Table 3.
Author | Year | Validation | Model | ACC | SE | SP | AUC | Specification |
---|---|---|---|---|---|---|---|---|
Butte et al [147] | 2011 | LOOCV | LDA | 71.43% | 47.06% | 94.64% | Temporal + Spectral SE/SP: HGG | |
Cosci et al [139] | 2016 | 10-fold CV | KNN (K=5) | 90% | 92.8% | 88.8% | SE/SP: healthy vs other | |
Phipps et al [4] | 2017 | LOPOCV | SVM (rbf) | 97.8% | 100% | 96.90% | balanced cancer vs other | |
Jo et al [136] | 2018 | LOPOCV | QDA | 89% | 95% | 86.79% | 0.91 | FLIm features |
Unger et al [5] | 2020 | LOPOCV | RF | 88.78% | 93.14% | 0.96 | tumour vs no tumour | |
Marsden et al [109] | 2020 | LOOCV (tongue/tonsil only). Test on other with RF | RF, SVM (rbf), 1D-CNN | 86% | 87% | 0.88 | in vivo, region | |
Walsh et al [148] | 2020 | Split train/test | LogReg, RF, SVM | 0.95 | type and activation | |||
Wang et al [119] | 2020 | LOPOCV (3 times) train=(90% / 10%) train/validation | 2D-CNN 3D-CNN | 86.5% | 89.5% | 0.858 | 3-channel DenseNet121 | |
Romano et al [141] | 2020 | Split train/test 75% / 25% | LDA | 73% | 88% | 67% | 0.79 | intensity and lifetime |
Dunkers et al [149] | 2021 | Out of bag no validation | RF | 95.91% | PBS bufffer, lifetime and phasor variable | |||
Wang et al [104] | 2021 | One patient out train=(90%10%) train/validation | Custom 3D-CNN | 84.9% | 80.95% | 0.882 | MSCD-ResNet50 preserved complexity | |
Qian et al [150] | 2021 | train/test set train=(80% / 20%)train/validation | LogReg, RF, SVM | >85% | 0.9085 | all variable logistic regression | ||
Marsden et al [10] | 2021 | LOPOCV | NN, RF, SVM | 100% | 93% | region level | ||
Duran et al [138] | 2021 | 7-fold CV (train) Best model on test | NN, SVM, RF | 78% | 61% | 0.81 | ensemble | |
Weyers et al [3] | 2022 | Pre-trained then tested | RF | 96% | 89% | 0.9 | mean over patients | |
Neto et al [152] | 2022 | 10-fold CV | RF | 0.944 | all 2p FLIm variables | |||
Vasanthakumari et al [178] | 2022 | LOPOCV | QDA | 88.33% | 84.21% | 90.24% | Phasor + intensity + lifetime variables | |
Ji et al [146] | 2022 | Train: 151 Cancer/CNI +217 normal Test: Images from 48 patients | K-means as classifier | 90.90% | 100% | 0.95 | τ avg + α 2 | |
Kröger et al [153] | 2022 | Split train/test 50% / 50% Repeat 10 000 times | Decision Tree | 88% 82% | 89% 90% | M1 MΦ M2 MΦ |
HGG: High Grade Glioma; LDA=Linear discriminant analysis; RF=Random Forest; KNN=K-Nearest Neighbors; QDA=Quadratic Discriminant Analysis; SVM=Support Vector Machine; LogReg=Logistic Regression; CNN/NN=(Convolutional) Neural-Network; LOOCV/LOPOCV/CV=(Leave-One-(Patient)-Out) Cross-Validation; ACC=Accuracy; SE=Sensitivity; SP=Specificity; AUC=(Receiver operating characteristic) Area Under the Curve.