Skip to main content
. 2024 Jan 9;16(1):e51963. doi: 10.7759/cureus.51963

Table 4. Analysis of translation efforts.

AUC: Area under the curve; CTA: Computed tomography angiography; ICP: Intracranial pressure; MAP: Mean arterial pressure; CSF: Cerebrospinal fluid; LVO: Large vessel occlusion; IB: Imaging biometrics; GBM: Glioblastoma; CT: Computerized tomography; MRI: Magnetic resonance imaging; BMI: Body mass index

Study/device Externally validated Applied for FDA approval Translated into clinic Type of model Training method Input Outcome  Model performance
Valliani et al.[38] Yes No No Ensemble learning algorithm Single center Clinical features and surgical variables Non-home discharge after thoracolumbar spine surgery AUC: 0.81 (test) AUC: 0.77 (external)
Senders et al.[39] Yes No No Accelerated failure time model Retrospective dataset Demographic, socioeconomic, clinical, and radiographic features Prediction of survival in glioblastoma patients C-index: 0.70 (best time-to-event model), 0.70 (best continuous and binary model)
Liu et al.[40] Yes No No Decision tree Retrospective Demographic, clinical, and aneurysm-specific features as well as Glasgow Coma Score Long-term outcomes after poor-grade aneurysmal subarachnoid hemorrhage AUC: 0.88 (test) AUC: 0.94 (external)
Staartjes et al.[41] Yes No No Logistic generalized additive model Multicenter retrospective database Clinical features and labs Functional impairment after intracranial tumor surgery AUC: 0.72 (test), AUC: 0.72 (external)
Viz Aneurysm[42] Yes Yes Yes Neural network Unknown CTA imaging Detection and analysis of cerebral aneurysms 93.8% sensitivity 94.2% specificity (external)
Carra et al.[43] Yes No No Random forest Prospective and retrospective databases ICP and MAP signals Doses of harmful intracranial pressure in patients with severe traumatic brain injury AUC: 0.94 (external)
Aidoc BriefCase-CSF triage[44] Yes Yes Yes Neural network Unknown CTA images Detection of cervical spine fractures (external) Sensitivity - 54.9 Specificity - 94.1
Rapid LVO 1.0[45] Yes Yes Yes Density threshold-based traditional machine learning Unknown CTA images Detection of anterior circulation LVOs Sensitivity - 96.0 Specificity - 98.0
Imaging biometrics (IB) Neuro-Oncology[46] Yes Yes Yes Artificial Intelligence Unknown CTA images Distinguishing glioblastoma progression Classification of survival in GBM sensitivity - 80.0 Specificity - 63.0
Staartjes et al.[47] Yes No No Logistic regression Retrospective multicenter database Clinical features and surgical variables  Prediction of mid-term outcomes after lumbar spinal fusion Functional Impairment AUC:0.75 (test) AUC:0.67 (external) Back pain AUC: 0.71 (test) AUC:0.72 (external) Leg Pain AUC: 0.72 (test) AUC: 0.64 (external)
Thanellas et al.[48] Yes No No Convolutional neural network Retrospective single-center dataset CTA images Identification and localization of subarachnoid hemorrhage on CT scans Development: Sensitivity 87.4% and specificity 95.3% External: sensitivity 99.3% and specificity 63.2%
Teng et al.[49] Yes No No Logistic regression Retrospective multicenter database Clinical features lab values and imaging Predicting high-grade intracranial meningioma Development: AUC: 0.99 AUC: 0.75 (internal) AUC: 0.842 (external)
Vitrea CT Brain Perfusion[50] Yes Yes Yes Convolutional neural network Unknown CTA images Detection of intracranial aneurysms Sensitivity - 90.9-96.3 Specificity - 100.0
Ma et al.[51] Yes No No Neural network  Retrospective multicenter database MRI images Prediction of intramedullary glioma grade AUC: 0.8431
Biswas et al.[52] Yes No No Neural network Retrospective single-center database Predictor variables (demographic and lab) Predicting chronic subdural hematoma referral outcome AUC: 0.951 (test) AUC: 0.896 (external)
Fang et al.[53] Yes No No Convolutional neural network Retrospective single-center database Demographic, clinical, and imaging variables Glasgow Outcome Scale AUC (test): 0.93 AUC (external): 93.69
Karhade et al.[54] Yes No No Logistic regression Retrospective multicenter database Clinical labs and tumor-specific variables Six-week mortality in spinal metastasis cases AUC (test): 0.84 AUC (external): 0.81
Crabb et al.[55] Yes No No Logistic regression, random forest, support vector machine, and ensemble learning algorithm Public database Age, BMI, clinical variables, and preoperative lab tests Prediction of unplanned 30-day readmissions after pituitary adenoma resection AUC (external): 0.76
Warman et al.[56] Yes No No Ensemble learning algorithm Prospective single center dataset and public dataset Patient demographics, presenting vital signs, mechanism of injury, initial Glasgow Coma Scale (GCS) Predicting in-hospital mortality after traumatic brain injury AUC (test): 0.91 AUC (external): 0.89
Habets et al.[57] Yes No No Logistic regression Retrospective single center Patient demographic data, disease-specific data, clinical performance scores, and neuropsychological scores Prediction of motor response after deep brain stimulation AUC (test): 0.79 AUC (external) 0.79