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ABSTRACT

Activation of the androgen receptor (AR) and AR-driven transcriptional programs is central to
the pathophysiology of prostate cancer. Despite successful translational efforts in targeting
AR, therapeutic resistance often occurs as a result of molecular alterations in the androgen
signaling axis. The efficacy of next-generation AR-directed therapies for castration-resistant
prostate cancer has provided crucial clinical validation for the continued dependence on AR
signaling and introduced a range of new treatment options for men with both castration-
resistant and castration-sensitive disease. Despite this, however, metastatic prostate cancer
largely remains an incurable disease, highlighting the need to better understand the diverse
mechanisms by which tumors thwart AR-directed therapies, which may inform new thera-
peutic avenues. In this review, we revisit concepts in AR signaling and current understandings
of AR signaling-dependent resistance mechanisms as well as the next frontier of AR targeting
in prostate cancer.

INTRODUCTION

Androgens are essential hormones in the maintenance of
normal male physiology and sex differentiation, including in
the prostate.1,2 Activation of the androgen receptor (AR) is a
hallmark of prostate cancer, in which AR-driven transcrip-
tional programs can instigate and support tumor growth.
Recognition of this dependence dates back to the original
observations made by Charles Huggins and Clarence Hodges
in the 1940s that surgical castration induced tumor regres-
sion, thus proving the pathophysiologic reliance on andro-
gens and pioneering the therapeutic targeting of AR in this
sex-biased disease.3,4 For this seminal discovery, Hugginswas
awarded the Nobel Prize in Physiology or Medicine in 1966.

Although targeting AR in prostate cancer has been a
translational success story, resistance inevitably arises, of-
ten driven by molecular alterations in the androgen signaling
axis.With the advent ofmultiple effective next-generationAR-
directed therapies, the landscape of resistancemechanismshas
become increasingly diverse and complex. Furthermore, the
reality that metastatic prostate cancer largely remains an in-
curablemalignancydespite targeting the apparentAchilles heel
of this disease indicates an unmet need to understand how
tumors evade AR-directed therapies. In this review, we will
revisit concepts in AR signaling, with a perspective focused on
the next frontier of AR targeting in prostate cancer.

OVERVIEW OF AR ACTION

The AR is a ligand-dependent transcription factor and
member of the steroid receptor family consisting of the
estrogen receptor, progesterone receptor (PR), glucocorticoid

receptor (GR), and mineralocorticoid receptor (MR).5 These
steroid receptors share varying degrees of homology but are
functionally distinct, with unique actions dictated primarily by
the specificity of cognate ligand binding and differential
transcriptional programs.6 Under physiological conditions, the
principal androgenic ligands for AR are testosterone and its
more potent 5a-reduced derivative, dihydrotestosterone
(DHT).7 In the absence of ligand, the inactive AR generally
resides within the cellular cytoplasm bound by chaperone
proteins. Androgen binding triggers conformational changes
that promote AR nuclear translocation, homodimerization,
binding to DNA at androgen response elements, and direct
transcriptional activation of target genes (Fig 1).6,8,9

THERAPEUTIC TARGETING OF AR IN PROSTATE CANCER—
A HISTORICAL PERSPECTIVE

Since the initial demonstration by Huggins and Hodges,
depletion of gonadal testosterone by surgical or medical
castration (also referred to as androgen deprivation therapy
[ADT]) has remained a mainstay of therapy for prostate
cancer. Evidence for AR activation in promoting prostate
cancer even in early stages of disease derives from two key
observations. First, prostate-specific antigen (PSA) is fre-
quently elevated at diagnosis and often rises to herald dis-
ease progression. The KLK3 gene encoding PSA is a direct
transcriptional target of AR.10 Second, AR-driven tran-
scription can be hijacked by genomic rearrangements that
fuse regulatory elements from AR target genes with proto-
oncogene gene bodies, thereby coupling physiologic AR
signaling with dysregulated oncogenic pathways.11 The pro-
totypical example is TMPRSS2-ETS fusions, which are among
the most common and earliest genomic aberrations found in
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primaryprostate cancer andprecancerous lesions.12,13 However,
despite this seemingly vital role of AR signaling, alterations in
ARare rare inprimaryprostate cancer anduntreatedmetastatic
disease, indicating that AR signaling is necessary but not
sufficient alone to drive early tumor development.14-19

Although initially effective, the response to ADT is in-
variably followed by recurrence of castration-resistant
prostate cancer (CRPC). For decades, the prevailing
dogma was that CRPC represented an androgen-
independent state, although it is now appreciated that
inappropriate restoration of the androgen signaling axis
occurs in most cases of CRPC to drive disease progression.
This is supported by the fact that AR is frequently over-
expressed in CRPC, with a rise in PSA usually accompanying
its onset. In early investigations, it became clear that AR
overexpression could promote tumor proliferation in re-
sponse to castrate levels of androgens,20-22 the clinical
importance of which is underscored by the high frequency
of AR gene amplification in tumors after hormonal
therapy.16-18 Importantly, despite castrate levels of serum
testosterone, tissue depletion of androgens is incomplete
after ADT.23-26 This is likely due to intratumoral androgen
production from alternative steroidal precursors such as
adrenal androgens.24,27,28 The recognition of diverse re-
sistancemechanisms involving AR has been the impetus for
designing more potent AR signaling inhibitors (Fig 2).20,30

A pivotal milestone in the development of AR-targeting
agents was achieved with enzalutamide (formerly
MDV3100), a second-generation competitive antagonist
that binds to AR with 5-8 fold greater affinity than
bicalutamide.30 In parallel, abiraterone was also developed as
an irreversible inhibitor of CYP17A1—the enzyme that

converts pregnenolone to dehydroepiandrosterone (DHEA),
a precursor for potent androgen biosynthesis (Fig 3).33 Both
agents changed the treatment landscape for prostate cancer,
demonstrating for the first time an overall survival benefit
with retargeting AR in metastatic CRPC after progression on
chemotherapy.34,35 This provided critical clinical validation
that CRPC continues to rely on AR, which then spurred the
development of other second-generation AR antagonists,
such as apalutamide and darolutamide, as well as the in-
tensification of AR blockade in earlier disease stages, in-
cluding nonmetastatic CRPC.36-39 Additionally, the possibility
of incomplete AR signaling suppression with ADT even before
the clinical onset of CRPC provided rationale for combining
ADT with second-generation AR-directed therapies.40-45

Multiple phase III trials have now confirmed a clear sur-
vival benefit to these approaches, which have become stan-
dard of care. Yet, despite these translational successes, a
minority of patients experience primary resistance, and
most men will unfortunately experience disease progression
after treatment with these agents. Nevertheless, one lesson
learned from prior successes is that the pathophysiology of
prostate cancer remains deeply tied to the molecular regu-
lation of AR.

MOLECULAR MECHANISMS OF RESISTANCE TO AR
TARGETING IN PROSTATE CANCER

Most commonly, CRPC overcomes AR signaling inhibition by
reactivating the androgen signaling axis through various
genetic and epigenetic alterations while a minority of cases
can develop epigenetic alterations that bypass a requirement
for AR signaling. Common alterations within the androgen
signaling axis include AR overexpression and gene amplifi-
cation, ligand-binding domain (LBD) mutations, structural
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rearrangements, constitutively active AR variants (AR-Vs), and
alterations in pathways of androgen biosynthesis. Although
alterations in AR are uncommon in primary disease, they be-
come highly prevalent in CRPC, as is evident from multiple
large-scale tissue genomic sequencing studies.15-18,46,47 Serial

sampling by plasma cell-free DNA in patients on second-
generation AR-directed therapies likewise confirms that the
genetic alterations arising in the setting of treatment largely
converge on AR with evolving changes seen in gene copy
number and structural rearrangements.48
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FIG 1. Androgen signaling in prostate cancer is highlighted by multiple receptor and
pre/postreceptor mechanisms that serve as targets for different therapeutic ap-
proaches. Androgen biosynthesis is tightly regulated by the hypothalamic-pituitary-
gonadal and hypothalamic-pituitary-adrenal axes, which govern the production of
gonadal and adrenal androgens that serve as precursors for DHT, the principal AR
ligand in the prostate (pre--receptor activity). On ligand binding, AR translocates from
the cytoplasm to the nucleus to bind to DNA as a homodimer, permitting trans-
activation of target genes and pathways (postreceptor activity). Examples of different
clinically approved as well as investigational inhibitors are highlighted. ACTH, adre-
nocorticotropic hormone; AR, androgen receptor; ARE, androgen response element;
DHT, dihydrotestosterone; FSH, follicle-stimulating hormone; GnRH, gonadotropin-
releasing hormone; HSP, heat shock protein; LH, luteinizing hormone; NTD, N-terminal
domain; PROTACs, proteolysis-targeting chimeras; PSA, prostate-specific antigen;
SARDs, selective androgen receptor degraders.
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The increasing emergence of AR-negative prostate cancers
is likely an outcome of selective pressure from intensive AR
suppression with second-generation AR-directed agents,
forcing the reprogramming of tumor cells to survive via AR-
independent pathways.49 A subset of these tumors exhibit
markers of neuroendocrine differentiation and may mor-
phologically resemble small cell carcinoma, despite arising
originally from adenocarcinoma.49,50 A rise in the incidence
of treatment-related AR-negative prostate cancers presents
a unique challenge from a treatment perspective and has
spurred interest in targeting AR-independent pathways or
restoring AR expression in these tumors.51 Taken together,
these findings strongly suggest that AR is a master regulator
of prostatic differentiation and lineage-dependent survival
pathways that are subsequently usurped by prostate
cancer—such that resistance to potent AR signaling block-
ade necessitates augmentation of AR signaling or a switch to
AR-independent programs.52

Below, we have organized AR resistance mechanisms into
two groups: (1) those which directly perturb the AR protein
and (2) those that influence either the availability of
steroid ligands for AR or modify AR binding/actions (later
designated as prereceptor and postreceptor, respectively;
Fig 1). Understanding which of these mechanisms are
operative in individual tumors could inform which
strategies may be most effective to overcome treatment
resistance. However, one challenge is that the varied

resistance mechanisms to AR-directed therapies are not
necessarily mutually exclusive. Nevertheless, comprehensive
characterizationof thesemechanisms shouldhopefully clarify
and refine the molecular taxonomy of treatment-resistant
disease.

AR STRUCTURE/FUNCTION

The AR gene comprises eight exons spanning 183 kb of the X
chromosome at Xq11-12 and encodes a 110 kDa protein that is
approximately 919 amino acids (Fig 4). Notably, AR gene
amplification (commonly by tandemduplication) is themost
frequent molecular alteration in CRPC, occurring in about
approximately 60%-70% of cases.46 Furthermore, the
amplicon often encompasses both the AR gene body as well
as an enhancer site approximately 650 kb centromeric to
AR.53,54 However, in approximately 10%-15% of cases, am-
plification of this enhancer can occur independently of the
AR gene body, which drives AR overexpression similar to AR
gene body amplification.54 Interestingly, this region displays
the epigenetic hallmarks of a developmental enhancer that is
potentially reactivated in CRPC.53 Similar to gene amplifi-
cation, structural rearrangements in AR are also common in
CRPC, occurring in approximately 13%-33% of patients
before abiraterone or enzalutamide treatment and in-
creasing in frequency to approximately 25%-50% after
treatment.55,56 These structural rearrangements can occur
concomitantly with or independent of AR amplification and

1940

1786: Effect of
castration on prostate
gland regression first

described by John
Hunter

1780

1941: Huggins and
Hodges demonstrated

that surgical
castration induces
regression of PCa

1950

1945: Huggins and W.W.
Scott demonstrated the

therapeutic effect of bilateral
adrenalectomy in CRPC

1960 1970 1980 1990 2000 2010 2020

1968/1969:
Discovery of nuclear

DHT-bound AR

1960s-1970s: Evaluations
begin for the synthetic

estrogen diethylstilbesterol
and first AR antagonists

(cyproterone, flutamide) as
hormonal therapies for PCa

1971: Discovery of GnRH

1970s-1980s: First
androgen biosynthesis

inhibitors for PCa identified
(aminoglutethimide,

ketoconazole)

1979: Purification of PSA

1985: FDA approval of GnRH
agonist leuprolide

1979: First patient
with PCa treated

with GnRH agonist

1988: Successful
cloning of the AR gene

1989: FDA approval of
first non-steroidal anti
androgen (flutamide)

1989: Early trials initiated on
use of combined androgen

blockade with first-
generation antiandrogens

1992: Identification
of first AR mutation

in PCa (T878A)

1995: Recognition of
AR gene amplification

in CRPC

1995/1996:
Approvals for
bicalutamide

and nilutamide

2005:
Discovery of
TMPRSS-ETS
fusions in PCa

2008:
Discovery of AR
variants in PCa

2009: Enzalutamide
identified through

rational drug screen

2010s: Sequencing
efforts begin to

characterize genomic
landscape of PCa

2011: FDA approval
for abiraterone

acetate in mCRPC

2012: FDA
approval for
enzalutamide

in mCRPC

2013: Discovery
of HSD3B1

(1245C) variant

2018: FDA approval for
enzalutamide and

apalutamide in M0 CRPC

2019: Approval
of darolutamide

in M0 CRPC

2018: FDA approval
for abiraterone

acetate + ADT in
mCSPC

2019: Approvals for apalutamide/
enzalutamide in combination

with ADT for mCSPC

2022: FDA approval
for darolutamide in
combination with
docetaxel + ADT

2008: FDA
approval of

GnRH antagonist
degarelix

2020: FDA approval of oral
GnRH antagonist relugolix

FIG 2. A timeline of key translational discoveries and therapeutic innovations in the treatment of PCa. Illustration was created with BioRender.29

ADT, androgen deprivation therapy; AR, androgen receptor; CRPC, castration-resistant prostate cancer; DHT, dihydrotestosterone; FDA, US Food
and Drug Administration; GnRH, gonadotropin-releasing hormone; mCSPC, metastatic castration-sensitive prostate cancer; PCa, prostate cancer;
PSA, prostate-specific antigen.

4270 | © 2023 by American Society of Clinical Oncology

Dai, Dehm, and Sharifi



can give rise to diverse AR variant proteins with constitutive
activity.55,56 Both AR gene amplification and structural
rearrangements have been implicated in driving resistance
to enzalutamide and abiraterone.48,57,58

Like other steroid nuclear receptors, AR comprises four
major structural domains: an N-terminal domain (NTD), a
DNA-binding domain (DBD), a hinge region, and a
C-terminally positioned LBD (Fig 4).6 The DBD and LBD are
themost highly conserved across different species and share
significant homology with other steroid receptors while the
NTD is unique, possibly reflecting its specificity in AR
function.9 The NTD (exon 1) harbors a strong transcriptional
activation element termed AF-1, which is the primary ef-
fector of transactivation.59-61 Loss of the LBDmanifests with
constitutive activity, indicating its basal repressive role on
the NTD.62,63 In vitro studies have also suggested critical
interactions between the N-terminus and C-terminus in AR
transactivation, although more contemporary in vivo work
suggests that this property may be dispensible.64 In recent
years, various constitutively active AR-Vs have been char-
acterized that lack the LBD and may command AR programs

in a ligand-independent manner.65-68 Importantly, the
majority of current AR-directed agents either directly in-
teract with or require a functioning LBD and thus do not act
on AR-Vs. Accordingly, development of NTD inhibitors has
been an attractive concept, although the intrinsic structural
disorder of this domain is a crucial biophysical property
for transcriptional activity that also presents an inher-
ent challenge for the design of inhibitors.69 EPI-506 is a
bisphenol-like compound that was developed as a covalent
NTD inhibitor and recently tested in a phase I study of patients
with mCRPC resistant to second-generation AR-directed
therapies.70 EPI-506 achieved only minor PSA declines, a
finding that later attributed to poor bioavailability.70,71 EPI-
7386 is a successor drug with greater metabolic stability and
more potent activity, which is currently undergoing investi-
gation.72 Notably, although these agents target the NTD, they
may have broader, less specific actions that also contribute to
their therapeutic effect.73

The DBD (exons 2-3) is the most conserved region of AR,
which is perhaps unsurprising given the critical interactions
with DNA required for gene expression.9 The first zinc finger
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of the DBD makes base-specific contacts within the major
groove of DNA via a conserved series of amino acids known as
the P(roximal)-box, whereas the second zinc finger medi-
ates receptor dimerization via a similarly conserved D(istal)-
box.6 Remarkably, both the P-box andD-box residues aswell
as the consensus hexameric repeat sequence of DNA rec-
ognized by AR are also shared by GR, PR, and MR. This may
explain some degree of overlap between the genomic binding
sites of AR and GR, which is pertinent in CRPC, as GR appears
to be upregulated in certain enzalutamide-resistant tumors,
leading to GR binding to and transcriptionally regulating a
subset of AR target genes.74,75

The DBD and LBD are joined by aflexible hinge region (exons
3-4). The hinge region contains target sites for post-
translational modifications and a bipartite nuclear locali-
zation signal that orchestrates nuclear import.6 The LBD
(exons 4-8) governs ligand-dependent AR activity, illus-
trated by the fact that deletion of this region renders the AR
constitutively active and unresponsive to androgens.62 In
prostate cancer, the LBD is themost frequent site of gain-of-
function mutations. In addition to the ligand-binding
pocket, the LBD also contains an AF-2 element which en-
ables interaction with AR coregulators, a nuclear export
signal that excludes unliganded AR from the nucleus, and an
allosteric BF-3 regulatory site.76-78 These sites are potential
targets for noncompetitive inhibitors, which remain an
active area of investigation.79-81

AR MUTATIONS

ARmutations detected in prostate cancer typically arise after
exposure to antiandrogens. The majority of these are gain-
of-function missense mutations concentrated within the
LBD that enable receptor promiscuity and inappropriate
activation by a broad range of noncanonical ligand partners

or even antagonists. Contemporary next-generation se-
quencing methods have shown that four hotspot LBD mu-
tations (L702H, W742C/L, H875Y, and T878A/S) encompass
a significant number of cases, together being found in ap-
proximately 10%-25% of CRPC.16-18,47,82 The first AR mu-
tation described in prostate cancer was T878A, identified
initially in the LNCaP cell line (derived from a man with
CRPC) after the observation that hydroxyflutamide was an
agonist in this model and later confirmed in a patient with
CRPC.83-85 In vitro functional characterization of T878A/S
and H875Y revealed that these mutations confer increased
AR activation in response to various noncanonical steroidal
ligands such as progesterone, estradiol, and DHEA, as well as
to antiandrogens such as flutamide.86-89 Similarly, AR
W742C/L can be activated by bicalutamide.90,91 The ability of
these mutations to grant modest agonist potential to an-
tagonists is the purported mechanism of antiandrogen
withdrawal syndrome, a phenomenon initially described
with first-generation antiandrogens, wherein discontinua-
tion of therapy leads to PSA declines.90,92,93

Several mutations, including a more recently described
F877L mutation, have potential to promote resistance to
second-generation AR-directed therapies.94-97 In vitro
studies suggest that F877L can confer agonist activity to
enzalutamide and apalutamide (previously ARN-509), al-
though this mutation occurs infrequently in patients
overall and does not appear to be enriched by treatment.98

Notably, in contrast to enzalutamide and apalutamide,
darolutamide (previously ODM-201) bears a distinct
chemical structure with inhibitory activity even in
enzalutamide-resistant models that harbor AR F877L or
other resistance mutations.99 However, the optimal se-
quencing of treatment with AR-directed agents including
darolutamide in the context of AR mutations remains to be
determined.
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AR T878A, H875Y, and L702Hmutations have similarly been
observed in patients experiencing disease progression on
abiraterone.57,58,100 These mutations may hinder efficacy by
enabling AR to be activated by noncanonical ligands such as
progesterone and other steroids synthesized upstream of
CYP17A1, which are thus not suppressed by abiraterone. This
has prompted interest in the development of steroid
biosynthesis inhibitors that target enzymatic steps up-
stream of CYP17A1 (discussed below). Of note, the L702H
mutation, alone or in combination with T878A, appears to
be activated by glucocorticoids, which is a largely un-
avoidable obstacle given that abiraterone requires con-
current glucocorticoid administration to prevent
mineralocorticoid excess. Furthermore, given their ste-
roidal structure, abiraterone and its metabolites can also
directly bind to AR to influence AR activity, which could
explain some degree of cross-resistance between AR
antagonists and abiraterone.101-104

AR-Vs

A number of AR-Vs have been described which lack the LBD
and can thusmaintain AR signaling in a constitutive, ligand-
independent manner. AR-Vs generally arise via alternative
RNA splicing of intronic sequences or through structural
rearrangements in the AR gene which promote altered RNA
splicing patterns. To date, more than 20 AR-Vs have been
identified.65-68 Among those arising from alternative RNA
splicing of intronic sequences, AR-V7 appears to be themost
abundant in CRPC and is encoded by splicing of AR exons 1-3,
followed by a cryptic exon CE3. In vitro, AR-V7 has been
shown to either homodimerize or heterodimerize with full-
length AR (AR-FL) to mediate gene transcription.105-107

Expression of AR-V7 increases after ADT and correlates
strikingly with inferior clinical outcomes after enzalutamide
and abiraterone therapy, which has now been validated
across multiple cohorts.108-112 In light of this, AR-V7 may
serve as a useful predictive biomarker, although how this
dictates alternative treatment selection and timing remains
an area of active investigation.108-110 Other AR-Vs detected in
prostate cancer tissues include AR-V9, which is similarly
encoded by RNA splicing of AR exons 1-3 followed by a
cryptic exon CE5, as well as AR-V12 (also referred to as
ARv567es), arising from structural rearrangement and
skipping of exons 5, 6, and 7 (Fig 4). Like AR-V7, detection
of AR-V9 in CRPC biopsies may predict for resistance to
abiraterone.113 However, given that expression of AR-V7
and AR-V9 generally mirrors that of AR-FL, ongoing and
unresolved questions remain regarding whether AR-Vs drive
CRPC independent of AR-FL, as well as if AR-Vs activate
similar or different transcriptional programs compared with
AR-FL (with data to support both conclusions).105-107,114 The
identification of certain AR gene structural rearrangements in
CRPC tissues that block expression of AR-FLwhile promoting
AR-Vs indicates that, in specific circumstances, AR-Vs could
drive therapeutic resistance.55,56

Given themultiple resistancemechanismswhich circumvent
effective targeting of the LBD, there has been interest in
alternative approaches to AR signaling inhibition. In addition
to the aforementionedNTD inhibitors, proteolysis-targeting
chimeras (PROTACs) and selective androgen receptor de-
graders (SARDs) have recently emerged as novel and
promising therapeutic strategies. PROTACs are hetero-
bifunctional molecules consisting of two ligands connected
by a central linker; one ligand binds to AR while the other
recruits an E3 ubiquitin ligase to facilitate ubiquitination and
proteasome-mediated degradation. ARV-110 is a first-in-
class PROTAC, for which phase I/II data were recently re-
ported and appears to show encouraging clinical activity
among patients with heavily pretreated mCRPC, particularly
among those with detectable T878A/S and H875Y muta-
tions.115 Similarly, several SARDs have also shown activity in
preclinical models for CRPC, including against AR-V7, and
could represent a new class of AR-directed therapies.116,117

INTRATUMORAL ANDROGEN BIOSYNTHESIS
(prereceptor mechanisms)

The biosynthesis of all steroid hormones begins with
27-carbon cholesterol, which can undergo stepwise enzy-
matic modification, first to downstream 21-carbon steroids
(progestins), followed by further conversion to 19-carbon
androgens. In men, the major circulating androgens in se-
rum are testosterone and DHEA, predominantly produced by
the testes and adrenal glands, respectively.118 As ADT does
not influence the production of extragonadal androgens,
CRPC can engage in intracrine androgen biosynthesis via
alternative androgenic precursors to maintain AR signaling
despite castrate serum levels of testosterone. Importantly,
adrenal-derived DHEA can be readily metabolized to DHT
(the principal AR ligand in the prostate) via a limited rep-
ertoire of enzymes expressed within prostatic tissue
(Fig 3).119 These steroidogenic enzymes are frequently
upregulated in CRPC to enable more efficient androgen
biosynthesis of AR ligands.25,28

Multiple biosynthetic pathways converge on DHT as thefinal
active metabolite (Fig 3).120 Although targeting of these
enzymes is appealing given their requirement for androgen
production, one consideration for therapeutic development
is that inhibiting enzymes more proximally in the pathway
may inadvertently disrupt synthesis of other physiologically
indispensable steroids (such as mineralocorticoids and
glucocorticoids), while blocking more distal enzymes spares
the generation of upstream metabolites and creates op-
portunities for escape mechanisms. For instance, despite
inhibition of CYP17A1 (17a-hydroxylase/17,20-lyase) activ-
ity, abiraterone does not prevent the generation of pro-
gestins that can activate AR in the context of specific AR
mutations.100 Although there has been interest in inhibiting
CYP11A1 upstream to overcome this issue, this maneuver
mandates glucocorticoid andmineralocorticoid replacement
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therapy. In phase I/II trials, the first-in-class CYP11A1 in-
hibitor ODM-208 was more effective in patients with de-
tectable AR LBDmutations in achieving PSA declines but was
associated with grade 3 adrenal insufficiency at higher
doses.121,122 Thus, striking a balance between blockade of AR
mutants while allowing for physiologic glucocorticoid/
mineralocorticoid signaling appears to be a challenge with
CYP11A1 inhibition.

Immediately downstream to CYP17A1 is 3b-hydroxysteroid
dehydrogenase (3b-HSD), which catalyzes the rate-limiting
step in the conversion of DHEA to androstenedione (AD). A
germline variant in 3b-HSD1 (encoded by HSD3B1, the pre-
dominant isoenzyme expressed in the prostate) renders this
enzyme resistant to ubiquitin-mediated degradation and
increases protein stability, with resultant increased meta-
bolic flux of DHEA to downstream androgens.123 Inheritance
of HSD3B1 (1245C), the adrenal-permissive allele that en-
codes for the more stable form of 3b-HSD1, has been as-
sociated with rapid onset of resistance to ADT and poorer
clinical outcomes in CRPC, which has been independently
validated across several different cohorts.124-128 In addition,
CRPC tumors from patients who are germline heterozygotes
can acquire a second somatic mutation or undergo loss of
heterozygosity.123 Recent evidence also indicates that
3b-HSD1 activity may require phosphorylation by the ty-
rosine kinase BMX, a finding that could present novel
therapeutic avenues to modulate androgen biosynthesis.129

Conversion of AD to DHT requires two final reactions
mediated by 17b-hydroxysteroid dehydrogenase and
5a-reductase family enzymes. In prostate cancer, AKR1C3
(type 5 17b-hydroxysteroid dehydrogenase) is overex-
pressed in response to ADT.28,130,131 However, development
of potent, selective AKR1C3 inhibitors is challenging given
the sequence similarity of AKR1C3 to several other en-
zymes within this family, of which inhibition could lead to
potentially undesirable effects.132 Furthermore, although
5a-reductase inhibitors are routinely used in the treat-
ment of benign prostatic conditions, their role in prostate
cancer is less clear, especially as blockade can result in
unintended upstream accumulation of testosterone to
potentially rescue AR activity.133,134

Beyond these well-described pathways, other alternative,
underappreciated biosynthetic pathways likely also exist
that are relevant in prostate cancer (Fig 3).120 For instance,
C19 steroid 11b-OH derivatives of AD can be metabolized
by CRPC into 11-keto-testosterone/11-keto-dihydrotest-
sterone, which can act as bona fide AR agonists
(Fig 3).135,136 Aberrant cortisol metabolism via dysregu-
lation of 11b-HSD2 may also promote upregulation of GR
signaling to bypass AR and mediate enzalutamide
resistance.137,138 Ultimately, effective therapeutic blockade of
androgen biosynthesis requires understanding these dif-
ferent pathways and their contributions toward restoring or
circumventing AR activity.

POSTRECEPTOR MECHANISMS

In light of multiple prereceptor and receptor-level resis-
tance mechanisms that promote continued AR activity, a
potentially favorable approach might be to target post-
receptor mechanisms, which include AR binding and ac-
tivation of specific downstream genes or oncogenic
pathways modulated by AR. This requires a deep under-
standing of specific transcriptional programs directed by
AR, as well as how AR-dependent transcription is regulated
by a variety of coregulators.139 For example, the AR cistrome
undergoes extensive reprogramming with malignant
transformation and progression.140-142 The importance of
molecular partners in this process is perhaps best exem-
plified by the high frequency of driver mutations in key
proteins such as FOXA1 and SPOP, which have been shown
to interface with AR signaling to promote prostate
cancer.17,143,144 Similarly, structural variants such as
TMPRSS2-ETS fusions can hijack AR-driven programs,
which may be particularly relevant in early-onset dis-
ease.145 Some evidence also suggests that AR signaling itself
can conversely provoke these nonrandom translocation
events to promote carcinogenesis.146-148 Of note, although a
majority of primary prostate cancers express AR and can be
characterized by a taxonomy-defining alteration, ap-
proximately 30% lack a clear driver alteration, despite
clinically resembling tumors with identifiable driver al-
terations. Indeed, a lack of well-defined molecular corre-
lates for Gleason grade exists, and further understanding is
thus required in terms of the processes that drive ag-
gressive primary disease.14,149-151

In the context of various potential cellular functions of AR,
there remains interest in how to exploit these functions
therapeutically. For instance, it is well-recognized that AR
can engage in cross-talk with oncogenic signaling pathways
such as PI3K/AKT to facilitate tumor progression152,153 The
relationship between AR and mediating DNA damage repair
as well as the immune response has also prompted efforts
to combine AR-directed therapies with other agents, such
as PARP inhibitors or immunotherapy.148,154-157 AR target
gene expression is also strongly affected by epigenetic
processes, including histone acetylation and methylation,
which can modify chromatin accessibility and AR
binding.140-142 Bromodomain and extraterminal family
proteins are epigenetic readers of acetylated histones that
are targets for inhibitor design, given that they influence
expression of prostate cancer oncogenes, including
c-MYC.158-160 Epigenetic regulation can also contribute to
enzalutamide resistance because of GR upregulation or
other mechanisms that regulate endogenous repeat
elements.161,162 More recently, it has become apparent that
mechanisms operating in CRPC cells to restore AR activity
may also manifest with divergent actions that might be
therapeutically exploited.148,156,163-165 These mechanisms
are perhaps the basis for the phenomenon of bipolar an-
drogen therapy, in which high-dose testosterone can
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paradoxically induce clinical responses in a subset of pa-
tients.166 Although this is not an exhaustive review of the
breadth of postreceptor mechanisms, it highlights a fun-
damental need to better understand the varied cellular
functions of AR and how AR specifically orchestrates
prostate cancer programs, which may yield new insights
and directions in the treatment of prostate cancer.

CONCLUDING REMARKS

In conclusion, the field of prostate cancer has seen re-
markable advances in the past several decades, driven in

large part by our understandings of the androgen signaling
axis. With this also comes a greater appreciation for the
complex mechanisms employed by prostate cancers to
thwart effective inhibition of AR signaling. Despite con-
siderable progress in the development of effective next-
generation AR-directed therapies, most patients will
eventually develop resistance. However, recent and ongo-
ing molecular investigations have led to unprecedented
insights into AR structure and function, which has the
potential to enhance therapeutic precision and galvanize
newfound directions in the treatment of men with prostate
cancer.
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