Skip to main content
. 2024 Feb 8;12(2):022001. doi: 10.1088/2050-6120/ad12f7

Table 3.

Performance summary of the studies cited in figure 8, sorted chronologically. All models and validation methods have been listed, and the most important experiment’s results has been singled out for each study, with its specification in the last column, and the model used emboldened.

Author Year Validation Model ACC SE SP AUC Specification
Butte et al [147] 2011 LOOCV LDA 71.43% 47.06% 94.64% Temporal + Spectral SE/SP: HGG
Cosci et al [139] 2016 10-fold CV KNN (K=5) 90% 92.8% 88.8% SE/SP: healthy vs other
Phipps et al [4] 2017 LOPOCV SVM (rbf) 97.8% 100% 96.90% balanced cancer vs other
Jo et al [136] 2018 LOPOCV QDA 89% 95% 86.79% 0.91 FLIm features
Unger et al [5] 2020 LOPOCV RF 88.78% 93.14% 0.96 tumour vs no tumour
Marsden et al [109] 2020 LOOCV (tongue/tonsil only). Test on other with RF RF, SVM (rbf), 1D-CNN 86% 87% 0.88 in vivo, region
Walsh et al [148] 2020 Split train/test LogReg, RF, SVM 0.95 type and activation
Wang et al [119] 2020 LOPOCV (3 times) train=(90% / 10%) train/validation 2D-CNN 3D-CNN 86.5% 89.5% 0.858 3-channel DenseNet121
Romano et al [141] 2020 Split train/test 75% / 25% LDA 73% 88% 67% 0.79 intensity and lifetime
Dunkers et al [149] 2021 Out of bag no validation RF 95.91% PBS bufffer, lifetime and phasor variable
Wang et al [104] 2021 One patient out train=(90%10%) train/validation Custom 3D-CNN 84.9% 80.95% 0.882 MSCD-ResNet50 preserved complexity
Qian et al [150] 2021 train/test set train=(80% / 20%)train/validation LogReg, RF, SVM >85% 0.9085 all variable logistic regression
Marsden et al [10] 2021 LOPOCV NN, RF, SVM 100% 93% region level
Duran et al [138] 2021 7-fold CV (train) Best model on test NN, SVM, RF 78% 61% 0.81 ensemble
Weyers et al [3] 2022 Pre-trained then tested RF 96% 89% 0.9 mean over patients
Neto et al [152] 2022 10-fold CV RF 0.944 all 2p FLIm variables
Vasanthakumari et al [178] 2022 LOPOCV QDA 88.33% 84.21% 90.24% Phasor + intensity + lifetime variables
Ji et al [146] 2022 Train: 151 Cancer/CNI +217 normal Test: Images from 48 patients K-means as classifier 90.90% 100% 0.95 τ avg + α 2
Kröger et al [153] 2022 Split train/test 50% / 50% Repeat 10 000 times Decision Tree 88% 82% 89% 90% M1 MΦ M2 MΦ

HGG: High Grade Glioma; LDA=Linear discriminant analysis; RF=Random Forest; KNN=K-Nearest Neighbors; QDA=Quadratic Discriminant Analysis; SVM=Support Vector Machine; LogReg=Logistic Regression; CNN/NN=(Convolutional) Neural-Network; LOOCV/LOPOCV/CV=(Leave-One-(Patient)-Out) Cross-Validation; ACC=Accuracy; SE=Sensitivity; SP=Specificity; AUC=(Receiver operating characteristic) Area Under the Curve.