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The inflammasome is a large multiprotein complex that as-
sembles in the cell cytoplasm in response to stress or pathogenic
infection. Its primary function is to defend the cell and promote
the secretion of pro-inflammatory cytokines, including IL-1β
and IL-18. Previous research has shown that in immortalized
bone marrow-derived macrophages (iBMDMs) inflammasome
assembly is dependent on the deacetylase HDAC6 and the
aggresome processing pathway (APP), a cellular pathway
involved in the disposal of misfolded proteins. Here we used
primary BMDMs from mice in which HDAC6 is ablated or
impaired and found that inflammasome activation was largely
normal. We also used human peripheral blood mononuclear
cells and monocyte cell lines expressing a synthetic protein
blocking the HDAC6-ubiquitin interaction and impairing the
APP and found that inflammasome activation was moderately
affected. Finally, we used a novel HDAC6 degrader and showed
that inflammasome activation was partially impaired in human
macrophage cell lines with depleted HDAC6. Our results
therefore show that HDAC6 importance in inflammasome
activation is context-dependent.

The inflammasome is a critical protein complex involved in
the body’s immune response (1). When activated, the inflam-
masome releases the pro-inflammatory cytokines interleukin
(IL)-1β and IL-18, which can result in tissue damage and cell
death through pyroptosis (2). Several sensor proteins can
nucleate inflammasome assembly, including NLRP and NLRC
subfamilies, AIM2, and pyrin. Among these, the NLRP3
inflammasome, which is key for sterile inflammation has been
extensively studied (3). Activation of the NLRP3 inflamma-
some often requires a transcriptional priming step to upre-
gulate the inflammasome components such as NLRP3 and IL-
1β. Priming agents, e.g., bacterial lipopolysaccharide (LPS),
tumor necrosis factor (TNF), or phorbol 12-myristate 13-
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acetate (PMA), also trigger critical post-translational modifi-
cations that sensitize the inflammasome components to sub-
sequent activation. Various stimuli, including the pore-
forming toxin nigericin, adenosine-triphosphate (ATP) (4),
and monosodium urate crystals (MSU) (5) can stimulate
NLRP3 inflammasome assembly, leading to pro-caspase one
activation, followed by cleavage and release of IL-1β (3).
Aberrant inflammasome activity has been linked to many
diseases (3), and a detailed understanding of the inflamma-
some’s activation process is crucial for the development of
potential treatments for diseases related to inflammation and
immune responses.

The aggresome processing pathway (APP) is a stress-
response pathway that is activated when misfolded proteins
accumulate; it promotes the formation of the aggresome, a
deposit of misfolded and ubiquitinated proteins near the
microtubule-organizing center (MTOC), which is subse-
quently eliminated by autophagy (6). An essential component
of the APP is the lysine deacetylase HDAC6 (7), an atypical
enzyme with two catalytic domains and a zinc finger domain
(ZnF-UbP, hereafter ZnF) binding the small protein ubiquitin
(Ub). HDAC6 has been implicated in diverse normal or
pathological cellular processes, such as stress response (e.g.,
APP and stress granules formation) (8), cancer (9), inflam-
mation, and viral infection (10). Depending on the situation,
the catalytic domains (regulating acetylation levels of the
relevant substrate) and/or the ZnF domain (recruiting Ub) are
important for optimal HDAC6 function. In its role in the APP,
HDAC6 acts as an adapter protein that promotes the transport
of ubiquitinated misfolded proteins by dynein motor proteins
along the MTs towards the MTOC. For this, both the ZnF and
the catalytic domains are critical.

It has recently been proposed that the formation of the
NLRP3 and pyrin inflammasomes takes place near the MTOC
and uses components of the APP machinery and that conse-
quently inflammasome formation is impaired in cells lacking
HDAC6 or expressing HDAC6 with a mutated ZnF domain
(11). Furthermore, the lysosomal Ragulator complex was
recently reported to activate the NLRP3 inflammasome in vivo
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HDAC6 and inflammasome activation
via HDAC6 (12). Given the apparent similarity between
inflammasome formation and APP – in both cases assembly of
a complex near the MTOC – it is plausible that HDAC6 could
be involved in both pathways, but to define the absolute
requirement of HDAC6 in inflammasome activation, a robust
profiling of orthogonal methods needs to be tested in different
settings. Here we have examined the importance of HDAC6
for inflammasome activation in different cellular systems,
including primary mouse cells (BMDMs), peripheral blood
mononuclear cells (PBMCs), and human cell lines, and
manipulated HDAC6 levels through different approaches.
Under the conditions tested, we found that the activation of
NLRP3 was only partially dependent on HDAC6.
Results

NLRP3 inflammasome is activated efficiently in HDAC6 KO
and ZnFm BMDMs

Previouswork identified the role ofHDAC6 in inflammasome
activation in immortalized bone marrow-derived macrophages
(iBMDMs) (11). To avoid alterations in transcriptome and other
cellular processes associated with the establishment of an
immortalized cell line, we first used primary BMDMs fromwild-
type (WT) mice as well as two mouse lines in which HDAC6 is
either ablated (KO) (13) or contains a W1116A point mutation
in the ZnF domain (ZnFm, manuscript in preparation), which
abolishes ubiquitin binding (10). BMDMs of the different ge-
notypes were first primed by LPS and then challenged by
nigericin, which activates the NLRP3 inflammasome by raising
intracellular potassium (K+) efflux (14) or MSU, which leads to
the generation of reactive oxygen species (ROS) through acti-
vation of NADPH oxidases (5). Inflammasome activation was
monitored by examining the cleaved Caspase-1 p20 fragment by
immunoblotting and by measuring the release of the cytokine
IL-1β in the culture supernatant (Fig. 1A). As shown in Figure 1,
B and C, the generation of Caspase-1 p20 and production of IL-
1βwere similar inWT, KO, and ZnFm cells. The inflammasome
dependence of the IL-1β release was confirmed by using the
specific NLRP3 inhibitor MCC950 (15). Because strong
inflammasome activation eventually leads to cell membrane
damage and the release of cellular contents, we examined
cellular toxicity by measuring the level of lactate dehydrogenase
(LDH) released from cells. Also, in this case, the differences
between the genotypes were minimal and did not reach statis-
tical significance (Fig. 1D); thus, deletion ormutation ofHDAC6
in primary BMDMs does not appear to protect cells from cell
death.Wenext examined the kinetic of IL-1β release in BMDMs
of the different genotypes. Interestingly, the IL-1β amount in
HDAC6 KO and ZnFm BMDMs reached a plateau rapidly in
only 15 min after the nigericin challenge, while WT BMDMs
responded to stimulation more slowly (Fig. S1). At later time
points (between 30 and 90 min), the IL-1β difference between
the three BMDMs types was less significant, although the ZnFm

BMDMs showed a slightly reduced level. Collectively, our re-
sults in primary BMDMs did not demonstrate a clear de-
pendency on HDAC6 or its ZnF domain for NLRP3
2 J. Biol. Chem. (2024) 300(2) 105638
inflammasome activation but indicate that HDAC6 may
participate in the early timepoint response.

A ZnF-specific DARPin moderately inhibits NLRP3
inflammasome activation in THP-1 cells

To investigate more broadly the role of the HDAC6 ZnF in
NLRP3 inflammasome activation, we switched from primary
BMDMs to the leukemic THP-1 monocyte/macrophage cell
line, a widely used surrogate for human monocytes or macro-
phages. We recently reported a synthetic protein based on a
designed ankyrin repeat protein (DARPin) scaffold, DARPin
F10, which can selectively bind to the HDAC6 ZnF Ub binding
pocket in cells and blocks Ub recruitment (16) (Fig. 2A). We
previously showed that DARPin F10 is highly specific for the
HDAC6 ZnF (16). We made a degradable version of DARPin
F10 by fusing it to the FKBPF36V degron tag (15) and showed that
it is efficiently degraded in A549 cells upon addition of the
chemical dTAG-13 (hereafter dTAG). We used this system to
generate THP-1 cells expressing DARPin F10 (F10-FKBPF36V

THP-1 cells) and found that the protein was well-expressed and
could be efficiently degraded within 6 h of dTAG addition
(Fig. 2B); furthermore, expression of DARPin F10 does not alter
the level of endogenous HDAC6, or of themajor class I HDACs,
HDAC1 and 2 (Fig. S2A). Nigericin-induced NLRP3 activation
was comparable in dTAG treated parental (WT) THP-1 cells
(Fig. 2C) and in control cells expressing only the FKBPF36V

moiety (FKBPF36V THP-1 cells, Fig. S2B), thus excluding a
possible inhibitory effect of FKBPF36V expression or dTAG on
IL-1β release.When parentalWTTHP-1 cells were treatedwith
MCC950 (17), or CGP084892, a Caspase-1 inhibitor (18), IL-1β
releasewas strongly reduced, as expected.Amodest reduction of
IL-1 secretion was observed in F10-FKBPF36V THP-1 cells when
compared to the WT THP-1 cells. Degradation of DARPin F10
by dTAG treatment led to a partial, but significant, recovery of
IL-1β release (Fig. 2C).We next examined early time points - 0.5
and 1.5 h post-nigericin activation - to study the impact of
DARPin F10 on the kinetic of IL-1β release. In agreement with
Figure 2C, we observed again a slight increase of IL-1β at 3.5 h in
dTAG-treated cells (Fig. 2D). However, a larger and significant
difference was seen at 1.5 h post-activation. These data indicate
that blockade of the HDAC6 ZnF domain moderately inhibits
theNLRP3 inflammasome, particularly during the early phase of
activation by nigericin in THP-1 cells.

HDAC6 degradation moderately inhibits NLRP3
inflammasome in PBMCs

Blocking specifically the ZnF domain in THP-1 cells by
DARPin F10 showed partial inhibition of NLRP3 inflamma-
some activation, confirming that HDAC6 contributes to this
pathway. To extend these observations in other cell settings,
we next made use of a novel HDAC6 proteolysis targeting
chimera (PROTAC) degrader, XY-07-35 (19). Treatment of
cells with XY-07-35 leads to recruitment of the E3 ligase
cereblon (CRBN) to HDAC6, ubiquitination, and subsequent
proteasomal degradation of HDAC6 (Fig. 3A). This degrader
is based on the HDAC inhibitor suberoylanilide hydroxamic



Figure 1. The NLRP3 inflammasome is activated normally in HDAC6 KO or ZnFm primary mouse BMDMs. A, workflow for evaluating NLRP3
inflammasome activation in BMDMs. Bone marrow was isolated from mice strains with different mutations in HDAC6 as indicated and BMDMs were
expanded for 7 days in the presence of M-CSF1. Subsequently, BMDMs were primed for 4 h with LPS (1 μg/ml) and NLRP3 inflammasome formation was
induced by nigericin (20 μM) or MSU (200 μg/ml) addition. Release of IL-1β was monitored by ELISA and activation/cleavage of Caspase-1 was evaluated by

HDAC6 and inflammasome activation
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Figure 2. A DARPin blocking the HDAC6-Ub interaction has a modest effect on IL-1β release from THP-1 cells. A, structure of the DARPin F10 - HDAC6
ZnF domain complex (PDB: 7ZYU) showing blockade of Ub recruitment. The surface representation shows HDAC6 ZnF (yellow) and the C-terminal LRGG of
Ub (light pink) (overlayed with PDB:3GV4), the ribbon representation depicts DARPIN F10 (cyan). B, establishment of a THP-1 F10-FKBP cell line with
degradable DARPin F10. Immunoblotting with lysates of THP-1 F10-FKBP cells treated at the indicated concentration with dTAG (for 6 h). The leftmost lane
(WT) shows the parental THP-1 cells. The membrane was probed with antibodies against actin as loading control and F10 (HA-F10-FKBP F36V, detected with
anti-HA). C, IL-1β release under various treatments in THP-1 F10-FKBP cells at 3 h post-nigericin stimulation. Cells were treated as indicated in the scheme at
the top. The graph at the bottom shows the measurement of IL-1β in cell supernatants, based on three independent experiments. MCC950 and CGP084892
are NLRP3 and Caspase-1 inhibitors, respectively. One-way ANOVA test was applied for statistical analysis. ****p <0.0001. Cells were first treated with PMA
(0.5 μM) for 3 h, then medium was exchanged and dTAG was added (1 μM); MCC950 (10 μM) and CGP084892 were added 30 min before nigericin (15 μM)
treatment. D, IL-1β release from 0 h to 3.5 h after nigericin treatment in THP-1 or THP-1-F10-FKBP cells. Experimental set-up was as in (B) and IL-1β
concentration was monitored at timepoint 0, 0.5, 1.5, and 3.5 h post nigericin treatment. Two-way ANOVA tests were applied, and comparison was per-
formed within each timepoint between with and without dTAG group. **p< 0.01. Experimental setup as in (C).

HDAC6 and inflammasome activation
acid (SAHA) fused by a linker to pomalidomide as a CRBN-
binding moiety; the negative control compound XY-07-191
contains a methyl group on the pomalidomide moiety
which disrupts CRBN recruitment (Fig. 3B). In vitro enzy-
matic assays with purified HDACs showed that XY-07-35
inhibited HDAC6 with a low IC50 = 0.0485 μM, which is
ten times lower than for HDAC8 (0.621 μM) or other
immunoblotting. B, normal NLRP3 activation in WT, HDAC6 KO and HDAC6 ZnF
tubulin as loading control. Nigericin and MSU were used with LPS primed BMD
and ZnFm BMDMs. IL-1β from supernatant in (B) was measured by ELISA and sta
D, no difference in cytotoxicity following inflammasome induction in WT, HDAC
culture supernatant from (B) and statistical analysis was done by one-way AN
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HDACs (1.04–5.75 μM; Fig. 3C); in addition, the degradation
profile of XY-07 to 35 is highly specific for HDAC6 (19). This
compound does not show cellular toxicity when tested over a
broad concentration range in either HEK293T, Jurkat or
U937 cells (Fig. S3A).

We first tested the efficacy of XY-07-35 in immune cell lines.
Unexpectedly, XY-07-35 treatment did not lead to HDAC6
m BMDMs. Immunoblot monitoring HDAC6, Capase-1 (p20) cleavage and α-
Ms (n = 3). C, normal mIL-1β release in the supernatant from WT, HDAC6 KO
tistical analysis was done with one-way ANOVA. ns, no significant difference.
6 KO and ZnFm BMDMs. Lactate dehydrogenase (LDH) was measured in the
OVA. ns, no significant difference.



Figure 3. Effect of XY-07 to 35 mediated HDAC6 degradation on NLRP3 inflammasome activation in PBMCs. A, schematic of the mode of action of an
HDAC6 degrader. The PROTAC engages both HDAC6 and the E3 ligase cereblon (CRBN), which then leads to ubiquitination and degradation of HDAC6. B,
chemical structure of the HDAC6 degrader XY-07-35 and of the negative control XY-07-191 which no longer recruits CRBN. C, in vitro enzymatic assay of
compound XY-07-35 on the activity of different HDACs. IC50 for each enzyme is shown. D, XY-07-35 mediated HDAC6 degradation in PBMCs. PBMCs
(without or with LPS priming for 4 h) were treated with the indicated compounds and HDAC6 levels were detected by immunoblotting with an anti-HDAC6
antibody. Detection of actin was used as a control for loading. CGP, CGP084892 (Caspase-1 inhibitor); AFN700 is an inhibitor of the NF-kB pathway (IKK
inhibitor). E, HDAC6 degradation impact on IL-1β release in PBMCs following MSU 200 μg/ml (5 h), nigericin 2 μM (2 h) or ATP 3 mM (0.5 h) treatment. Cells
were first primed with 0.2 ng/ml LPS for 4 h at 37 �C, then treated with MSU, nigericin, and ATP as indicated. The graphs below show the results of three
independent experiments using the inducers as indicated. NP3-948 is an inhibitor of the NLRP3 inflammasome.

HDAC6 and inflammasome activation
degradation in both non-differentiated and PMA-differentiated
THP-1 cells (Fig. S3B). Therefore, to assess its effect on NLRP3
inflammasome activation in human cells we used peripheral
blood mononuclear cells (PBMCs). HDAC6 was efficiently
degraded in PBMCs at 1 μM XY-07-35 concentration; by
contrast, the negative control compoundXY-07-191 or the IκKβ
inhibitor AFN700 (18) had onlyminimal or no effect onHDAC6
levels (Fig. 3D). To test the functional consequence of HDAC6
degraders, PBMCs were first treated with the HDAC6 degrader
or the negative control compound for 24 h, followed by LPS
priming and subsequent stimulation with MSU, nigericin, or
ATP to activate the NLRP3 inflammasome (Fig. 3E). The
HDAC6 degrader XY-07-35 clearly reduced the IL-1β release
under all stimulatory conditions as compared to DMSO, though
partial inhibition was also seenwith the negative control XY-07-
191, suggesting some non-specific effects of the scaffold.
HDAC6 degradation had themost profound inhibition ofMSU-
triggered IL-1β release, achieving ca. 60% of IL-1β reduction as
compared to DMSO, while under nigericin and ATP stimula-
tion, the reduction was 40%. A statistically significant reduction
of IL-1 between XY-07-35 and the control compound XY-07-
191, was only seen in the MSU conditions. Inhibitors of other
nodes of the pathway, theNLRP3 inflammasome inhibitor NP3-
948 and AFN700 both led to an almost complete (>90%) inhi-
bition of IL-1β release. The negative control compound XY-07-
191 also minimally inhibited IL-1β release, but less effectively
J. Biol. Chem. (2024) 300(2) 105638 5
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than XY-07-35, suggesting a beneficial effect of HDAC6
degradation. We also measured cell viability by using resazurin
fluorescence in PBMCs, but since monocytes constitute only a
minor fraction of the cell population, the pyroptosis could not be
tracked efficiently. Overall, these results show a partial reduc-
tion in NLRP3 inflammasome activation following the degra-
dation of HDAC6, with the magnitude of the effect depending
on the stimulus.
HDAC6 degradation does not affect pyrin inflammasome
activation

According to a previous report (11), activation of both
NLRP3 and pyrin inflammasomes depends on HDAC6. To
evaluate the importance of HDAC6 for the pyrin inflamma-
some, we used a previously established U937 pyrin-
overexpressing cell line (20). In these cells, treatment with
the bile acid derivative BAA473 activates the pyrin inflam-
masome, leading to the release of cytokines (e.g., IL-1β, IL-18)
and pyroptosis; IL-18 expression is induced without the need
for prior priming and was used for monitoring inflammasome
activation. HDAC6 was efficiently degraded in the U937-pyrin-
expressing cells by XY-07-35 at concentrations ranging from
0.1 μM to 10 μM (Fig. 4A). However, treatment with XY-07-35
did not result in any change in IL-18 secretion compared to
either the DMSO control or the XY-07-191 control (Fig. 4B).
Figure 4. Effect of HDAC6 degradation on pyrin inflammasome acti-
vation in U937 cells. A, XY-07-35 mediated HDAC6 degradation in pyrin-
expressing U937 cells. Cells were treated with the indicated compounds
and HDAC6 was detected by immunoblotting with an anti-HDAC6 antibody.
Detection of actin was used as a control for protein loading. B, no impact of
HDAC6 degradation on IL-18 release in U937-pyrin cells treated with the
indicated compounds. Pyrin inflammasome was activated by BAA473
(200 μM) for 4 h at 37 �C. The scheme at the top depicts the experimental
outline. The graph at the bottom presents IL-18 release based on four in-
dependent experiments. CGP, CGP084892 (200 μM). ns, no significant
difference.

6 J. Biol. Chem. (2024) 300(2) 105638
Additionally, we measured cell viability and found that
HDAC6 degradation by XY-07-35 did not protect cells from
pyroptosis (Fig. S4), confirming that in this setting, HDAC6
degradation has no effect on pyrin inflammasome activation.

Discussion
In this study, we utilized a range of cellular systems and

several orthogonal approaches to modulate HDAC6 activity
and probe its role in NLRP3 and pyrin inflammasome activa-
tion. HDAC6 protein levels were modulated by both knock-
out and chemically induced degradation, while the function
was probed by a knock-in unable to bind to ubiquitin and a
DARPin inhibitor blocking ubiquitin recruitment. In contrast
to a previous study reporting on the HDAC6-ubiquitin inter-
action as a crucial regulator of inflammasome activation (11),
we did not observe a significant difference in NLRP3 inflam-
masome activation between WT and HDAC6 knock-out or
HDAC6 ZnFm (W1116A) BMDM cells. To investigate this
further, we examined the effect of a small protein (DARPin
F10) binding to the HDAC6 ZnF domain and preventing
ubiquitin recruitment. This protein was shown to have a
strong inhibitory impact on processes involving the ZnF-Ub
interaction, such as the formation of aggresomes or stress
granules, or infection by influenza or Zika virus (16). However
under conditions of inflammasome induction, we observed
only partial downregulation of IL-1β release in THP-1 cells
expressing DARPin F10 when stimulated with nigericin. In
primary PBMCs and U937 cells, the selective HDAC6 degrader
XY-07-35 efficiently degraded HDAC6, but HDAC6 had only
modest, stimulation-dependent effects on NLRP3 inflamma-
some activation. Furthermore, HDAC6 degradation had no
effect on IL-18 release and pyroptosis mediated by pyrin. With
respect to NLRP3 inflammasome activation, HDAC6 degra-
dation had the strongest effect on MSU-stimulated IL-1β
release, which is a milder, non-pyroptotic form of NLRP3
activation (Fig. 3E). Similarly, in THP1 cells, HDAC6 inhibi-
tion seemed to have its most pronounced effect at early
timepoints. It is possible that HDAC6 plays a more pro-
nounced role in response to crystalline inflammasome acti-
vators (in agreement with the results of Magupali et al., 2022).
It has also been noted that other NLRP3 regulatory mecha-
nisms such as PKD phosphorylation play an important role at
early time points in cell culture experiments, but compensa-
tory pathways override these effects at later timepoints (21).

Based on our results it seems that the importance of HDAC6
for NLRP3 inflammasome activation is not absolute, but condi-
tion and context-dependent. On one hand, we noted that block-
ing the HDAC6 ZnF-Ub interaction with DARPin F10 in THP-
1 cells and degrading HDAC6 in PBMCs both resulted in an
inhibitory effect, thus supporting a role for HDAC6 in this
pathway. When degrading DARPin F10 with dTAG we only
observed a partial rescue of IL-1β release; this can possibly be
explained by incomplete degradation of DARPin F10, leading to
some residual F10 (even in tiny amounts) that could interferewith
ubiquitin recruitment. Similarly, incomplete HDAC6 clearance
by the proteasome systemmight be responsible for the moderate
downregulation of IL-1β release or cell death protection in XY-
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07-35 treated PBMCs. Furthermore, we found that the negative
control compound XY-07-191 also exhibited slight inhibition of
NLRP3 inflammasome activation, which we attribute to its
possible catalytic inhibition of HDAC6. Indeed, both compounds
are derived from SAHA (Fig. 3B), which is known to inhibit all
HDACs including HDAC6, and previous studies have demon-
strated thatHDAC inhibition can downregulate IL-1β release (11,
22). Context dependence for HDAC6 inflammasome activation
has also been observed in HDAC6 inhibitor studies. For instance,
a recent study in THP-1 cells (23) showed that inhibitingHDAC6
by Tubastatin A leads to a reduced IL-1β release, but in another
study in BMDMs (24), Tubastatin A did not impact the mIL-1β
level. We notice these differences and remark that current
HDAC inhibitors, includingHDAC6-selective inhibitors,maynot
be as specific as previously reported (25).

On the other hand, we found that the activation of the
NLRP3 inflammasome in BMDMs from HDAC6 KO and
ZnFm (W1116A) mice took place normally; likewise, activation
of the pyrin inflammasome in U937-pyrin cells was not
affected by HDAC6 depletion. In a previous study using
immortalized BMDMs (11), researchers described an HDAC6-
mediated aggresome-like pathway for NLRP3 inflammasome
formation and reported that deletion of HDAC6 or mutations
in the ZnF domain completely blocked inflammasome acti-
vation, in contrast to our results. Likewise, another recent
study reported that the lysosomal Ragulator complex is
important for NLRP3 inflammasome activation in vivo via
interaction with HDAC6 (12).

We hypothesize that the partial discrepancy may result from
the differences in the cell types and specific experimental
conditions used. Immortalized cells are known to carry chro-
mosomal abnormalities that allow them to proliferate indefi-
nitely, leading to changes in their transcriptome, proteome,
and reliance on specific pathways compared to primary cells.
As a result, it is reasonable to speculate that established
iBMDMs may behave differently from primary BMDMs. As for
the pyrin inflammasome, we used U937 cells instead of
iBMDMs, and bile acid derivatives instead of Clostridioides
difficile toxin B (TcdB) to activate the pathway, which may also
contribute to the observed differences in results obtained. In
summary, we conclude that HDAC6 can participate in NLRP3
inflammasome activation, but its importance appears to be
context dependent.

Experimental procedures

Cell culture

THP-1, U937, PBMC, and BMDM cells were cultured in
Roswell Park Memorial Institute (RPMI) 1640 Medium–stable
Glutamine (Bioconcept#1-41F03-1) supplemented with 10%
fetal bovine serum (FBS). For BMDMs, the medium also
contained M-CSF 1 (100 ng/ml). All cells were cultured in 5%
CO2 at 37 �C.

BMDMs isolation and culture

BMDMs were isolated as previously described (26). In short,
mice (8�14 weeks old) were sacrificed and both legs were
sterilized in 70% ethanol. The attached tissues were removed
by dissection with scissors and the isolated bones were flushed
or crushed twice in a mortar with 5 ml RPMI 1640 medium.
The suspension from crushed bones was filtered through
100 μm cell strainer (Falcon#352360) to remove debris.
Filtered cells were centrifuged at 500g, 15 min at room tem-
perature. The supernatant was removed and cell pellets were
resuspended in RPMI 1640 (+M-CSF 1, 100 ng/ml). The cell
suspension (from one leg) was divided into four Nunc Square
25-cm dishes (Thermo Scientific#166508), with each plate
containing 10 ml cell suspension. On Day 3 post-seeding, 5 ml
fresh RPMI 1640 (+M-CSF 1) medium was added to each
plate. On Day 6, BMDMs were ready for collection or re-
seeding for new experiments. All mice handling was done
according to Swiss federal guidelines for animal experimen-
tation and approved by the FMI Animal Committee and the
local veterinary authorities (Kantonales Veterinäramt of
Kanton Basel-Stadt).
Immunoblotting

Treated BMDM cells were lysed with RIPA buffer (supplied
with cOmplete Protease Inhibitor Cocktail, Merck#
11697498001), and protein concentration was determined by
Bradford assay. The same protein amounts were loaded onto 4
to 12% NuPAGE Gels and protein was transferred to PVDF
membranes by using Trans-Blot Turbo Transfer System
(Biorad#17001917). The membrane was blocked with 5% milk-
TBS, and then incubated with primary antibodies overnight at
4 �C. The signal was developed with HRP-conjugated sec-
ondary antibodies and Amersham ECL Western Blotting
Detection Reagent (Cytiva#RPN2106). Antibody information:
mouse Caspase-1 (p20) (AdipoGen#AG-20B-0042-C100),
mHDAC6 (homemade), human HDAC6 (CellSignaling#7558),
α-tubulin (Sigma-Aldrich #T9026), HA (CellSignaling#3724),
pan Actin (Sigma-Aldrich#SAB4502632).
ELISA (for IL-1β and IL-18)

Supernatant from treated cells were collected and frozen
at −80 �C before determining cytokine concentrations. mIL-1β
was determined by ELISA MAX Standard Set Mouse IL-1β kit
(BioLegend# 432601). Human IL-1β and IL-18 were deter-
mined with Cisbio HTRF Cisbio Human IL1β (#62HIL1BPET)
and Human IL18 (#62HIL18PEG) protocols. All the data were
from 3 or 4 independent biological replicates.
LDH measurement

Culture supernatants from the different BMDM samples
were analyzed with the CytoTox 96 Non-Radioactive Cyto-
toxicity Assay Kit (Promega# G1780). Total cell lysate of non-
treated (i.e., DMSO only -no inhibitor-, but induced for
inflammasome formation) BMDM cells was defined as 100%
cell death or cytotoxicity. Values from other conditions were
calculated as follows: (ODtreated cells-ODno-inhibitor control) ÷
(ODtotal lysate-ODno-inhibitor control) * 100.
J. Biol. Chem. (2024) 300(2) 105638 7
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Single-cell clonal THP-1 F10 and FKBP cells establishment

Lentiviral vectors for HA-DARPin F10-FKBPF36V and HA-
FKBPF36V were from previous work (16). Lentivirus was
generated with third-generation lentivirus packaging systems.
In detail, DARPin F10 vector and lentivirus packaging plas-
mids (Tat, Rev, Gag/pol, Vsv-g) were co-transfected in 293T
cells in six well-plates. After 3 days of culturing, supernatants
were harvested and concentrated with Lenti-X Concentrator
(Takara# 631232). The virus pellet was resuspended in 1�4 ml
RPMI1640 medium (with 10% FBS). Next, THP-1 cells were
seeded in six-well plates (each well with 1 × 106 cells), and then
lentivirus was added to the plate in the presence of polybrene
(8 μg/ml), followed by centrifugation at 1500 rpm/453g, for
45 min at room T�. After transduction, THP-1 cells were
cultured at 37 �C for 7�14 days. The cell number and density
were monitored carefully; when a concentration of >2 ×
106 cells per ml was reached, 2 μg/ml puromycin was added for
selection for 3�6 days. Surviving cells were single cells sorted
by FACS into 96 well plates (in RPMI1640 without puromy-
cin). After about 1 month in culture, single-cell clones were
analyzed by immunoblotting to test for DARPin F10 expres-
sion. Cell clones with a good expression level were stored in
cryo-solution (90% FBS + 10% DMSO) in liquid nitrogen.

Inflammasome activation

For BMDM cells, 1.5 × 106 cells per well were seeded in six-
well plates. After priming with 1 μg/ml LPS (Invivogen #tlrl-
b5lps), cells were challenged with 200 μg/ml MSU crystals
(Invivogen #tlrl-msu-25) for 6 h or 20 μM nigericin (Sigma-
Aldrich #N7143-5MG) for 30 min. For THP-1 cells, 5 ×
105 cells/ml were primed with 0.5 μM PMA (Invivogen #tlrl-
pma) in T75 Ultra-low binding flask (CORNING #3814) for
3 h, and then cells were collected by centrifugation at 500g, for
5 min. The supernatant was removed, and fresh medium was
added to have cells at a density of around 5 × 105 cells/ml.
100 μl cells were seeded in 96-well plate and incubated for
1�2 days. During the culturing, dTAG was added when
needed to degrade the DARPin. After 1�2 days of culturing,
inflammasome was activated by adding 15 μM nigericin for up
to 4 h. For PBMCs, 3 × 104 cells per were seeded, and primed
with 0.2 ng/ml LPS for 4 h and then incubated with MSU
200 μg/ml (5 h), nigericin 2 μM (2 h) or ATP 3 mM (0.5 h). For
pyrin inflammasome, U937-pyrin cells were seeded in 96 well
after 0.5 μM PMA treatment for 3 h and then challenged by
BAA473 (200 μM) for 4 h at 37 �C. For control experiments
inhibitors were used at the following final concentration:
MCC950 at 10 μM, CGP084892 at 20 μM. NP3-948 is a potent
NLRP3 inhibitor developed at Novartis that competes with
MCC950 for binding to the NLRP3 protein (27).

Cell viability assay

Cell viability of PBMCs and U937 cells was checked with
PrestoBlue HS Cell Viability Reagent (Invitrogen # P50200)
according to the manufacturer’s instructions. After incubation
for 1 to 2 h, fluorescence was determined with a PheraStar
plate reader under Ex/Em = 540/590 nm.
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Cell viability with CTG assay

U937, Jurkat, and HEK293T cells were plated with a density
of 105 cells/ml, with 50 μl/well in a white 384 well plate
(Corning #3570). Two hours after plating, XY-07-035 was
dispensed to each well using HPd300e and incubated at 37 �C
for 70 h. CellTiter-Glo (CTG) Luminescent Cell Viability
Assay (Promega #G7572) was then used to measure cell
viability. Aliquoted frozen CTG reagent and cell plates were
warmed to room temperature prior to loading. After the plates
were cooled to room temperature, the CTG reagent was
loaded 15 μl/well with an electronic multichannel pipette. To
ensure the reagent had fully reacted with cells, plates were
centrifuged at 500g, 3 min followed by a 30 min incubation in a
dark box at room temperature. The luminescence signal was
read over ten cycles for each data point on a PHERAstar FS
microplate reader (BMG Labtech). The Relative abundance
was calculated as the sum of the averages of duplicate indi-
vidual 12-point dose-response data points.

Statistical analysis

All the statistical analyses were done with one-way or two-
way ANOVA test, corrected for multiple comparisons using
the post hoc significance Tukey test. A significance level of p
<0.05 was used.

Data availability

Mass spectrometry data related to HDAC6 degrader XY-07-
35 and XY-07-191 are deposited to PRIDE under archive
number PXD023652. The data that supports the findings
described in this work are available from the corresponding
author upon request.
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