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Sensitization of human and rat nociceptors by
low dose morphine is toll-like receptor
4-dependent
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Abstract
While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile
remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a
transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be
produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive
mediators to act on nociceptors, or by a direct action at nociceptor TLR4. And, sub-analgesic doses of several opioids have been
shown to induce hyperalgesia in rodents by their action as TLR4 agonists. In the present in vitro patch-clamp electrophysiology
experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG)
neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that
low concentration (100 nM) of morphine reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an
effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion
that in humans, as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.
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Introduction

Chronic pain affects roughly 20% of adults,1 impacting more
than 1 billion people globally.While opioid analgesics remain
amongst the most potent and effective treatments for
moderate-to-severe pain their side-effects, including loss of
analgesic efficacy and worsening of pain (opioid-induced
hyperalgesia, OIH), remain major clinical limitations, espe-
cially for their use to treat chronic pain. It is well-established
that opioids produce analgesia by action at their cognate
receptors, predominantly the mu-opioid receptor (MOR).2

However, some side effects are thought to be mediated by the
action of opioid analgesics at other receptors, most well
characterized for Toll-like receptor 4 (TLR4). Thus, several
opioid analgesics (e.g. morphine, fentanyl, remifentanil, and
oxycodone) bind to and activate TLR4 even at low, sub-
analgesic concentrations.3–5 And, the systemic administration

of sub-analgesic doses of opioid analgesics can, paradoxi-
cally, produce hyperalgesia (OIH),6 an effect that is mediated
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either directly, by activation of TLR4, which is present on
nociceptors,7,8 or indirectly by the action of opioids at TLR4
on non-neuronal cells, including the immune system that, in
turn, release pronociceptive mediators.9,10 The primary af-
ferent nociceptor has been suggested to play a key role in
OIH,11 which is attenuated by TLR4 antagonists,12 as well as
by intrathecal administration of an oligodeoxynucleotide
(ODN) antisense for TLR4 mRNA.13 Therefore, while opi-
oids act as MOR agonists, to produce analgesia that is, in part,
dependent on nociceptor MORs,13,14 tolerance to MOR-
dependent analgesia could unmask a hyperalgesic action of
opioids, mediated by TLR4. To date, our understanding of the
role of TLR4 in the side-effects of opioid analgesics derives
from data obtained from rodents. And, while TLR4 is present
in human as well as in rodent dorsal root ganglion (DRG)
neurons,7,15–17 differential expression of genes affecting
DRG function may be responsible for species specific di-
vergence in nociceptor functions.18 We have previously
shown that, in the rat, higher doses of morphine (starting at
∼1 mg/kg) induces analgesia that is dependent on nociceptor
MOR, while low, sub-analgesic doses (3-30 μg/kg) induce
hyperalgesia by action at nociceptor TLR4.13,14 However, it
still remains to be established if opioids can similarly act at
TLR4 in human DRG neurons, to contribute to OIH. In the
present experiments we address this question using in vitro
patch-clamp electrophysiology to evaluate for an increase in
excitability of putative nociceptors, by acute administration
of a low concentration of morphine (100 nM), a concentration
estimated to be produced by a single sub-analgesic dose of
0.15 mg/kg,19 using cultured human and rat DRG neurons, to
establish parallel in vitro models of OIH.

We report that this low concentration of morphine simi-
larly sensitizes human as well as rat nociceptors, in vitro, an
effect that is prevented by the highly selective TLR4 an-
tagonist, LPS-RS Ultrapure,20 in both species. Our findings
support the suggestion that in humans, as in rodents, OIH is
mediated by the action of opioid analgesics at TLR4 on
primary afferent nociceptors.

Materials and methods

Culturing rat DRG neurons

Primary cultures of dorsal root ganglia (DRG) were made
from 220 to 235 g adult male Sprague-Dawley rats, as de-
scribed previously.21–24 Under isoflurane anesthesia, rats
were decapitated, and the dorsum of their vertebral column
surgically removed; L4 and L5 DRGs were rapidly extracted,
bilaterally, chilled and desheathed in Hanks’ balanced salt
solution (HBSS), on ice. DRG were treated with 0.25%
collagenase Type 4 (Worthington Biochemical Corporation,
Lakewood, NJ, USA) in HBSS for 18 min at 37°C, and then
with 0.25% trypsin (Worthington Biochemical Corporation)
in calcium- and magnesium-free PBS (Invitrogen Life
Technologies, Grand Island, NYUSA) for 6 min, followed by

three washes and trituration in Neurobasal-A medium (In-
vitrogen Life Technologies) to produce a single-cell sus-
pension. This suspension was centrifuged at 1000 r/min for
3 min followed by re-suspension in Neurobasal-A medium
that was supplemented with 50 ng/mL nerve growth factor,
100 U/mL penicillin/streptomycin, B-27, GlutaMAX and
10% FBS (Invitrogen Life Technologies). Cells were then
plated on cover slips and incubated at 37°C in 3.5% CO2 for
at least 24 h before they were used in electrophysiology
experiments.

Culturing human DRG neurons

Human DRG neuronal culture from a single male donor were
purchased from AnaBios (San Diego, CA, USA). Dissociated
human DRG neuronal suspension in a protective solution
from this donor was shipped to UCSF on ice. They were
delivered within hours after preparation of the suspension
from donor tissue at the AnaBios facility. All samples un-
derwent visual inspection for tissue integrity in our laboratory
and in parallel at AnaBios, using fluorescent microscopy and
electrophysiology. Human tissue originating from AnaBios
was obtained legally with consent from US-based organ
donors, adhering to United Network for Organ Sharing
(UNOS) donor screening and consent standards. AnaBios
follows procedures endorsed by the US Centers for Disease
Control (CDC), subject to biannual inspections by the US
Department of Health and Human Services (DHHS). Dis-
tribution of tissue to investigators by AnaBios is governed by
internal IRB procedures and is in compliance with Health
Insurance Portability and Accountability Act (HIPAA) reg-
ulations. All organ transfers to AnaBios are traceable and
periodically reviewed by US Federal authorities, ensuring the
privacy of donor information during studies involving human
DRGs.

Pursuant to an AnaBios protocol, upon arrival at UCSF
(San Francisco, CA, USA) the content of the transportation
vial (2 mL of protective media, containing ∼1000 neurons)
was transferred to 9 mL of wash media (DMEM/F12 with
penicillin/streptomycin [Lonza; Allendale, NJ]), then re-
covered by centrifugation (∼350 xG) at room temperature for
3 min, and resuspended in 0.6 mL of culturing media pro-
vided by AnaBios, made on the basis of DMEM/F12 with
penicillin/streptomycin and supplements: 10% horse serum
(Thermo Fisher Scientific, Rockford, IL, USA), 2 mM glu-
tamine, 25 ng/mL hNGF (Cell Signaling Technology, Dan-
vers, MA, USA) and 25 ng/mL GDNF (PeproTech, Rocky
Hill, NJ, USA).25

Cells from dissociated DRG were plated on 3 round
(15 mm diameter) glass coverslips (0.2 mL of suspension per
coverslip, in separate Petri dishes) that had been precoated
with poly-D-lysine (reported by AnaBios to be important for
survival) (Neuvitro Corp., Camas, WA, USA). One hour after
plating, 1 mL of the culture media was gently added and
coverslips fractured such that 6-8 individual pieces of a
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coverslip that could be used for electrophysiology recordings
was obtained. As recommended by AnaBios, human DRG
neurons were used after incubating for 48 h (5% CO2, 37°C),
for up to day 10. Culture media in Petri dishes was exchanged
every 2 days by replacing half of the media.

Whole-cell patch-clamp electrophysiology

Following placement of individual coverslip fragments,
plated with cells from dissociated human or rat DRGs, in the
recording chamber, culture medium was substituted with the
solution used to perform electrophysiology, Tyrode’s solution
containing 140 mm NaCl, 4 mm KCl, 2 mm MgCl2, 2 mm
CaCl2, 10 mm glucose, and 10 mm HEPES, adjusted to pH
7.4 with NaOH, with an osmolarity of 310 mOsm/kg. The
recording chamber had a volume of 150 µl, and its perfusion
system had a flow rate of 0.5–1 ml/min. Electrophysiology
experiments were conducted at room temperature (20–23°C).

Cells were identified as neurons by their double birefringent
plasma membranes.26,27 Whole-cell patch-clamp recordings,
performed in current clamp mode, were used to evaluate for
changes in the excitability of cultured rat and human DRG
neurons. Holding current was adjusted to maintain membrane
potential at �70 mV. Rheobase, defined as the minimum
magnitude of a current step needed to elicit an action potential
(AP), was determined through a testing protocol utilizing a
series of square wave pulses with current magnitude increasing
by a constant step every sweep, until an AP was elicited. An
initial estimate of rheobase was made with 500-pA increments
(0.5 – 4 nA). The increments were then adjusted to achieve
5%–10% precision of the rheobase estimate.24,28

Recording electrodes were fashioned from borosilicate
glass capillaries (0.84/1.5 mm i.d./o.d., Warner Instruments,
LLC) using a Flaming/Brown P-87 microelectrode puller
(Sutter Instrument Co, Novato, CA, USA). After being filled
with a solution containing 130 mm KCl, 10 mm HEPES,
10 mm EGTA, 1 mm CaCl2, 5 mm MgATP, and 1 mm Na-
GTP; pH 7.2 (adjusted with Tris-base), resulting in 300
mOsmol/kg osmolarity, the recording electrode resistance
was approximately 2 MV. Junction potential was not ad-
justed, and series resistance was below 10 MV at the end of
recordings, without compensation. Recordings were con-
ducted using an Axon MultiClamp 700 B amplifier, filtered at
20 kHz, and sampled at 50 kHz through an Axon Digidata
1550B controlled by pCLAMP 11 software (all from Mo-
lecular Devices LLC, San Jose, CA, USA).

To ensure the stability of baseline current, drugs were
applied at least 5 min after the establishment of whole-cell
configuration.

Drugs and media

The following drugs were used in this study: Morphine
sulfate salt pentahydrate, NaCl, KCl, MgCl2, CaCl2, NaOH,
MgATP, Na-GTP, D-Glucose, 4-(2-Hydroxyethyl)

piperazine-1-ethanesulfonic acid (HEPES), Ethylene gly-
col-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid
(EGTA) (Sigma Aldrich, St Louis, MO, USA), LPS-RS
Ultrapure (a selective TLR4 antagonist, lipopolysaccharide
from Rhodobacter 9 sphaeroides, purchased from Invivo-
Gen, San Diego, CA, USA), Collagenase Type 4, Trypsin
(Worthington Biochemical Corporation, Lakewood, NJ,
USA), Calcium- and Magnesium-free HBSS, Calcium- and
Magnesium-free PBS, Neurobasal-A medium, B-27 sup-
plement, GlutaMAX, Fetal Bovine Serum (FBS) (Invitrogen
Life Technologies, Grand Island, NY USA), rat (recombi-
nant) nerve growth factor (NGF)-beta, glutamine (Sigma
Aldrich), penicillin/streptomycin, DMEM/F12 with
penicillin/streptomycin (Lonza, Allendale, NJ, USA), horse
serum (Thermo Fisher Scientific, Rockford, IL, USA), human
NGF (hNGF, Cell Signaling Technology, Danvers, MA,
USA), human GDNF (Peprotech, Rocky Hill, NJ, USA).

Stock solution of LPS-RS Ultrapure was prepared in
purified water (1 mg/mL) and stored in 50 µL vials at�20°C.
One vial was thawed on the day of the experiment and stored
at 4°C. Final concentration of LPS-RS Ultrapure (10 µg/mL)
was achieved by 1:99 dilution in Tyrode’s solution, per-
formed just before it was used in experiments.

Stock solution of morphine sulfate (0.5 mM) was prepared
freshly from powder (0.76 mg/mL, in purified water) on the
day of the experiment and stored at 4°C. The final concen-
tration of morphine in perfusion solution was selected to be
100 nM (76 ng/mL; 1:4999 dilution of the stock solution,
performed in two steps, 1:99 in purified water then 1:49 in
Tyrode’s solution); we consider a low concentration, as it is
10-100x lower than then concentration used in most in vitro
studies (1-10 µM).29–32 We estimate that plasma concen-
tration of 100 nM would be produced by a single intravenous
sub-analgesic dose (0.15 mg/kg) based on the reported
findings that, on average, a dose of 3.0 mg of morphine
resulted in plasma level of 40.2 ng/mL in human subjects who
had an average weight of 56.3 kg (Table 1 and 2 from19). We
have previously shown that, when performing a dose re-
sponse curve, in the rat, morphine induces analgesia at doses
starting at ∼1 mg/kg.14

Statistical analysis

Rheobase was measured before and 5 min after application of
morphine. Magnitude of the effect of morphine was ex-
pressed as percentage reduction in rheobase (i.e., value before
morphine administration was subtracted from value after,
then the difference was divided by pre drug baseline). The
following statistical tests were used: one-sample two-tailed
Student’s t-test versus zero and two-sample unpaired two-
tailed Student’s t-test.

Prism 10.1 (GraphPad Software) was used to generate
graphics and to perform statistical analyses; p < .05 is
considered statistically significant. Data are presented as
mean ± SEM.
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Results

Nociceptor sensitization by low dose morphine

To test the hypothesis that low dose morphine sensitizes small-
diameter human and rat DRG neurons, we performed in vitro
patch-clamp electrophysiology, evaluating the effect of our low
concentration of morphine (100 nM, i.e. 76 ng/mL, corre-
sponding to a single sub-analgesic dose of 0.15 mg/kg)14,19 on
neuronal excitability. Rheobase, the minimal sustained current
required to generate an action potential (AP), was selected for our
measure of neuronal excitability as it is a well-defined electro-
physiological property that reflects excitability in DRG
neurons.25,28,33–35 Percentage decrease in rheobase was used as
the measure of nociceptor sensitization. The effect of 100 nM
morphine on rheobase was evaluated in putative C-type noci-
ceptive (small-diameter) neurons from rat (soma
diameter <30 µm)36–39 and human (soma diameter 40-60 µm)
DRG.40–42 We found that low dose morphine induces a sig-
nificant decrease in rheobase in small-diameter rat (26 ± 7%, n =
6, *p = .013, t(5) = 3.8, Figure 1(b); illustrative traces in
Figure 1(a)) and human (36 ± 7%, n = 9, **p = .0014, t(8) = 4.8,
Figure 1(d); illustrative traces in Figure 1(c)) DRG neurons.

Prevention of nociceptor sensitization by low dose
morphine with a selective TLR4 antagonist

We next evaluated the contribution of TLR4 to low dose
morphine-induced sensitization of rat and human small-
diameter DRG neurons, in vitro. In both rat and human
small-diameter DRG neurons that were pretreated with the
selective TLR4 antagonist, LPS-RS Ultrapure (10 μg/mL, for
30 min before, during, and continued after the exposure to
morphine), reduction in rheobase induced by low dose
morphine (relative to baseline in the same cell) was signif-
icantly attenuated, compared to morphine treatment without
the TLR4 antagonist (rat: #p = .018, t(9) = 2.9; human: & p =
.031, t(13) = 2.4) and was not significantly different from zero
(no effect) (rat: 0 ± 5%, n = 5, 95% CI = (�14 .. +15)%, p =
.96, t(4) = 0.05, Figure 1(b); illustrative traces in Figure 1(a);
human: 9 ± 7%, n = 6, 95% CI = (�10 .. +28)%, p = .29, t(5) =
1.2, Figure 1(c); illustrative traces in Figure 1(d)).

Discussion

Opioid-induced hyperalgesia (OIH) remains a paradoxical
effect of several clinically used opioid analgesics (e.g.,
morphine, fentanyl, remifentanil and oxycodone). It has long
been appreciated that opioid analgesics elicit bimodal effects
on nociceptor excitability, producing excitation as well as
inhibition, in vitro43 In behavioral studies we have previously
shown that hyperalgesia induced by a systemic low, sub-
analgesic dose of morphine, in rats, is nociceptor TLR4-
dependent.13 Moreover, it has recently been reported that the
mu-opioid analgesic, remifentanil, upregulates TLR4

expression in DRGs in the rat and decreases mechanical
nociceptive threshold, an effect that is reversed by TAK-242,
a TLR4 antagonist.12 In fact, activation of TLR4 produces
robust mechanical and thermal hyperalgesia,44–47 and many
opioids at ultra-low doses are TLR4 agonists.13,48 Since sub-
analgesic doses of opioids produce TLR4-dependent
hyperalgesia,13,48,49 the hyperalgesia induced by the re-
peated administration of opioids (OIH) could be due to de-
sensitization of MOR (i.e., opioid tolerance), uncovering
TLR4-dependent hyperalgesia. In addition to direct activa-
tion of TLR4 by opioids, another mechanism by which TLR4
could contribute to OIH involves crosstalk betweenMOR and
TLR4, such that opioids could activate TLR4 by acting at
MOR.13,50,51 Both of these mechanisms implicate MOR in
OIH, and a role for MOR is supported by our observation that
OIH induced by a low systemic dose of morphine is partially
dependent on MOR-mediated signaling (Figure 2(a) in14).
However, the complete prevention of low dose morphine-
induced OIH by knock-down of TLR4 (Figure 1(b) in13)
supports the suggestion that the switch from an inhibitory to
an excitatory pathway for MOR signaling alone is unlikely to
be a significant contributor to OIH.

In the present experiments, we have used well-established
in vitro patch-clamp electrophysiology methods to study the
effect of low dose morphine on excitability of small-diameter
rat and human DRG neurons (putative C-type
nociceptors).7,15,36–42 Importantly, nociceptor excitability
correlates with subjective pain levels in humans.52–58 In the
current experiments we observed a similar sensitization
(reduction of rheobase) of small-diameter neurons cultured
from both rat and human DRGs, induced by low dose
morphine. In addition, we observed that this morphine-
induced nociceptor sensitization, in vitro, is dependent on
the action of morphine on primary afferent nociceptor TLR4.
This TLR4 dependence of nociceptor sensitization by mor-
phine is based on the finding that pretreatment with a selective
TLR4 antagonist (LPS-RS Ultrapure) prevents the sensiti-
zation of nociceptors by low dose morphine. These in vitro
findings are consistent with our in vivo observation of the
complete TLR4-dependence of OIH induced by a low dose of
systemic morphine.13

An excitatory effect of an opioid on human nociceptors
may result in an attenuation of inhibitory effects of opioids,
thereby reducing their analgesic efficacy, and necessitating
greater doses to achieve adequate pain relief. This, in turn,
increases the risk of other opioid side effects (e.g., nausea,
constipation, addiction, impaired cognition, etc.) and facili-
tates the onset of tolerance. Although in the present exper-
iments we evaluated a sub-analgesic dose of opioid, such an
excitatory mechanism is likely to be also active at higher
(analgesic) doses, masked by a stronger inhibitory effect.
Developing tolerance to the MOR-dependent analgesia
could, however, unmask a TLR4-dependent hyperalgesic
action of opioids to result in OIH, considered a serious ad-
verse effect of opioid analgesics. On the other hand,
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Figure 1. Low dose morphine induces TLR4-dependent sensitization of rat and human nociceptors. (a) Examples of low dose morphine-induced
reduction in rheobase of putative C-type rat nociceptors, and its prevention by a selective TLR4 antagonist (LPS-RS Ultrapure).
Electrophysiological traces (upper, grey) show APs generated in response to stimulation of a small-diameter DRG neuron (depicted in the inset
image) with a square wave current pulse (shown below AP recordings, black). The height of the pulse represents rheobase. The scale is indicated by
corresponding scale bars and, if not indicated by a different scale bar, is the same for left and right traces. Dotted line shows level of 0mV. Left panel
shows traces from a low dose morphine-treated neuron, of the control group, with no TLR4 antagonist added. Note the reduction in the height of
the current pulse (right traces) after application of morphine (100 nM), compared to the baseline value (left trace). Right panel shows traces from a
neuron of the “prevention” protocol group, preincubated for 30minwith the selective TLR4 antagonist, LPS-RSUltrapure (10 μg/mL). Note, only
a small reduction in rheobase in response to morphine (100 nM), being markedly attenuated compared to the control effect of morphine in the
absence of LPS-RS Ultrapure. (b) Reduction in rheobase, relative to its baseline value, produced by morphine (100 nM) in rat small-diameter DRG
neurons, without (control group; left white bar, “-“) and after preincubation with the selective TLR4 antagonist, LPS-RS Ultrapure (10 μg/mL;
“prevention” protocol group; right grey bar, “+”). Bars show mean ± S.E.M. Symbols show effect in individual neurons. Morphine produced a
significant reduction in rheobase in the control group (one-sample two-tailed Student’s t-test for zero effect: *p = .013, t(5) = 3.8) that was
significantly attenuated in the “prevention” group (two-sample unpaired two-tailed Student’s t-test: #p = .018, t(9) = 2.9), became not significantly
different from baseline (one-sample two-tailed Student’s t-test for zero effect: p = .96, t(4) = 0.05), supporting the suggestion that sensitization
produced by low dose of morphine, in rat nociceptors, is dependent on TLR4 that is expressed in the nociceptor. Number of cells: six in control, five
in the “prevention” protocol group. (c) Examples of low dose morphine-induced reduction in rheobase in putative C-type human nociceptors,
and its prevention by a selective TLR4 antagonist (LPS-RS Ultrapure). Electrophysiological traces (upper, grey) show APs generated in response to
stimulation of a small-diameterDRGneuron (depicted in the inset image)with a squarewave current pulse (shown belowAP recordings, black). The
height of the pulse represents rheobase. The scale is indicated by corresponding scale bars and, if not indicated by a different scale bar, is the same
for left and right traces. Dotted line shows level of 0 mV. Left panel shows traces from a low dose morphine-treated neuron of the control group,
with no TLR4 antagonist added. Note the reduction in the height of the current pulse (right traces) after application of morphine (100 nM) compared
to baseline value (left trace). Right panel shows traces from a neuron of the “prevention” protocol group, preincubated for 30minwith the selective
TLR4 antagonist, LPS-RS Ultrapure (10 μg/mL). In this cell no reduction in rheobase in response to morphine (100 nM) is observed, being markedly
attenuated compared to the control effect of morphine in the absence of LPS-RS Ultrapure. (d) Reduction in rheobase, relative to its baseline value,
produced bymorphine (100 nM) in human small-diameter DRG neurons, without (control group; left white bar, “-“) and after preincubationwith
the selective TLR4 antagonist, LPS-RS Ultrapure (10 μg/mL; “prevention” protocol group; right grey bar, “+”). Bars show mean ± S.E.M. Symbols
show effect in individual neurons. Morphine produced a significant reduction in rheobase in the control group (one-sample two-tailed Student’s t-
test for zero effect: **p= .0014, t(8) = 4.8) that was significantly attenuated in the “prevention” group (two-sample unpaired two-tailed Student’s t-
test: & p= .031, t(13) = 2.4), became not significantly different from baseline (one-sample two-tailed Student’s t-test for zero effect: p= .29, t(5) = 1.2),
supporting the suggestion that sensitization produced by low dose of morphine, in human nociceptors, is dependent on TLR4 that is expressed in the
nociceptor. Number of cells: 9 in control, six in the “prevention” protocol group.
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potentiation of a TLR4-dependent excitatory pathway (e.g.,
due to upregulation of TLR4 or enhanced crosstalk between
MOR and TLR4), could also contribute to opioid tolerance as
a reduction in analgesic response to the same dose of opioid.
Thus, our findings provide support for the hypothesis that
using TLR4 antagonists in combination with opioid anal-
gesics might increase the analgesic potency of opioids, as
well as reduce risk and/or severity of TLR4-mediated opioid
side-effects.

In conclusion, in the present study, we have validated the
observation that opioid-induced nociceptor sensitization can
occur by its direct action on small-diameter human and rat DRG
neurons, enhancing the clinical relevance of prior in vivo and
in vitro studies that have, to date, been conducted only in rat and
mouse nociceptors. In addition, the present study provides strong
support for the suggestion that opioid-induced nociceptor sen-
sitization (and, by extension, OIH) is dependent on nociceptor
TLR4, rather than indirectly by its action on other cells, such as
cells of the immune system and glia.
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