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Abstract

Although polymer-based lipid-nanodiscs are increasingly used in the structural studies of 

membrane proteins, the charge of the belt-forming polymer is a major limitation for functional 

reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This 

limitation also rules out the reconstitution of a protein-protein complex composed of oppositely-

charged membrane proteins. In this study, we report the first successful functional reconstitution 

of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an 

anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid-nanodiscs. The gel-to-

liquid-crystalline phase-transition temperature (Tm) of DMPC:DMPG (7:3 w/w) lipids in polymer-

nanodiscs was determined by differential scanning calorimetry (DSC) and 31P NMR experiments. 

The CYP450-CPR redox complex reconstitution in polymer-nanodiscs was characterized by 

size-exclusion chromatography (SEC), and the electron transfer kinetics was carried out using 

the stopped-flow technique under anaerobic conditions. The Tm of DMPC:DMPG (7:3 w/w) 

in polymer-nanodiscs measured from 31P NMR agrees with that obtained from DSC, and was 
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found to be higher than that for liposomes due to decreased cooperativity of lipids present 

in the nanodiscs. The stopped-flow measurements revealed the CYP450-CPR redox complex 

reconstituted in nanodiscs to be functional, and the electron transfer kinetics was found to be 

temperature-dependent. Based on the successful demonstration of the use of non-ionic inulin-

based polymer-nanodiscs reported in this study, we expect them to be useful in studying the 

function and structures of a variety of membrane proteins/complexes irrespective of the charge 

of the molecular components. Since the polymer-nanodiscs were shown to align in an externally 

applied magnetic field, they can also be used to measure residual dipolar couplings (RDCs) and 

residual quadrupolar couplings (RQCs) for various molecules ranging from small molecules to 

soluble proteins and nucleic acids.

Graphical Abstract

The compatibility of non-ionic polymer-based lipid-nanodiscs to study functional reconstitution 

of membrane protein complexes composed of cationic cytochrome P450 (CYP450) and anionic 

cytochrome P450 reductase (CPR) is demonstrated.

INTRODUCTION

Although recent studies have shown the importance of solving atomic-resolution structures 

of membrane proteins in a lipid membrane environment, membrane proteins still pose major 

challenges to most biophysical approaches due to their intrinsic instability in non-native 

membrane environments. Some of the major difficulties have been overcome by the use of 

membrane mimetics such as bicelles and nanodiscs.1–6 While both bicelles and nanodiscs 

are frequently used in membrane protein structural biology; recent studies have shown the 

major impact of the use of different types of nanodiscs.4, 7 These nanodiscs are made up 

of a planar lipid bilayer surrounded by a belt forming membrane scaffold proteins (MSPs) 

or short amphipathic peptides.4, 8–10 Similarly, synthetic amphipathic polymers such as 

Krishnarjuna et al. Page 2

Anal Chem. Author manuscript; available in PMC 2024 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



poly(diisobutylene-alt-maleic acid (DIBMA) or poly(styrene-co-maleic acid) (SMA) forms 

soluble lipid-bilayer discs with lipids, which are called as polymer-nanodiscs.11, 12 As 

studies continue to develop and characterize these nanodiscs, each type of these nanodiscs 

has been shown to exhibit unique advantages and some limitations. The availability of a 

library of different types of nanodiscs-forming synthetic amphipathic polymers, and the 

stability of some of the polymer-based nanodiscs against pH and divalent metal ions, have 

expanded the scope of the nanodisc technology.2–4, 6, 11, 13–19 Additionally, several of 

these polymers have been successfully used to extract membrane proteins along with local 

native lipids from the cell membrane without the use of detergents.6, 12, 19–23 The nanodisc-

forming polymers are charged molecules; therefore, they can electrostatically interact with 

oppositely charged molecules. As a result, the high charge-density of the polymers present 

in the belt of the nanodiscs is a limitation in studying membrane proteins and their 

complexes that possess opposite net charges.24, 25 For example, the interference of a charged 

polymer belt has been shown to destabilize the reconstituted anionic cytochrome-b5 (cytb5) 

or cationic cytochrome P450 (CYP450).24 The impediment to the structure and function 

of these proteins in SMA-based nanodiscs is due to the formation of non-specific charge-

charge interactions between the cytochrome proteins and the oppositely charged SMA from 

nanodiscs.24 Therefore, polymers with high charge-densities are not suitable for studying (or 

extracting) differently charged membrane proteins and membrane protein complexes.24, 25 

Although high-salt concentrations (~500 mM) can be used to suppress the non-specific 

charge-charge interactions between the polymer and the target membrane protein,24 such 

conditions are physiologically irrelevant (~150 mM) in general, may not be applicable to all 

membrane proteins and are also not desirable for NMR-based structural studies as shown for 

cytb5.24 Thus, probing the structure and dynamics of oppositely-charged membrane proteins 

and protein-protein complexes in a charged-polymer nanodiscs is not feasible. Therefore, to 

overcome these difficulties, non-ionic polymers that exhibit excellent lipid solubilizing and 

stable nanodiscs-forming properties are needed.

The recently developed non-ionic pentyl-functionalized inulin polymer is shown to form 

nanodiscs when mixed with liposomes;26 hence, the nanodiscs of this polymer can 

be suitable to study differently charged membrane proteins/complexes. Additionally, 

unlike the SMA-polymers, the pentyl-inulin does not contain an aromatic moiety, 

and, therefore, it is less likely to interfere with protein characterization by UV-based 

spectroscopic methods.27, 28 Here, we report the first successful demonstration of the 

functional reconstitution of a redox complex constituting a cationic CYP450 (55.7-kDa) 

and an anionic CYP450-reductase (CPR) (76.8-kDa) in non-ionic inulin-based nanodiscs. 

CYP450 and CPR used in this study are full-length (wild-type) proteins; each contains 

a single transmembrane domain. CYP450 and CPR are large soluble-domain containing 

membrane-anchored proteins with opposite net charges under physiological conditions 

(Figure 1; Table S1). Microsomal CYP450 is a key enzyme in the oxidative metabolism 

of drugs and xenobiotics.29, 30 CPR, via FAD and FMN prosthetic groups, donates 

two electrons one at a time to prosthetic heme iron of CYP450 during the drug 

metabolism. The lipid membrane has been shown to be important for the function of the 

CYP450-CPR redox complex.31–37 In this study, an investigation of the electron transfer 

kinetics in the redox CYP450-CPR complex38 reconstituted in pentyl-inulin nanodiscs 
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containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-

glycero-3-phospho-(1’-rac-glycerol) (sodium salt) (DMPG) lipids is reported (Figure 1).

EXPERIMENTAL SECTION

Pentyl-inulin synthesis.

Inulin extracted from chicory roots was purchased from Sigma-Aldrich (St. Louis, Missouri, 

USA). Pentyl-inulin (average molecular weight (MW) of ~3 kDa) polymer used in this study 

was synthesized by functionalizing inulin with hydrophobic pentyl groups using pentyl 

bromide (Sigma-Aldrich), purified, and characterized as described elsewhere.26

Expression and purification of CYP450 2B4 and CPR.

CYP450 2B4 and CPR were expressed from E.coli, purified, and characterized as reported 

in the literature.40–45

Preparation of DMPC:DMPG liposomes.

The lipids were purchased from Avanti Polar Lipids (Alabaster, USA). 7 mg of DMPC 

and 3 mg of DMPG (7:3 w/w) taken in separate 1.5 mL centrifuge tubes were dissolved 

in a solvent mixture containing 1:1 v/v CH3O:CHCl3 (50 μL each) (Sigma-Aldrich). The 

dissolved lipids were then mixed by transferring them into a single 1.5 mL centrifuge tube. 

Next, the organic solvents were evaporated by applying a low-pressure N2-gas (20–30 min) 

onto the lipid-solvents mixture. The lipid-mixture was further dried under vacuum for 1 

hour to remove all the residual solvents. Finally, the liposome solution was prepared by 

resuspending the solvent-free dry lipid-mixture in 10 mM potassium phosphate buffer (pH 

7.4) containing 50 mM NaCl and by subjecting it to freeze-thaw cycles (using liquid N2 and 

hot water [~70 °C]) three times.

Preparation of DMPC:DMPG (7:3 w/w) polymer-nanodiscs.

The liposomes were mixed with pentyl-inulin at a 1:1 w/w ratio, and the solution was 

incubated overnight at 4 °C. Then, the polymer-nanodiscs solution was purified in 10 

mM potassium phosphate buffer (pH 7.4) containing 50 mM NaCl by size-exclusion 

chromatography (SEC) column (10×300 Superdex 200 [GE Healthcare, Chicago, USA]) 

using fast protein liquid chromatography (FPLC [GE Healthcare, Chicago, USA]). The 

fractions (detected at 214 nm) containing polymer-nanodiscs were combined, and 900 μL of 

it was used for protein reconstitution.

Transmission electron microscopy (TEM).

TEM micrographs were recorded using a Technai® T-20® machine (FEI®, Netherlands) with 

a 60 kV operating voltage. The polymer-nanodiscs were prepared in 10 mM Tris buffer 

(pH 7.4) containing 50 mM NaCl and used for TEM studies without any purification. A 

dilute sample was dropped on a carbon-coated copper grid and dried overnight at room 

temperature in a desiccator before using in TEM experiments.
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Phase-transition of DMPC:DMPG (7:3 w/w) polymer-nanodiscs by Differential Scanning 
Calorimetry (DSC).

DSC measurements were performed on liposomes (5 mg/mL), and on the polymer-nanodiscs 

that were purified using SEC. The experiments were performed on a Differential Scanning 

Calorimeter (DSC Nano, TA instruments, New Castle, DE, USA) using a constant pressure 

of 3 atm (44 psi) and a scan rate of 1 °C/min between 10 and 50 °C. NanoAnalyze™ 

software was used for background subtraction and baseline correction.

31P NMR of DMPC:DMPG (7:3 w/w) polymer-nanodiscs.

Temperature-dependent 31P NMR spectra were recorded under static conditions on a 400 

MHz Bruker solid-state NMR spectrometer (Billerica, MA, USA) equipped with a 5 mm 

triple-resonance HXY MAS NMR probe, operating at a resonance frequency of 400.11 MHz 

for protons and 161.97 MHz for 31P. A 5 mm glass tube was used for the sample. Each 31P 

NMR spectrum was acquired using a 5 μs 90° pulse followed by a 25 kHz TPPM (two-pulse 

phase-modulated) proton decoupling,46 using 1024 scans, and relaxation/recycle delay of 

3 s. The data were processed and analyzed in Bruker TopSpin (3.6.2). The samples were 

prepared at 100 mg/mL concentration in 10 mM Tris buffer (pH 7.4) containing 50 mM 

NaCl, and the free polymer/impurities were removed using Amicon centricon filter (50-kDa 

cut-off).

Reconstitution, purification, and UV measurements of CYP450 2B4 and CPR proteins in 
DMPC:DMPG (7:3 w/w) polymer-nanodiscs.

100 μL of 60 μM CYP450 2B4 was added to 900 μL of polymer-nanodiscs (final 

protein concentration was 6 μM) and carefully mixed with a micropipette. The solution 

was incubated at 4 °C or at room temperature overnight (without mixing). The sample 

was centrifuged at 8000 rpm for 1 min and purified by SEC (detected at 280 nm) in 

a 10 mM potassium phosphate buffer (pH 7.4) containing 50 mM NaCl. The fractions 

containing nanodisc-incorporated CYP450 2B4 were combined, concentrated to 900 μL, 

and quantitated using the carbon monoxide (CO)-binding assay (4.5 μM; ε=91 mM−1 

cm−1). 1 molar equivalent of CPR was added to the solution and carefully mixed with a 

micropipette. The solution was incubated at 4 °C overnight without any mixing. The sample 

was centrifuged to remove any insoluble material and purified by SEC in a 10 mM Tris (pH 

7.4) buffer containing 50 mM NaCl. The protein fractions were concentrated to 1 mL final 

volume, and the protein concentration was measured using CO-assay (3 μM). The protein 

solution with and without a substrate (benzphetamine) was saturated with CO-gas just before 

starting stopped-flow measurements.

UV-visible spectroscopy.

The absorption spectra were recorded on a UV/vis spectrophotometer (DeNovix DS-11+

[M/C], Wilmington, DE, USA) using a 1 cm light path quartz cuvette.

Dynamic light scattering (DLS).

DLS experiments were performed using Wyatt Technology® DynaPro® NanoStar® using 

a 1 μL quartz MicroCuvette. The DLS data were collected on the SEC purified polymer-
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nanodiscs with and without redox complex in 10 mM Tris buffer pH 7.4 containing 50 mM 

NaCl.

CO-assay on CYP450 2B4.

CO-assay was performed to estimate the functional protein concentration.47, 48 CYP450 2B4 

was reduced (Fe3+ [low-spin state] to Fe2+ [high-spin state]) by adding 1–2 μL of sodium 

dithionate (10 mg/mL), and a reference UV spectrum was recorded. Then the solution was 

saturated with CO gas. The protein concentration was measured from the absorption peak at 

451 nm using an extinction coefficient of 91 cm−1 mM−1.

Electron transfer measurements using stopped-flow experiments.

The electron transfer measurement was performed under anaerobic conditions49–53 using 

a Hi-Tech SF61DX2 stopped-flow spectrophotometer (Bradford-on-Avon, UK) housed in 

an anaerobic Belle Technology glove box (Weymouth, UK). The 10 mM Tris buffer (pH 

7.4) containing 50 mM NaCl was purged with N2 gas for 1 hour to remove the dissolved 

oxygen before being transferred to the glove box. A 1 mM stock solution of NADPH was 

prepared under anaerobic conditions by dissolving NADPH powder in 10 mM Tris buffer 

(pH 7.4) containing 50 mM NaCl. The working solution was prepared (in a separate 1.5 mL 

centrifuge tube) such that the final NADPH concentration in the reaction mixture was 20 

molar equivalents to protein concentration. The CO-saturated protein and NADPH solutions 

were injected into two different valves of the stopped-flow using two new syringes, mixed, 

and UV-vis spectra were recorded for 60 s at different temperatures ranging from 11 to 38 

°C to measure the electron transfer rates. The absorbance was detected using a Photodiode 

Array (PDA) detector. The redox reaction rate constants and the amplitudes were calculated 

by fitting the reaction kinetics data to a double-exponential equation:

a1 . exp −k1 . x + a2 . exp −k2 . x + c

[eq. 1]

Where a1 and a2 are amplitudes, and k1 and k2 are rate constants.

RESULTS AND DISCUSSION

First, the pentyl-inulin polymer-nanodiscs containing DMPC and DMPG lipids were 

prepared, purified using SEC, and characterized using DLS and TEM. The purified 

nanodiscs were then used in DSC and 31P NMR experiments to measure the phase-transition 

behavior of lipids in nanodiscs. 31P NMR spectra also revealed the magnetic-alignment 

of nanodiscs. After these characterizations of nanodiscs, as discussed in detail below, they 

were used to reconstitute a redox complex composed of 55.7-kDa rabbit CYP450 2B4 

and 76.8-kDa rat-CPR (Table S1) and characterized using SEC and CO-binding assay. 

Electron transfer kinetics in the redox complex was evaluated by conducting stopped-flow 

measurements under anaerobic conditions.
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Inulin-based polymers form monodispersed nanodiscs.

Inulin-based polymer-nanodiscs containing pentyl-inulin, zwitterionic DMPC, and anionic 

DMPG lipids (Figure 2(a, b)) were prepared as described in the Materials and Methods 

section above and purified using SEC using a 0.75 mL/min flow rate. Specifically, pentyl-

inulin polymer and 7:3 w/w DMPC:DMPG mixture was used at a 1:1 (w/w) polymer:lipid 

ratio to prepare the nanodiscs. In SEC, DMPC:DMPG (7:3 w/w) polymer-nanodiscs were 

eluted as a single major peak between 7.7 and 11 mL, indicating good homogeneity of the 

polymer-nanodiscs sample (Figure 2c). The DLS measurements of DMPC:DMPG (7:3 w/w) 

polymer-nanodiscs showed a hydrodynamic radius (RHYD) of ~14 nm, and TEM revealed 

the presence of polymer-nanodiscs with a diameter of 30 ±5 nm (Figure 2(d, e)). These 

observations are in good agreement with previously reported results.26

DSC experiments revealed a decreased cooperativity in the gel-to-liquid-crystalline phase-
transition of lipids.

Previous studies have shown the effect of belt-forming synthetic polymers on the phase-

transition of lipids present in polymer nanodiscs. In this study, to evaluate the effect 

of pentyl-inulin polymer on the encased lipid bilayer, the gel-to-liquid-crystalline phase-

transition temperature (Tm) of 7:3 w/w DMPC:DMPG nanodiscs was measured using 

DSC and 31P NMR experiments (Figure 3). In DSC experiments, the gel to liquid-

crystalline lamellar phase-transition peak for the DMPC:DMPG (7:3 w/w) bilayer in 

polymer-nanodiscs is broadened substantially compared to that observed for liposomes 

(Figure 3a). The Tm of 7:3 (w/w) DMPC:DMPG polymer-nanodiscs was measured to be 

~26.5 °C, whereas it is 24 °C for the same lipids present in liposomes (Figure 3a). These 

observations indicate a decreased cooperativity in the phase-transition and possibly a more 

ordered packing of DMPC:DMPG lipids in polymer-nanodiscs.

Magnetic-alignment of nanodiscs observed from 31P NMR experiments.
31P NMR spectra were recorded at different temperatures ranging from 293 to 315 K. Since 

the DMPC:DMPG lipids are mostly in the gel phase at 293 K, a combination of a major 

peak near 0 ppm arising from isotropic nanodiscs and a broad low-intensity peak (between 

−8 and −14 ppm) due to perpendicular component of the axially symmetric powder pattern 

arising from randomly oriented lipids (either lipid aggregates like liposomes or randomly 

oriented nanodiscs) was observed (Figures 3b and S1). With the increase in sample 

temperature, lipids transitioning to the lamellar phase contributed to the magnetic-alignment 

of nanodiscs as indicated by the presence of two peaks in the high-field region: ~−10 ppm 

from DMPG and ~−13 ppm from DMPC; peak assignment was based on the ratio of peak 

intensities resembling the concentration ratio between the lipids present in the sample. The 

line-width of these peaks decreased (or the intensity increased) with temperature, and the 

isotropic peak near 0 ppm and the broad low-intensity peak (293 K) disappeared completely 

when the temperature was increased above 298 K (Figure 3(b, c)); whereas the frequency of 

these peaks varied within 0.6 ppm (for DMPC) and 0.8 ppm (for DMPG) with the sample 

temperature increasing from 299 to 315 K. The line-width for the DMPC peak decreased 

from 248 Hz (at 294 K) to 113 Hz (at 300 K) (Figure 3d). Similarly, the line-width for the 

DMPG peak decreased from 303 Hz (295 K) to 115 Hz (301 K). No substantial change 
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was observed either in line-width (109 ± 4 Hz) or in peak intensity for both peaks between 

300 and 315 K (Figure 3d). The observed changes in line-width/intensity for 293 to 300/301 

K in NMR spectra can be attributed to the change in the physical state of lipids, i.e., gel 

to the liquid-crystalline phase, which occurred at a broad temperature range and is in good 

agreement with the observations from DSC experiments (Figure 3(a, d)). The enhancement 

in the extent of magnetic-alignment of nanodiscs at a higher temperature also contributes to 

the increased 31P signal intensity. Thus, the broad temperature-dependent phase-transition of 

lipids in nanodiscs suggests that the packing of lipids in the center of the nanodisc may be 

different from those regions located closer to the polymer belt.54 The spectra also reveal the 

magnetic-alignment of the polymer-nanodiscs between 295 to 315 K, a desired property for 

data acquisition using multidimensional solid-state NMR experiments.

Electron transfer kinetics measured from the CYP450-CPR complex reconstituted in 
polymer-nanodiscs.

The non-ionic DMPC:DMPG (7:3 w/w) polymer-nanodiscs are used to demonstrate 

their compatibility in studying the CYP450-CPR redox membrane-bound protein-protein 

complex. At physiological pH 7.4, CPR is negatively charged (z=−27), and CYP450 2B4 

is positively charged (z=+6) (Figure 1, and Table S1). The nanodiscs with the CYP450-

CPR complex were purified using SEC, where the redox complex in nanodiscs was eluted 

between 7.6–11 mL (Figures 4a and S2). The purified redox complex in polymer-nanodiscs 

was analyzed by SDS-PAGE, TEM, and DLS (Figures 4(b, c), and S2, S3). Within the 

experimental limits, the measured size of nanodiscs with redox complex was similar to that 

of protein-free nanodiscs (Figures 2(d, e), 4c, and S3), indicating that the reconstitution of 

proteins does not affect the size of pentyl-inulin-based lipid-nanodiscs. No change in the 

nanodisc size may be because both CYP450 and CPR are single transmembrane domain 

containing proteins and the size of the nanodisc is sufficiently large to accommodate the 

complex. The concentration of CYP450 in nanodiscs was determined using a CO-binding 

assay in the presence of a reducing agent, sodium dithionate.47 The estimated reconstitution 

in nanodiscs was 75% for CYP450 alone (4.5 μM) and 50% for the CYP450-CPR complex 

(3 μM). The electron transfer experiments were performed under anaerobic conditions using 

a stopped-flow instrument at temperatures ranging from 11 to 38 °C in the presence of 

a substrate benzphetamine for CYP450 2B4 (Figure 5). The absorption peak (Soret band) 

at 451.25 nm was observed for the CYP450-CPR complex in CO-saturated buffer upon 

mixing with NADPH solution, indicating the formation of CO-CYP450 complex due to the 

reduction of Fe3+ (high-spin state) to Fe2+ (low-spin state) by the first electron transfer from 

CPR (Figure 5a).

The absorption peak intensity (and the rate of rise) increased with temperature, suggesting 

more efficient electron transfer at higher temperatures (Figures 5(a, b), and S4). The protein 

concentration (~1.6 μM) measured from the peak at 451 nm after the redox reaction 

in the presence of CPR and NADPH at a higher temperature (~30 °C) was similar to 

that measured using sodium dithionate before the redox reaction, indicating a complete 

conversion of CYP450 2B4 to its reduced CO-bound form (Figures 5(a, b), and S4, S5). The 

451 nm absorbance of FBD of CPR is negligible due to its smaller extinction coefficient 

(ε=12.2 mM−1 cm−1) as compared to that of CYP450 (ε=91 mM−1 cm−1); hence it does 
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not interfere with the measurements. Above the main phase-transition temperature (Tm) 

of DMPC:DMPG (7:3 w/w) in polymer-nanodiscs, lipids present in a more dynamic fluid-

lamellar-phase would likely to enhance the structural interactions between CYP450 2B4 and 

CPR to form a functional redox complex, and subsequently an efficient electron transfer. 

The kinetics data were best-fitted to a double-exponential equation (eq. 1), indicating that 

the electron transfer occurred in a biphasic fashion,55 resulting in two rate constants, k1 

and k2, with amplitudes a1 and a2 (Figures 5c and S4). The biphasic fashion of the 

redox reaction may be due to the conformational heterogeneity of proteins.37 Among the 

two phases, the rapid phase of the redox reaction is likely to have occurred from those 

conformations of CYP450 and CPR that favor their interaction more efficiently in a lipid 

bilayer. However, it is difficult to capture them experimentally as the structure of the 

CYP450-CPR complex is stabilized by transient interactions.56 The measured k1, calculated 

from the physiologically relevant rapid phase of the redox reaction, increased slowly/linearly 

with temperature from 11 to 15 °C, and 15 to 20 °C (ripple phase of lipids), and then rapidly 

near and above Tm (Figure 5c and Table S2). In contrast, only a slight change was observed 

for k2 (corresponding to the slow-phase of the reaction) around Tm of lipids (Figure 5c 

and Table S2). DLS measurements showed an increase in the hydrodynamic radius of 

polymer-nanodiscs with temperature suggesting an increase in lipid flexibility when they are 

in the liquid-crystalline phase (above Tm) as compared to the gel phase (below Tm) (Figures 

6 and S3). Thus, the efficient electron transfer occurring at elevated temperatures could be 

due to the dynamic lamellar nature of the lipid bilayer that may assist productive structural 

interactions between CYP450 and CPR and lipids. The observed electron transfer rates in 

polymer-nanodiscs are similar to that reported by other investigators in a mixture of DLPC 

lipids and glycerol.57 The amplitudes a1 (for k1) and a2 (for k2) were substantially different 

at near and above Tm (Figure S6 and Table S2). The calculated percentages of the two 

different electron transfer processes (from the amplitudes) indicated only a small difference 

in their contribution to the redox reaction below Tm. Whereas at near and above Tm, the 

reduction of CYP450 2B4 was mainly through the rapid phase of the redox reaction (Figure 

5d).

The above-reported experimental results successfully demonstrate the feasibility of 

reconstituting a functional redox complex composed of oppositely charged proteins in non-

ionic inulin-based nanodiscs. It would be fruitful to carry out structural studies using NMR 

spectroscopy to better understand the structural interactions between CYP450 and CPR and 

lipids. The ability to align the nanodiscs in an external magnetic field could be utilized in 

solid-state NMR experiments to probe the topology and structural interactions between the 

transmembrane domains of CYP450 and CPR.

CONCLUSIONS

To the best of our knowledge, this is the first study demonstrating the feasibility of 

overcoming the difficulties posed by the highly charged nanodiscs’ belts to reconstitute 

membrane proteins with opposite net charges. The reported results on the oppositely charged 

CYP450-CPR complex suggest that the non-ionic inulin-based polymer-nanodiscs can be 

used to study the structure, dynamics, and function of differently charged membrane protein 

complexes. Our results show an efficient electron transfer at a higher temperature (>25 °C) 
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where the lipids are in the liquid-crystalline-phase.31, 35 The observed electron transfer rates 

are similar to the reported values,55, 57 demonstrating the suitability of non-ionic polymer-

nanodiscs to study the CYP450-redox complex and to screen substrates/drugs metabolized 

by the P450 enzyme. Future studies focusing on the characterization of the CYP450-CPR 

redox complex with and without the transmembrane domains in the presence of various 

substrates would provide insights into the significance of the lipid bilayer on the enzymatic 

function of CYP450.34, 49, 58–61 Since pentyl-inulin forms nanodiscs at a wide range of pH 

conditions,26 membrane proteins functioning at different pH conditions could be directly 

isolated along with local native lipids from cells.62 Additionally, due to the large-size (~30 

nm), pentyl-inulin-nanodiscs can accommodate high molecular weight proteins/complexes 

for high-resolution cryo-EM and solid-state NMR studies to characterize the structure and 

dynamics of transmembrane domains.26, 63, 64
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Figure 1. 
Schematic illustration of the functional reconstitution of the oppositely charged CYP450 

(yellow-red) and CPR (Orange-cyan) redox proteins in non-ionic pentyl-inulin-based 

polymer-nanodiscs (blue-green). The net charge of the proteins is indicated with +/− signs. 

Protein structure models were taken from the AlphaFold protein structure database.39
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Figure 2. 
Molecular structures of non-ionic pentyl-inulin polymer (a), zwitterionic DMPC, and the 

anionic DMPG lipids (b) used in this study. Circles highlight the charge on the lipids: 

cyan (negative), red (positive), and magenta (neutral, polar). (c) SEC chromatogram 

of pentyl-inulin 7:3 w/w DMPC:DMPG nanodiscs. ‘⁎’ indicates the polymer-nanodiscs, 

whereas ‘u’ indicates uncharacterized peaks likely arising from free polymers and small 

molecule impurities. (d) DLS profile of SEC-purified pentyl-inulin DMPC:DMPG (7:3 

w/w) nanodiscs with a hydrodynamic radius of ~14 nm. (e) TEM image of pentyl-inulin 

DMPC:DMPG (7:3 w/w) nanodiscs. Nanodiscs are indicated with red arrows.
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Figure 3. 
(a) DSC profiles of lipid melting in pentyl-inulin 7:3 w/w DMPC:DMPG nanodiscs (red) 

and 7:3 w/w DMPC:DMPG liposomes (black); heat capacity (Cp) values are normalized. 

(b, c) Variable temperature 31P NMR spectra of pentyl-inulin 7:3 w/w DMPC:DMPG 

nanodiscs. (d) Temperature dependence of 31P-DMPC and DMPG line-widths measured 

from the spectra (b, c) of pentyl-inulin 7:3 w/w DMPC:DMPG nanodiscs.
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Figure 4. 
Reconstitution, purification, and characterization of CYP450 2B4-CPR redox complex 

in pentyl-inulin 7:3 w/w DMPC:DMPG nanodiscs. (a) SEC profiles of 7:3 w/w pentyl-

inulin DMPC:DMPG nanodiscs with CYP450 2B4 (blue) or CYP450 2B4-CPR complex 

(magenta). The peak indicated with ‘*’ appeared from CPR (See Figure S2). The sample 

was purified using 10 mM Tris buffer (pH 7.4) containing 50 mM NaCl. (b) SDS-PAGE 

analysis of the purity of the CYP450-CPR complex. PM: protein marker and RC; redox 

complex. (c) TEM image of the CYP450 2B4-CPR complex. The nanodiscs are indicated 

with red arrows; scale bar: 100 nm.
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Figure 5. 
The kinetics of reduction of CO-bound CYP450 by CPR in the presence of benzphetamine 

at different temperatures (11 – 38 °C). (a) Soret-band region in the UV spectra of CO-bound 

CYP450 2B4 showing a decrease in the intensity of the peak at 417 nm and the appearance 

of a new peak at 451.25 nm (indicated with arrows). (b) Temperature-dependent kinetic 

traces (@451.25 nm) from the reduced (Fe2+) CO-bound CYP450 2B4 in the presence of 

CPR and benzphetamine. (c) Redox reaction rate constants at different temperatures. The 

straight-line shows a non-linear change of k1 with temperature. (d) Contribution of the 

slow and the rapid phases of reactions calculated using their amplitudes (a1 and a2) at 

different temperatures. The samples used in stopped-flow experiments were prepared in a 

10 mM Tris buffer (pH 7.4) containing 50 mM NaCl. After mixing, the sample consisted 

of 1.5 μM proteins, as well as 10 and 20 molar equivalents of benzphetamine and NADPH, 

respectively.
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Figure 6. 
The hydrodynamic radius of polymer-nanodiscs with redox complex measured by DLS at 

different temperatures (11 – 35 °C). DLS profiles are shown in Figure S3.
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