. Occurrence of a

somatic activating mutation valine to phenylalanine

(V617F) in the pseudokinase (JH2) domain of JAK2

has been implicated in myeloproliferative neoplasms

including polycythemia vera (PV, 90%), essential throm-

bocythemia (ET, 50%) and primary myelofibrosis (PMF,
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50%) [3–6]. In addition to MPNs, the JAK2-V617F

mutation has also been observed at very low frequencies

in the myelodysplastic syndrome, chronic myelomonocy-

tic leukemia (3–8%) and very rarely in systemic mastocy-

tosis [7,8]. Apart from V617F, several other mutations

located in the JH2 domain are also reported in hemato-

logical malignancies with very low frequencies such as

D620E in a PV patient [9], C661Y in an unclassified

MPN [10], L611S in acute leukemic leukemia (ALL)

[11], or deletion of an IREED peptide in down syndrome

[12]. Subsets of PV patients negative to the JAK2-V617F

mutation showed gain of function mutations affecting

JAK2 exon 12 [13]. In addition to the point mutations,

JAK2 is also involved as partner in several fusion pro-

teins such as TEL-JAK2 and PCM-JAK2 in other hema-

tological malignancies [14]. Biochemical studies have

demonstrated that all these mutations lead to constitutive

activation of the signal transducer and activator 5

(STAT5) pathway downstream of JAK2. These discover-

ies encouraged the development of small molecular

inhibitors against JAK2, several of which displayed

remarkable activity in MPNs, such as ruxolitinib, fedrati-

nib, and lestaurtinib [15–17]. Consequently, ruxolitinib

has been approved by the FDA for the treatment of

MPN patients since 2014.

In other oncogenic kinase-driven diseases such as

chronic myeloid leukemia (CML), non-small cell lung

cancer (NSCLC), and gastrointestinal stromal tumors

(GIST), acquired resistance to specific kinase inhibitors

has been connected to emergence of secondary resis-

tance mutations in the target kinase [18–20]. However,

no ruxolitinib-resistant JAK2 mutations have been

reported so far in MPN patients. In order to predict

the drug resistance mechanisms against ruxolitinib,

we implemented an in vitro screening strategy using

leukemic cell lines. Our approach revealed a 45 kDa

JAK2 variant (FERM-JAK2) that confers resistance

across a panel of JAK2 inhibitors. Furthermore, a

murine mouse model expressing FERM-JAK2 dis-

played an accelerated MPN phenotype.

2. Materials and methods

2.1. Cell culture

Ba/F3 cells (CVCL-0161) were obtained from the Ger-

man Resource Centre for Biological Material (DSMZ).

Ba/F3 cells were maintained in RPMI 1640 (Gibco,

Billings, MT, USA) medium containing 10% fetal calf

serum in the presence of 2 ng�mL�1 murine IL-3.

These cells were transfected by retroviral gene transfer

and transformed upon withdrawal of IL-3. Phoenix E

helper-virus free ecotropic packaging cells (CVCL-

H717) (a kind gift from G. Nolan, Stanford, USA),

HEK293T (CVCL-0063) and Gamma2A cells (CVCL-

C0D4) (a kind gift from Harvey Lodish, MIT, USA)

and NIH3T3 cells (CVCL-0594) were maintained in

DMEM (Gibco) supplemented with 10% FCS. All the

cell lines were tested and confirmed mycoplasma free.

2.2. Cell line authentication

All cell lines mentioned above were recently authenti-

cated using short tandem repeat (STR) analysis. Valida-

tion was performed by Microsynth GmbH in G€ottingen,

Germany. Profiles are available upon request.

2.3. Immunoblotting, co-immunoprecipitation

and in-vitro binding studies

Cell lysis, sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS/PAGE), and immunoblotting

were done as described previously [21]. Bands were

visualized using the enhanced chemoluminescence

(ECL) system (Amersham, Braunschweig, Germany).

For in vitro binding studies both FERM-JAK2 and

JAK2-V617F were cloned into pcDNA 3.1(+) using

the EcoR1 restriction site. Purified STAT5 protein was

incubated with in vitro translated FERM-JAK2 or

JAK2-V617F proteins for 3 h. The beads were then

washed and bound fractions were subjected to

SDS/PAGE and transferred to polyvinylidene difluoride

(PVDF) membranes. Bound JAK2 protein was visual-

ized by immunoblotting using anti-JAK2 antibody.

2.4. Sequencing and cloning

Human WT JAK2 and JAK2-V617F were cloned into

EcoRI site of the MiG-RI retroviral vector expressing

the enhanced yellow fluorescent protein (eGFP) as

described previously [22]. JAK2 mutations were intro-

duced in MSCV-EYFP-JAK2-V617F using the Quick-

Change mutagenesis kit (Stratgene, Amsterdam, The

Netherlands). Myc-tagged FERM-JAK2 was generated

by cloning the cDNA into the EcoR1 site of pCMV-

Myc tag vector.

2.5. Generation of drug-resistant variants

Selection of ruxolitinib-resistant clones was described

previously [23]. Briefly, Ba/F3 MSCV-EYFP-JAK2-

V617F cells were cultured in 96–well plates at a den-

sity of 4 9 105 cells per well in the presence of ruxoli-

tinib at indicated concentrations. Colonies that became

visible after 14–20 days were picked, expanded, and

analyzed. Resulting inhibitor-resistant sublines were
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cultured in the presence of inhibitor at a concentration

corresponding to that used during the screen.

2.6. Inhibitors and cytokines

Ruxolitinib (INCB018424) was a kind gift from

Novartis Pharma AG, Basel, Switzerland. Fedratinib

(TG101348) was purchased from Selleckchem (Hous-

ton, TX, USA). JAK inhibitor-1 (JAK inh-1.) was

purchased from Calbiochem (San Diego, CA, USA).

17-AAG and Geldanamycin were purchased from

Sigma-Aldrich (Taufkirchen, Germany). All inhibitors

were dissolved in dimethyl sulfoxide (DMSO) to pre-

pare stock solutions of 10 mM and were stored at

�20 °C. Murine interleukin 3 (IL-3) and human eryth-

ropoietin (Epo) were purchased from R&D Systems

(Wiesbaden, Germany) and a used in 20 ng�mL�1 con-

centration for stimulation experiments.

2.7. Antibodies

The anti-phosphotyrosine antibodies PY20 and

4G10 were purchased from BD Biosciences (Heidel-

berg, Germany) and Upstate Biotechnology (Lake

Placid, NY, USA). STAT5 (G-2), pJAK2 (21870-R),

IL-3Rb chain (K-17), Tubulin, heat shock protein

HSP90 and HA-tag (F-7) antibodies were obtained

from Santa Cruz Biotechnology (Heidelberg, Ger-

many). JAK2 c-terminal antibody (D2E12 XPR),

pSTAT5, pAKT, pERK, ERK, AKT were purchased

from Cell Signaling Technologies (Leiden, The Nether-

lands). A JAK2 antibody recognizing the pseudokinase

domain against the amino acids 750–757 was pur-

chased from Upstate Biotechnology. The anti-FLAG

antibody was purchased from Sigma (Taufkirchen,

Germany) and anti-Myc-tag antibody from Biozol

(Eching, Germany).

2.8. Proliferation assay

Proliferation was measured using an MTS (3-(4,5

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium)-based method by absorp-

tion of formazan at 490 nm (CellTiter 96; Promega,

Madison, WI, USA). Measures were taken as tripli-

cates after 72 and 96 h of culture without cytokines as

described previously [22].

2.9. Sequencing and primers

Total RNA was extracted with TRIzol reagent (Invitro-

gen, Carlsbad, CA, USA). For RT-PCR of JAK2

encompassing the kinase domain, the following primers

were used: JAK2 RT–KD forward 50-gaaaatgacatgttac-
caaatatg-30 and JAK2 RT-KD reverse 50-ggagtaaa-
caaactgttaaag-30. Sequencing was performed by Eurofins

Genomics, Ebersbach, Germany. For kinase domain

sequencing the following primers were used: Forward 50-
ctagggttttctggtgcctttgaag-30 and reverse 50-gggcgttgattta-
cattattgttcc-30. For sequencing of the FERM-JAK2 the

following primers were used: Forward 50-atggcctgccttac-
gatgacagaaatg-30 and reversed 50-tcttggtaatcttccattattctt-
caaaa-30. Cloning of the p45 kDa of JAK2 was

performed using following primers: Forward 50-gatc-
gaattcatggattacaaggatgacgacgat-30 and reverse 50-gatc-
gaattctcatccagccatgttatcccttatttg-30. Primers used for site-

directed mutagenesis of phospho-deficient mutants will

be provided upon request.

2.10. Bone marrow transduction and

transplantation

Bone marrow transduction and transplantation was

done as described previously [24]. Briefly, Phoenix E

cells were transiently transfected using Lipofectamine

2000 (Invitrogen, Karlsruhe, Germany) and retroviral

stocks were collected twice at 12-h intervals beginning

24 h after transfection. Retroviral titers were determined

by transduction of 5 9 104 NIH3T3 cells with serial

dilutions of retrovirus in the presence of 4 lg�mL�1

polybrene (Sigma). Forty-eight hours post transduction,

the percentage of infected cells was determined by flow

cytometric analysis of eGFP-expression. The titer (in

Colony Forming units per ml [CFU�mL�1]) was calcu-

lated by multiplication of the total number of eGFP-

positive cells with the dilution factor of the retroviral

supernatant. Murine bone marrow (BM) was harvested

from male Balb/C donor mice 4 days after injection of

150 mg�kg�1 5-fluorouracil (Ribosepharm, Munich, Ger-

many) and stimulated overnight in Iscove modified Dul-

becco medium (Gibco) with 20% FCS supplemented

with growth factors (10 ng�mL�1 mIL-3, 10 ng�mL�1

mIL-6, 50 ng�mL�1 mSCF, R&D Systems). Primary

murine BM cells were transduced by spin infection

(1200 g, 32 °C, 90 min) using retroviral supernatant

supplemented with growth factors and 4 lg�mL�1 poly-

brene (Sigma). Subsequently, cells were resuspended in

Hanks balanced salt solution (Sigma) and injected into

the tail vein of lethally irradiated (800 rad) female

Balb/C recipient mice. Animals that received a trans-

plant were monitored for signs of disease by serial mea-

surement of peripheral blood (PB) counts. All animals

were caged in a special caging system (Thoren Caging

Systems, Hazleton, PA, USA) with autoclaved food and

acidified water. Balb/C mice was purchased from

Charles River (Sulzfeld, Germany). All mice were
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maintained in a specific pathogen-free environment and

were used between 6 and 8 weeks of age. All procedures

were reviewed and approved by the animal welfare offi-

cers of the Technical University of Munich and the ani-

mal ethics committee of the local government Munich

under the license number (Az:55.2-1-54-2531-75-08v).

2.11. Analysis of transplanted mice

Two independent transplantation experiments were per-

formed, including a total number of at least 15 mice

per group. Hemoglobin (Hb), hematocrit (HCT), plate-

lets, and white blood cell counts (WBC) were deter-

mined using an automated counter (SCIL vet abc,

Heska, Fort Collins, CO, USA). Reticulocytes were

stained with brilliant cresyl blue solution (1%) and

quantified by light microscopy (per 1000 erythrocytes).

Numbers of transduced eGFP-positive cells in the

peripheral blood of transplanted mice were determined

by flow cytometric analysis. Spleen and BM specimen

were fixed in buffered formalin (4% pH 7.4), decalcified

in EDTA and stained with hematoxylin/eosin and

Gomori’s reticulin staining prior to microscopy.

3. Results

3.1. Ruxolitinib-resistant clones display a

truncated form of JAK2 with a molecular weight

of 45 kDa

Ruxolitinib is a potent JAK1/JAK2 specific inhibitor

that exhibits remarkable clinical activity in JAK2-

V617F mediated MPNs [25]. Unlike most tyrosine

kinase inhibitor (TKI)-treated hematological malignan-

cies, no drug-resistant mutations have been reported

so far in ruxolitinib-treated MPNs. To identify possi-

ble mechanisms of resistance, we used a screening

strategy based on the Ba/F3 cell line transformed by

JAK2-V617F. After continuous exposure to ruxolitinib

for 14 to 20 days, a high number of resistant clones

emerged in 1000 nM (65/2 9 107 cells seeded) and

2000 nM (42/2 9 107 cells seeded) concentrations,

whereas the yield decreased for cell treated with

4000 nM (26/2 9 107 cells), suggesting that high ruxoli-

tinib concentration prevents the generation of drug-

resistant clones. Sequencing of ruxolitinib-resistant

clones from all concentrations did not display any

point mutation either in kinase or pseudokinase

domain of JAK2 (Table S1). Western blot analysis of

4000 nM drug-resistant clones results showed persistent

activation of STAT5 in all clones analyzed (R1, R2,

R3, R4, and R5) and activation of AKT only in R1

and R3, indicating clonal heterogeneity. None of the

drug-resistant clones displayed persistent activation of

ERK1/2 (Fig. 1A). Surprisingly, analysis of JAK2 pro-

tein levels using an antibody detecting the c-terminal

amino acids 841–847 revealed a previously unknown

protein band at a molecular weight of 45 kDa in addi-

tion to full-length (130 kDa) JAK2 protein (Fig. 1B).

Using an antibody recognizing the n-terminal FLAG-

tag, we could also identify this smaller protein in drug-

resistant clones but not in drug-sensitive clones

(Fig. 1C). An antibody raised against the JAK2 pseu-

dokinase domain (amino acids 751–757) of JAK2 did

not detect the 45 kDa JAK2 variant in drug-resistant

clones (Fig. 1D). These results point toward presence

of both n-terminus and c-terminus with deletion of the

pseudokinase domain in the truncated protein. To

identify the full sequence of the 45 kDa JAK2 variant,

we designed forward primers recognizing the FLAG

DNA sequence and reverse primer binding the DNA

sequence corresponding to the C-terminal antibody

recognition site. This strategy yielded a 300 bp frag-

ment in drug-resistant clones whereas 2500 bp

sequence in drug sensitive clones (Fig. S1A). Finally,

using the FLAG DNA sequence as forward primer

and kinase domain c-ter sequence as reverse primer,

we could amplify the whole sequence of the 45 kDa

JAK2 variant which is approximately 1150 bp

(Fig. S1B and Fig. 1E). Sequencing of the PCR prod-

uct showed that a major part of FERM domain, as

well as the whole SH2-like domain and pseudokinase

domain are completely lost, leaving an in-frame fusion

protein consisting of the n-terminal 77 amino acids

together with residues 814–1132 amino acids of the

kinase domain. We named this variant FERM-JAK2

(Fig. 1F). Analysis of all the drug-resistant clones

results showed that 80% of the clones acquired the

45 kDa JAK2 variant (Table S2).

3.2. FERM-JAK2 has transforming capacity and

activates STAT5 via a non-canonical pathway

To test whether FERM-JAK2 retains transforming

capacity, we stably introduced FERM-JAK2 into IL-3-

dependent murine Ba/F3 cells. FERM-JAK2 led to strong

cytokine independent growth to the Ba/F3 cells as deter-

mined by both MTS assay and cell counting, indicating

that FERM-JAK2 acts as an oncogene. As described pre-

viously, JAK2-V617F led to factor independent growth

(Fig. 2A) [4,22]. When we focused on the phosphorylation

status, we found that FERM-JAK2, in contrast to JAK2-

V617F, lacks constitutive kinase autophosphorylation of

tyrosine residues 1007 and 1008. However, strong activa-

tion of STAT5, but not ERK could be detected (Fig. 2B),

suggesting that FERM-JAK2 is able to activate STAT5
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without constitutive autophosphorylation in a ligand

independent manner.

Canonical STAT5 activation involves phosphoryla-

tion of cytokine receptors after binding to JAK2. In

order to investigate FERM-JAK2 signaling in more

detail, we analyzed IL-3 receptor beta (IL-3Rb), which
is constitutively phosphorylated by JAK2-V617F. In

line with the lack of autophosphorylation, FERM-

Fig. 1. Ruxolitinib-resistant Ba/F3 cell clones harbor a truncated JAK2 variant. (A) Immunoblot analysis of STAT5, AKT, and ERK signaling in

4 lM ruxolitinib-resistant Ba/F3 cell clones R1–R5 (n = 5 different resistant clones). Par-parental Ba/F3 cells. (B) Immunoblot analysis of resis-

tant clones using a JAK2 antibody recognizing amino acids (aa) 841–845 shows presence of a 45 kDA form (n = 5 different resistant clones).

(C) Immunoblot analysis of resistant clones using a FLAG antibody detecting the n-terminal sequence next to JAK2-V617F cDNA (n = 5 dif-

ferent resistant clones). (D) An antibody raised against aa 750–757 fails to identify the 45 kDa JAK2 variant in drug-resistant clones in an

immunoblot (n = 5 different resistant clones). A representative image of n = 2 two independent experiments is shown (A, B, C and D). (E)

PCR analysis of the JAK2 cDNA isolated from 4 lM ruxolitinib-resistant clones (n = 10 different resistant clones). (F) Schematic representa-

tion of sequencing results that revealed an in-frame deletion of aa 77 to aa 814.
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JAK2 also fails to associate with the IL-3Rb chain

(Fig. 2C). To further confirm the notion that FERM-

JAK2 activates STAT5 without receptor binding, we

ectopically expressed FERM-JAK2 or JAK2-V617F

in Gamma2A cells, which lack intrinsic JAK2 and IL-

3Rb. Strikingly, FERM-JAK2 displayed strong

activation of STAT5 in these cells and IL-3Rb recon-

stitution did not further enhance STAT5 phosphoryla-

tion, indicating that FERM-JAK2 activates STAT5

independent of interaction with cytokine receptor as

shown before [26]. JAK2-V617F alone did not display

any activity in Gamma2A cells and STAT5 activation

Fig. 2. FERM-JAK2 transforms Ba/F3 cells and activates STAT5 via a non-canonical pathway. (A) Left panel: Proliferation of parental Ba/F3

cells and Ba/F3 cells expressing FERM-JAK2 or JAK2-V617F in the absence of IL-3 was quantified by the relative optical density (OD) after

96 h using an MTS (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)-based assay. Right panel: Absolute cell numbers over time

were measured in the absence of IL-3 by trypan blue exclusion (n = 3). ***P < 0.001 compared to parental cells by Student’s t test. Data

are shown as mean � standard deviation (SD). (B) Immunoblot analysis of serum-starved Ba/F3 cells expressing FERM-JAK2 or JAK2-

V617F. A representative image of n = 2 two independent experiments is shown. (C) IL-3Rb immunoprecipitation (IP) analysis of Ba/F3 cells

expressing FERM-JAK2 or JAK2-V617F. pY, phosphotyrosine; WCL, whole cell lysate. A representative image of n = 3 three independent

experiments is shown. (D) Immunoblot analysis of Gamma2A cells stably expressing mock vector, FERM-JAK2 or JAK2-V617F in combina-

tion with or without IL-3Rb chain. A representative image of n = 3 three independent experiments is shown.
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was only observed after IL-3Rb reconstitution, as

shown previously [22].

In order to further validate our finding, we also

reconstituted the Ba/F3-FERM-JAK2 and Ba/F3-

JAK2-V617F cells with hemagglutinin-tagged erythro-

poietin receptor (HA-EpoR), since EpoR is the most

physiological receptor for the JAK2 activation. We

found that FERM-JAK2 transforms the EpoR-Ba/F3

cells as efficiently as JAK2-V617F (Fig. S2A). Similar

to IL-3Rb, immunoprecipitation (IP) and Epo stimula-

tion results suggest that FERM-JAK2 fails to activate

and associate with the EpoR (Fig. S2B,C).

3.3. FERM-JAK2 binds STAT5 directly by

constitutive dimerization

As FERM-JAK2 activates STAT5 without cytokine

receptor association, we suspected that FERM-JAK2

directly binds STAT5. Subcellular fractionation demon-

strated that FERM-JAK2 is strictly localized in cyto-

plasm whereas JAK2-V617F additionally exists in a

small fraction in the nucleus (Fig. S3), confirming previ-

ous studies [27]. Using JAK2 co-IP, we indeed found

evidence that FERM-JAK2 directly associates with

STAT5 without receptor involvement, whereas the inter-

action of JAK2-V617F with STAT5 is mediated by IL-

3Rb (Fig. 3A). To further confirm the direct association

of STAT5 to FERM-JAK2, we used in vitro translation

of both FERM-JAK2 and JAK2-V617F (Fig. 3B) and

performed binding studies with purified STAT5 protein.

In line with the co-IP results, FERM-JAK2, but not

JAK2-V617F, directly interacts with STAT5 in vitro

(Fig. 3C). In order to analyze whether the direct

FERM-JAK2-STAT5 association is due to constitutive

kinase dimerization, we inserted FERM-JAK2 and

JAK2-V617F in both FLAG-tagged and Myc-tagged

expression constructs. All FLAG- or Myc-tagged pro-

teins showed equal level of STAT5 activation. Strikingly,

IP of Myc-tagged FERM-JAK2 resulted in increased

co-IP of FLAG-tagged FERM-JAK2. In contrast, IP of

Myc-tagged JAK2-V617F resulted in the co-IP of

FLAG-tagged JAK2-V617F (Fig. 3D), as previously

described [22]. These results suggest that FERM-JAK2

molecules dimerize constitutively, resulting in direct con-

stitutive STAT5 interaction and phosphorylation.

3.4. FERM-JAK2 is highly resistant to

ATP-competitive inhibitors

Since we identified FERM-JAK2 in ruxolitinib-

resistant clones, we decided to test whether indeed

FERM-JAK2 is able to confer drug resistance to the

cells. Hence, we took stably transfected Ba/F3 cells

expressing FERM-JAK2 or JAK2-V617F and cultivated

them in presence of increasing concentrations of ruxoliti-

nib. We found that Ba/F3-FERM-JAK2 cells are highly

resistant to ruxolitinib up to concentrations of 4 lM,
whereas JAK2-V617F-positive cells are sensitive to ruxo-

litinib as demonstrated previously [28]. Parental Ba/F3

cells are less sensitive to ruxolitinib compared to Ba/F3-

JAK2-V617F cells (Fig. 4A). FERM-JAK2 expressing

cells showed persistent STAT5 activation at 2 lM ruxoli-

tinib concentration, which is slightly reduced at 4 lM
(Fig. 4B). These data provide evidence that indeed

FERM-JAK2 confers resistance to ruxolitinib.

We then investigated cross-resistance to fedratinib

(TG101348), another potent JAK2 inhibitor with high

activity in JAK2-V617F, JAK2 exon 12 mutation and

MPL-W515K positive patients [29]. Similar to ruxoliti-

nib, treatment of Ba/F3-FERM-JAK2 cells with fedra-

tinib does not impair cell growth or STAT5 activation,

even at high (4 lM) concentrations. In contrast,

Ba/F3-JAK2-V617F cells are highly sensitive toward

fedratinib (Fig. 4C,D) confirming previous studies [30].

In order to overcome the resistance of FERM-JAK2

cells to ATP-competitive inhibitors, we focused on

heat shock protein (HSP) 90 inhibitors. JAK2-V617F

is a client protein of HSP90, and cells harboring JAK2

kinase inhibitor resistant mutations have been demon-

strated to be sensitive to HSP90 inhibitors [31].

When we treated Ba/F3-FERM-JAK2 cells with the

HSP90 inhibitors 17-AAG and geldanamycin, both

substances exhibit strong inhibition of cell prolifera-

tion as well as downregulation of the FERM-JAK2

protein (Fig. S4A–C). These results indicate that

FERM-JAK2 is highly dependent on the HSP90 path-

way for its proper folding and HSP90 inhibitors could

be used as therapeutic agents against JAK2 TKI resis-

tant variants.

3.5. Activation loop tyrosine phosphorylation is

dispensable for FERM-JAK2 activation

We next set out to elucidate the molecular mechanism

of inhibitor resistance conferred by FERM-JAK2. In

general, ATP-competitive inhibitors block the ATP-

binding pocket within the kinase domain. Conse-

quently, resistance primarily occurs through structural

alterations that deny inhibitor access to the pocket.

FERM-JAK2 however, does not display any point

mutations in the ATP-binding pocket, therefore we

focused on the activation loop, which regulates kinase

activity and accessibility. JAK2 is a structurally very

plastic enzyme which can be present in an active

or inactive conformation. The switch to an active

kinase state can be triggered by phosphorylation of
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tandem tyrosines located within the activation loop,

moving the loop away and thereby unblocking the

active site. X-ray crystallographic studies of the iso-

lated JAK2 kinase domain demonstrated that ruxoliti-

nib and several other JAK2 inhibitors bind the ATP

pocket when the activation loop tyrosines are phos-

phorylated [32]. To study the impact of the activation

loop in the FERM-JAK2 background, we substituted

either the tyrosine residue Y1007 or Y1008, or both

with phenylalanine. However, none of these variants

prevent FERM-JAK2 from activating STAT5 and

transforming Ba/F3 cells, whereas in contrast, they all

lead to complete inactivation of JAK2-V617F

(Fig. 5A,B). These results suggest that activation loop

tyrosines Y1007 and Y1008 play a dispensable role in

FERM-JAK2 activation, contrary to JAK2-V617F.

Fig. 3. FERM-JAK2 directly binds STAT5 via constitutive dimerization. (A) FLAG immunoprecipitation (IP) analysis of Ba/F3 cells expressing

FLAG-FERM-JAK2 or FLAG-JAK2-V617F. A representative image of n = 3 three independent experiments is shown. (B) Immunoblot analysis

of in vitro translated FERM-JAK2 or JAK2-V617F. A representative image of n = 3 three independent experiments is shown. (C) Immunoblot

analysis of in vitro translated FERM-JAK2 or JAK2-V617F incubated with purified STAT5 after washing. A representative image of n = 3

three independent experiments is shown. (D) Myc IP analysis of HEK-293T cells co-expressing FLAG-tagged and Myc-tagged FERM-JAK2

or JAK2-V617F. WCL, whole cell lysate. A representative image of n = 3 three independent experiments is shown.
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However, more detailed structural and functional stud-

ies are required to explain the resistant phenotype of

FERM-JAK2 against type I JAK2 inhibitors.

We then mutated all JAK2 kinase domain tyrosines

to phenylalanine in both FERM-JAK2 and JAK2-

V617F to determine tyrosine residues necessary for

FERM-JAK2 activation. We found that tyrosines

Y868, Y913 + Y918, and Y966 are solely required by

FERM-JAK2 to activate STAT5, compared to

JAK2-V617F depending on Y934 + Y940 in addition

to Y1007 and Y1008. Interestingly, only Y972 is a tyro-

sine crucial for autophosphorylation of both FERM-

JAK2 and JAK2-V617F (Fig. S5A–D). However, it is

noteworthy that most tyrosines in JAK2 are essential

for structural integrity, like Y972 which most likely

forms a hydrogen bonding to S904 [33]. Therefore, the

phenylalanine mutants we created here might have

affect not just JAK phosphorylation. Thus, in-depth

structural and functional analyses are required to con-

clude the mode of FERM-JAK2 activation.

3.6. FERM-JAK2 induces an accelerated MPN

phenotype in the murine model

In order to investigate whether FERM-JAK2 is able

to induce a disease in the murine model, we

Fig. 4. FERM-JAK2 confers resistance to JAK2-ATP competitive inhibitors. (A) MTS (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide)-based cell proliferation analysis of Ba/F3 cells expressing JAK2 mutants cultured with indicated concentration of ruxolitinib for

48 h. OD, optical density. Data are shown as mean � standard deviation (SD) (n = 3). (B) Immunoblot analysis of Ba/F3 cells expressing

JAK2 mutants cultured with indicated concentration of ruxolitinib for 48 h. A representative image of n = 2 two independent experiments is

shown. (C) MTS-based cell proliferation analysis of Ba/F3 cells expressing JAK2 mutants cultured with indicated concentration of TG101348

(TG) for 48 h. Data are shown as mean � standard deviation (SD) (n = 3). OD, optical density. (D) Immunoblot analysis of Ba/F3 cells

expressing JAK2 mutants cultured with indicated concentration of TG101348 (TG) for 48 h. A representative image of n = 2 two indepen-

dent experiments is shown.
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transplanted lethally irradiated Balb/c mice with bone

marrow (BM) cells harboring either FERM-JAK2,

JAK2-V617F, or empty vector in two independent

experiments. Strikingly, recipient mice succumbed to

FERM-JAK2-induced disease with a median survival

of 68 days, together with reduction of the body

weight. In contrast, JAK2-V617F transplanted mice

died after a median 132 days (Fig. 6A,B). BM and

spleen organ analysis results revealed a granulocytic

disease for both FERM-JAK2 and JAK2-V617F

transplanted mice with an increase in CD11b and Gr-1

positive cells in (Fig. 6C,D). Microscopically, spleens

derived from FERM-JAK2+ and JAK2-V617F+ mice

showed a marked leukemic infiltration with a left

shifted granulopoiesis, erythropoiesis, and moderate

increased megakaryopoiesis. Notably, infiltrates are

denser in FERM-JAK2 mice compared to JAK2-

V617F mice (Fig. 6E). Moreover, FERM-JAK2 trans-

planted mice showed grade II myelofibrosis already

60 days after transplantation, whereas JAK2-V617F

transplanted mice did not display any signs of myelofi-

brosis at that stage (Fig. 6F). FERM-JAK2+ recipient

mice developed signs of MPN similar to JAK2-V617F-

induced disease with increased WBC, hematocrit,

hemoglobin and granulocytes in peripheral blood

(Fig. S6A,B). In addition to elevated blood counts,

FERM-JAK2 also induced a profound splenomegaly

with a median spleen weight of 476 mg, compared to

292 mg for JAK2-V617F+ and 113 mg for empty vec-

tor control mice (Fig. S6C).

Fig. 5. Activation loop phosphorylation is dispensable for FERM-JAK2 activation. (A) MTS (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide)-based cell proliferation analysis of Ba/F3 cells expressing FERM-JAK2 or JAK2-V617F plus activation loop

mutations Y1007F and/or Y1008F. A representative result (n = 2) from three independent experiments is shown. Data are shown as

mean � standard deviation (SD). OD, optical density. (B) Immunoblot analysis of serum starved Ba/F3 cells expressing FERM-JAK2 or

JAK2-V617F phospho-deficient mutants Y1007F and/or Y1008F. A representative image of n = 2 two independent experiments is

shown.

Fig. 6. FERM-JAK2+ mice succumb to an accelerated MPN with myelofibrosis. Two independent experiments were analyzed, including a total

of n = 17 mice receiving bone marrow (BM) transduced with FERM-JAK2, n = 18 JAK2-V617F+ bone marrow (BM) and n = 10 empty vector

control bone marrow (BM) cells. (A) Kaplan–Meier survival plot of recipient mice, FERM-JAK2 mice display accelerated disease (n = 5 for all

groups). **P < 0.001 by Logrank test. Tx, transplantation. (B) FERM-JAK2 mice show a significant decrease of total body weight 60 days after

transplantation compared to MiG (MSCV-ires-GFP) empty vector control mice (n = 5). ***P < 0.001, n.s., not significant, both compared to MiG

(MSCV-ires-GFP) by Student’s t test. Data are shown as mean � standard deviation (SD). (C, D) Flow cytometric analysis of (C) splenocytes and

(D) BM cells taken 60 days after transplantation. Values represent Mean � SEM of the transplanted animals. ***P < 0.001 compared to MiG by

Student’s t test. (E) Histopathologic analysis (hematoxylin and eosin staining, 9400) revealed hyperplastic, left-shifted myelopoiesis granulopoi-

esis, erythropoiesis, and moderate increased megakaryopoiesis. Scale bar represents 15 lM. Notably, infiltrates are very dense in FERM-JAK2

mice compared to JAK2-V617F mice. (F) Hematoxylin/eosin and reticulin staining of representative tissue samples 60 days after transplantation

(4009). BM obtained from FERM-JAK2 mice shows left-shifted increase of myeloid cells and a marked presence of collagen fibers, similar to

the increase of reticulin fibers in human myeloproliferative disorders. Slides were viewed with a Zeiss Axioplan 2 microscope (G€ottingen, Ger-

many) (409/0.75 NA Plan-Neofluar air objective). Scale bar represents 15 lM. Images were acquired using a Zeiss Axiocam MRc 5 camera and

were processed with AXIOVISION REL 4.6 scanning software (CarlZeissMicroscopy GmBH, Jena, Germany).
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4. Discussion

BCR-ABL negative MPNs such as PV, ET and PMF

are frequently associated with the V617F mutation in

JAK2 [3–5,7,13]. In addition to MPNs, constitutive

JAK2 signaling is also involved in several solid tumors

and other lymphoid malignancies [34–36]. Small mole-

cule inhibitors such as ruxolitinib, TG101348 and

CEP-701 have shown remarkable clinical activity in

clinical trials of PMF patients [17,37]. In CML and
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GIST, it has been demonstrated that acquired resis-

tance to the ABL kinase inhibitor imatinib is due to

the emergence of secondary kinase domain mutations.

More than 70 different exchanges have been described

that confer drug resistance in the CML [38]. However,

no inhibitor resistant variant has been described in

MPN treated with JAK inhibitors so far. In this study,

we identified a 45-kDa novel JAK2 variant, which

drives resistance to available JAK2 inhibitors.

In our cell-based screening approach, the yield of

resistant clones was high at low ruxolitinib con-

centrations and decreased with higher ruxolitinib

concentration. Cell clones resistant to low ruxolitinib

concentrations did not display any JAK2 point muta-

tions neither in the kinase nor in the pseudokinase

domain. A possible explanation may be that amino

acids variations which diminish inhibitor binding also

compromise JAK2 kinase activity. In line with these

findings, Koppikar et al. [39] showed that occurrence of

genetic resistance by point mutations in JAK2 is rare

and that heterodimeric JAK–STAT activation is one

mechanism for MPN cell to persist under therapy.

Another study identified few novel JAK2 inhibitor resis-

tant variants using random mutagenesis, which only

induced a modest increase in half-maximum inhibitory

concentration (IC50) [28]. Weigert et al. [31] identified

three novel JAK2 variants, G935R, Y931C and E864K,

conferring resistance against the inhibitor BVB808.

These studies provide evidence that the low frequency

of JAK2 inhibitor resistance mutations might be related

to the limited repertoire of kinase domain residues that

could possibly mediate that resistance.

Our screen recovered the FERM-JAK2 variant as

the most frequent event (80%) capable of supporting

cell growth in the presence of ruxolitinib. So far, no

other study has detected this 45 kDa protein, which

may be due to methodological differences. The studies

mentioned above carried out random mutagenesis

before applying selection pressure, which might favor

point mutations over truncation variants. In contrast,

we decided to avoid any mutagenesis steps, which rep-

resents the clinical situation much more closely. An

alternative explanation could be that other studies

relied on detection antibodies binding to the deleted

protein part and therefore missed the short form of

JAK2. In addition, our results also provide evidence

that sequencing solely the kinase domain might not be

sufficient to identify all relevant TKI escapes mecha-

nisms. This finding warrants the importance of whole

exome next-generation sequencing (NGS) including

splice variants for ruxolitinib-resistant MPN patients.

Our results are in line with findings in BRAF-

V600E positive melanoma patients, where resistance

against the TKI vemurafenib is mediated by the gener-

ation of a truncated BRAF splice variant (p61BRAF

[V600E]). This protein is generated by deletion of

exons 4 to 8 including critical domains for RAF acti-

vation, most notably the RAS-binding domain (RBD)

and the cysteine–rich domain (CRD). It was shown

that p61BRAF(V600E) mediates enhanced dimeriza-

tion compared to full-length BRAF protein [40]. In

contrast, the 45 kDa JAK2 variant observed here is

not the result of a splice event, as there are no known

splice sites at the protein fusion points. Moreover, the

fusion event took place within the JAK2-V617F

cDNA introduced into the Ba/F3 cell line for transfor-

mation, as indicated by the sequencing strategy utiliz-

ing forward primers targeting the 50 FLAG tag. In

mechanistic studies, we demonstrated that FERM-

JAK2 constitutively activates STAT5 via a non-

canonical pathway without receptor interaction. These

results support a previous observation that receptor

unbound FERM domain interacts with the JH1/JH2

domains, thereby preventing inappropriate activity of

the kinase. Recruitment of JAK2 to the receptor com-

plex leads to release of inhibitory constraints exerted

by the FERM domain on the JH1/JH2 domains [41].

Based on these data, we assume that FERM-JAK2 is

constitutively active due to lack of around 80% of the

FERM domain, rendering it unable to restrict kinase

activity. In addition, FERM-JAK2 is also character-

ized by deletion of pseudokinase domain, which is a

known negative regulator of the kinase domain [42–44].
Moreover, JAK2 protein levels are negatively regulated

by SOCS proteins such as SOCS-1 and SOCS-3, which

are recruit to JAK kinases via phosphorylated activa-

tion loop tyrosines Y1007 and Y1008 [45]. Here we

found that these two crucial tyrosines are not phos-

phorylated in Ba/F3-FERM-JAK2 cells, which might

contribute to enhanced stabilization of FERM-JAK2

due to lack of SOCS protein binding (data not shown).

Our results also demonstrate that FERM-JAK2, con-

trary to full-length JAK2, dimerizes constitutively

similar to p61BRAF(V600E) and this constitutive

dimerization leads to drug resistance [40].

Apart from its cell transforming capacity, FERM-

JAK2 is also a potent driver of resistance toward

ATP-competitive inhibitors, which is most likely due

to an altered conformation that abrogates drug bind-

ing to the catalytically active kinase domain. Similar

finding has been made with BCR-ABL mutations ren-

dering CML cells resistant against imatinib. These var-

iants have been shown to destabilize the auto

inhibited, inactive conformation of BCR-ABL which is

preferentially bound by imatinib, and shifts the equi-

librium toward the active kinase confirmation [46].
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In contrast, most JAK2 inhibitors interact with JAK2-

V617F in the active kinase conformation [32] and

phosphorylation of activation loop tyrosines acts as a

molecular switch between active or in inactive states

[47]. Our results demonstrate that activation loop

phosphorylation is dispensable for FERM-JAK2 acti-

vation and cellular transformation, suggesting a shift

of the equilibrium toward to inactive state of the

kinase. However, a complete structural analysis of

FERM-JAK2 would be required to determine the pre-

cise mechanism of STAT5 activation and inhibitor

resistance.

In our study, we have also uncovered a potential

therapeutic strategy to overcome resistance mediated

by FERM-JAK2 through inhibition of HSP90. HSP90

acts as a molecular chaperone with major roles in the

maturation of client proteins including a multitude of

fusion kinases and oncogenic proteins. Thus, HSP90

inhibitors like geldanamycin or zelavespib (PU-H71)

have proven their value in the treatment of myeloma

and other cancers [48], as well as in murine models of

JAK2-V617F and MPL driven MPNs. HSP90 inhibi-

tion has also been shown to downregulate JAK2 pro-

tein levels in vitro [49]. Our results further underline

the importance of clinical evaluation of HSP90 inhibi-

tors in drug refractory JAK2 driven MPNs.

Notably, FERM-JAK2 cannot be detected by most

Sanger sequencing approaches, which are still in use

for the routine inspection of JAK2 point mutations in

MPN patients. Even next-generation sequencing might

not reliably detect FERM-JAK2 if present at low

allele frequency. Workflows used for whole exome

sequencing (WES) analysis approved for routine clini-

cal diagnostics typically include multiple filtering steps,

e.g., only nonsynonymous mutations listed by the

Exome Aggregation Consortium or gnomAD with a

variant allele frequency of > 5% and a minor allele

frequency of < 0.1% are reported [50]. Coverage repre-

sents another important factor, rare variants covered

by only 1–2 reads might be missed if the coverage is

too low (< 100). In order to detect the FERM-JAK2

variant, either the filtering strategies could be adapted

or fusion detection could be improved by implement-

ing molecular barcodes spanning different exon regions

of the JAK2. Our results therefore underline the

urgent need for the use of WES deep sequencing opti-

mized for detection of JAK2 length variants for clini-

cal monitoring of MPN patients receiving JAK1/2

directed treatments.

Taken together, we have identified a novel constitu-

tively active JAK2 variant which drives resistance to

ATP-competitive inhibitors in vitro and induces an

accelerated MPN phenotype in vivo.

5. Conclusion

We found that ruxolitinib resistance is mediated by

45-kDa novel JAK2 variant (FERM-JAK2) that

exists in constitutively dimerized state and prevents

the phosphorylation of activation loop tyrosines.

FERM-JAK2 induces a severe MPN-like disease in

the mouse model. Our results point toward an urgent

need for the use of whole exome sequencing in the

clinical monitoring of inhibitor-refractory individuals

in order to detect JAK2 variants.
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