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In the accompanying Comment1, Rosenbloom et al. present a model simulation that 

questions our report2 of ongoing replication within drug sanctuaries in treated patients 

infected with HIV-1, which challenges the prevailing dogma that such replication cannot 

occur. They propose that cohorts of ever-older, latently infected cells revealed by differential 

decay of cell populations with varied half-lives after the start of antiretroviral therapy yield 

an illusion of viral evolution. We find this explanation untenable because Rosenbloom et 
al. make modelling assumptions that conflict with what is known about within-host virus 

evolution3,4.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2024 February 08.

Published in final edited form as:
Nature. 2017 November 22; 551(7681): E10. doi:10.1038/nature24635.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As Rosenbloom et al. acknowledge1, they must apply very strong selective pressures in their 

simulations in order to match our observations (Supplementary Table 2). Selection must 

be both excessively strong (the selection coefficient s = 0.2 for each beneficial mutation) 

and pervasive (affecting about 3% of the genome) to reach the claimed 57% rate of false 

positives. However, even for escape mutations to cytotoxic T lymphocytes that target the 

virus, which are considered to be under exceptionally strong selection, the reported average 

strength of selection5 is only s = 0.03, and the average selection coefficient across the entire 

HIV-1 genome6,7 is s = 0.005. When s is set to more plausible values, the simulations 

register nearly no forward evolution signal.

The model absolutely requires these biologically untenable selective forces, as revealed by 

the key difference between the simulated and observed within-host phylogenies. Internal 

branches in fig. 2c, d of ref. 1 comprise a single substitution that must be driven to fixation 

almost immediately by unrealistically large selective pressures. This level of divergence is 

three to five times lower than we report2 (extended data fig. 3 of ref. 2), where multiple 

segregating (but mostly not adaptive) substitutions have accumulated between clades of 

haplotypes over the same period. Under any measure of phylogenetic support (for example, 

bootstrap), trees shown in fig. 2c, d of ref. 1 would collapse to rakes that bear no 

resemblance to experimental phylogenies2.

The results like those in fig. 2 of ref. 1 are also likely to be influenced by the decision 

to sample a small number of sequences from simulated populations that generates limited 

information on within-host diversity; drawing only 50 sequences per time point (as done 

by Rosenbloom et al.1) will not reliably (in 80% or more of cases) capture variants with 

frequencies of less than 3%.

The model in ref. 1 predicts that, after treatment initiation, viral DNA will become more 

similar to viral RNA collected ever earlier in infection, giving a backwards evolution 

signal. Viral sequences in peripheral blood T cells sampled at successive time points from 

patients on suppressive therapy8–10 do not support this prediction. The observation that DNA 

sequences in cells collected after the initiation of suppressive therapy retain close genetic 

similarity to the RNA sequences in plasma sampled in the late phase of HIV-1 infection 

before treatment11 further undermines the model’s predictions.

While differential decay of latently infected T cells may very well have a role in shaping 

sequence diversity, the process on its own fails to capture essential features of within-host 

sequence evolution and yields predictions not supported by available longitudinal data. 

Further multi-compartment deep sequencing studies of defined T cell subsets in larger 

cohorts of individuals on treatment are needed to establish the relative contributions of 

different mechanisms for viral persistence.
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