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ABSTRACT

PURPOSE Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients,
but outcomes remain poor for patients experiencing disease progression or
relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events
occur early. Although previous studies examining cohorts of rrDLBCL have
identified features that are enriched at relapse, few have directly compared serial
biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here,
we sought to confirm the relationship between relapse timing and outcomes
after second-line (immuno)chemotherapy and determine the evolutionary
dynamics that underpin that relationship.

PATIENTS AND
METHODS

Outcomes were examined in a population-based cohort of 221 patients with
DLBCLwho experienced progression/relapse after frontline treatment andwere
treated with second-line (immuno)chemotherapy with an intention-to-treat
with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a
partially overlapping cohort of 129 patients underwent molecular character-
ization, including whole-genome or whole-exome sequencing in 73 patients.

RESULTS Outcomes to second-line therapy and ASCT are superior for late relapse
(>2 years postdiagnosis) versus primary refractory (<9months) or early relapse
(9-24 months). Diagnostic and relapse biopsies were mostly concordant for
cell-of-origin classification and genetics-based subgroup. Despite this con-
cordance, the number ofmutations exclusive to each biopsy increased with time
since diagnosis, and late relapses shared few mutations with their diagnostic
counterpart, demonstrating a branching evolution pattern. In patients with
highly divergent tumors, many of the same genes acquired new mutations
independently in each tumor, suggesting that the earliest mutations in a shared
precursor cell constrain tumor evolution toward the same genetics-based
subgroups at both diagnosis and relapse.

CONCLUSION These results suggest that late relapses commonly represent genetically distinct
and chemotherapy-näıve disease and have implications for optimal patient
management.

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is an aggressive and
heterogeneous lymphoma for which standard-of-care rit-
uximab with cyclophosphamide, vincristine, doxorubicin,
and prednisone (R-CHOP) immunochemotherapy results in
long-term remission in 60%-70% of patients.1 However,
outcomes are poor for the 30%-40% of patients with

primary refractory or relapsed disease (refractory or relapsed
DLBCL [rrDLBCL]) even after second-line therapy and au-
tologous stem-cell transplantation (ASCT).2,3 The landscape
of coding and noncoding somatic variants in DLBCL at di-
agnosis is well established,4-8 and several studies have ex-
amined the mutational landscape of cohorts of rrDLBCL,
identifying somatic variants that occur more frequently in
rrDLBCL.9-12 Although several of these mutations are
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prognostic at diagnosis for the likelihood of relapse, they are
insufficient to explain the poor outcomes experienced by
patients with rrDLBCL.

Tumor evolution is usually considered to follow one of two
models: linear or branching evolution. Linear evolution is
defined when the relapse tumor harbors all the variants
found at diagnosis along with a set of exclusive variants,
implying direct descent of the relapse from the diagnostic
tumor. Branching evolution is characterized by exclusive
variants in both diagnostic and relapse tumors with a
variable number of shared variants (the trunk). In the
transformation of follicular lymphoma (FL) to aggressive
DLBCL (tFL), this branching evolution is considered
evidence of a persistent common precursor cell (CPC)
ancestral to both lymphomas.13-15 Previous studies of
DLBCL tumor evolution have leveraged circulating tumor
DNA and/or limited targeted capture space to examine the
evolutionary dynamics of relapse in small cohorts, pro-
viding some evidence that branching evolution
predominates.9,16-18 However, the degree to which persis-
tent CPC populations might contribute to DLBCL relapse is
not yet known.

Critically, no studies have yet, to our knowledge, examined
the evolution of the mutation landscape together with gene
expression profiling (GEP)-based cell-of-origin (COO)19,20

and dark-zone signature (DZsig)21,22 classification. More
recently, genetics-based classifiers have been developed
that leverage co-occurrence of somatic variants to identify
shared biology within DLBCL. Intriguingly, the three
studies that described genetics-based groups converged
on 5-7 overlapping subgroups.7,8,23-25 The LymphGen

algorithm allows genetics-based subgroup assignment for
individual biopsies.23 These classification systems are be-
coming the foundation for precision medicine in DLBCL,
andwhile the current assumption is thatmolecular features
that underlie the classification of each tumorwould befixed
over time, this requires formal testing.

Here, we examined a large population-based cohort of
rrDLBCL showing that response rate and outcomes to
second-line (immuno)chemotherapy and ASCT are superior
for patients with late relapses relative to primary refractory
or early relapse. To examine the genetic and evolutionary
relationships between diagnostic and rrDLBCL underlying
these clinical differences, we assembled a cohort of 129
patients with multiple DLBCL biopsies and interrogated
them with a combination of fluorescence in situ hybrid-
ization (FISH) for recurrent rearrangements, GEP for COO
and DZsig, and/or whole-genome or whole-exome se-
quencing of two or more DLBCL tumors per patient.

PATIENTS AND METHODS

Outcome analyses were performed in the outcomes cohort
of 221 patients with de novo DLBCL treated with front-
line R-CHOP(-like) therapy who experienced DLBCL
progression/relapse (Data Supplement [Tables S1 and S2,
online only]). A major inclusion criterion was treatment with
second-line (immuno)chemotherapy (89% received GDP
[gemcitabine, dexamethasone, and cisplatin] 6 rituximab)26

with intention to treat with consolidative ASCT in patients
with (immuno)chemotherapy-responsive disease (Data
Supplement [Tables S1 and S2]).

CONTEXT

Key Objective
What are the patterns of tumor evolution that underpin the relationship between relapse timing and outcomes to second-
line (immuno)chemotherapy and autologous stem-cell transplantation in patients with diffuse large B-cell lymphoma
(DLBCL)?

Knowledge Generated
Although broadmolecular categories (cell-of-origin and genetic subgroups) were consistent between diagnosis and relapse,
late relapses arose from serial (and potentially treatment näıve) transformations from persistent common precursor cell
populations, whereas earlier relapses were more closely genetically related, implying innate (immuno)chemotherapy re-
sistance. These observations have implications for clinical trial design and patient management, where early and late
relapse patient populations should be considered separately and support additional molecular characterization of tumors
at relapse to guide precision medicine approaches.

Relevance (J.W. Friedberg)
These results emphasize the importance of repeat biopsy and molecular analysis of relapsed DLBCL, and further our
understanding of malignant B-cell evolutionary dynamics.*

*Relevance section written by JCO Editor-in-Chief Jonathan W. Friedberg, MD.
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The partially overlapping molecular characterization co-
hort comprised patients where there was sufficient ma-
terial for molecular assays from multiple tumors of DLBCL
morphology. Additionally, constitutional DNA was required
for all patients whose tumors underwent DNA sequencing.
The uniform second-line treatment approach required for
the outcomes cohort was not an inclusion criterion for this
cohort. Thus, patients who were not treated with intention
to consolidate with ASCT were included along with patients
with indolent lymphoma evident at any time in their disease
course, as long as multiple DLBCL biopsies were available.
This cohort is enriched for patients who experienced late
relapse, reflecting historic patterns of obtaining a biopsy
to confirm relapse less frequently in primary refractory
disease. In total, 129 patientswere identified, ofwhom32 had
prior indolent lymphoid neoplasms. Among the 97 patients
with apparently de novo DLBCL at diagnosis, 11 had subse-
quent indolent lymphoma diagnoses. Pairs of biopsies were
interrogatedwith a combination of break-apart FISH forMYC,
BCL2, and/or BCL6 rearrangements, digital GEP (NanoString
DLBCL90) for COO andDZsig classification,20,21 and/orwhole-
genome (WGS) or whole-exome sequencing (WES) (Data
Supplement [Supplemental Fig 1 and Tables S3 and S4]).
Further details are provided in the Data Supplement. This
study was reviewed and approved by the University of British
Columbia-BC Cancer Research Ethics Board in accordance
with the Declaration of Helsinki. All patients provided written
informed consentwith the exception of patientswherewaiver
of consent was granted by the Research Ethics Board.

RESULTS

Patients With Late Relapse Have Superior Outcomes

Considering previous observations that outcomes to
second-line therapies are related to progression/relapse
timing,27,28 we first sought to confirm this observation in
a large population-based outcomes cohort. The 221 patients
were categorized into three relapse timing categories:
Primary refractory disease was defined as progression or
relapse within 9 months of diagnosis, approximating
3 months post-end of treatment.29 Late relapses were
defined as more than 24 months after diagnosis, reflecting
the definition of EFS24—a validated end point in which
patients event free 24 months after immunochemotherapy
collectively have superior disease-related outcomes.30

Early relapses were defined as relapse 9-24 months from
diagnosis. We found significant differences in both re-
sponse rates to second-line (immuno)chemotherapy
(Fig 1A) and the proportion of patients who ultimately
received consolidative ASCT (Fig 1B), demonstrating su-
perior (immuno)chemosensitivity of tumors of patients
experiencing late relapses. Patients experiencing late re-
lapse had significantly superior progression-free survival
and overall survival relative to patients with primary re-
fractory or early relapse when considering either time from
first progression/relapse (Figs 1C and 1D) or from ASCT
(Figs 1E and 1F). Outcome differences persisted after

adjusting for age at diagnosis and International Prognostic
Index at relapse (Data Supplement [Supplemental Fig 2]).

Late Relapses Are Highly Genetically Divergent

To examine the underlying tumor biology and patterns of
evolution driving the superior outcomes observed in late
relapses, we used a molecular characterization cohort of
129 patients that experienced progression/relapse with
available serialDLBCLbiopsies. DNAsequencing (WGS[n568
patients] and WES [n 5 5]) was performed on multiple serial
DLBCL biopsies alongwith constitutional DNA (Fig 2), with 21
also included in the outcomes cohort (four primary refractory,
seven early relapses, and 10 late relapses).

The use of formalin-fixed paraffin-embedded tissues for
most samples resulted in variable sequencing depth (mean,
48.6X across WGS samples and 97X in exomes; Data
Supplement [Supplemental Fig 3 and Table S5]). We also
performed deep targeted DNA sequencing of genes relevant
for LymphGen classification (LySeqST, Data Supplement
[Table S6]) on multiple biopsies subjected to WGS from 47
patients and on a single biopsy from another 15 patients.
The LySeqST assay achieved amean depth of 812X across its
capture space (Data Supplement [Supplemental Fig 4A and
Table S7]). The lower variant allele frequencies of variants
detected by LySeqST alone versus genomes demonstrates
that it enhanced detection of subclonal variants that fall
below the WGS limit of detection (Data Supplement
[Supplemental Fig 4B]).

Next, we explored the overall divergence of mutations by
comparing the number of shared (common between both
biopsies) and exclusive (present in only one biopsy)
mutations between the first two DLBCL biopsies in each
patient. For this and all subsequent analyses, we pooled
the LySeqST and WGS variant calls and only retained
variants at positions with a sequencing depth of at least 10
unique molecules in all tumors from the same patient.
While primary refractory and early relapse tumors
have a rich landscape of variants shared between tumors,
many late relapses have few, with most mutations ex-
clusive to either the diagnostic or relapse biopsy (Fig 3A).
In both primary refractory and early relapse disease, the
number of mutations shared between tumors is strongly
correlated with the total number of variants identified at
either diagnosis or relapse with slopes nearing unity,
demonstrating that most variants are shared between
tumors (Fig 3B). In contrast, this correlation was weak in
late relapses (Fig 3B). Comparing the percentage of ex-
clusive variants in each tumor to the time between bi-
opsies revealed a clear linear trend, where tumor pairs
separated by many years have very few shared variants
(Fig 3C and Data Supplement [Table S8]). This trend was
consistent when considering time to relapse as a cate-
gorical variable (Data Supplement [Supplemental Fig 5]),
when the absolute number of exclusive mutations was
considered (Data Supplement [Supplemental Fig 6]) and is
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independent of genome coverage (Data Supplement [Table
S9]). The linear relationship between exclusive variants
and relapse timing was consistent when serial tFL tumors
were considered separately from de novo DLBCL (Data
Supplement [Supplemental Fig 7]). These results are
consistent with a branching evolution model of evolution,
where late relapse tumor pairs arise from a CPC harboring
few lymphoma-defining mutations.

Given the high degree of divergence observed in some late
relapse tumors, we used RNAseq data to identify functional
expressed IG receptor rearrangements and confirm clonal
relatedness of tumor pairs (Data Supplement [Table S10]).
All four primary refractory and nine early relapse patients
had concordant IGHV gene usage while 1 of 8 late relapses
was discordant (Fig 3D). This lone patient with discordant
heavy chain rearrangements also had discordant light chain
rearrangements (Fig 3E), suggesting these tumors were not
clonally related.

Temporal Dynamics of Structural Variants

Rearrangements of MYC, BCL2, and BCL6 are important
drivers of aggressive lymphoma biology and contribute to
disease and genetics-based classification.23,32,33 BCL2
rearrangement status was concordant in all 100 patients
tested (Fig 4A and Data Supplement [Table S3]), consistent
with the origin of BCL2 rearrangements during V(D)J
recombination in early B-cell differentiation.34 In 26 pa-
tients where WGS identified BCL2 breakpoints in two or
more tumors, breakpoints were always identical (Data
Supplement [Table S11]).

MYC and BCL6 rearrangements were detected in 20 of 114 and
26 of 108 patients, respectively. In contrast to BCL2 rear-
rangements, the rate of discordance in rearrangement status
between biopsies was substantial at 70% ofMYC-rearranged
patients and 65% of BCL6-rearranged patients. Interest-
ingly, in all 10 patients where BCL6 rearrangements were
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FIG 1. Relationship between relapse timing and outcomes to second-line therapy. (A and B) The percent of patients in each relapse timing
category (A) whose relapse responded to second-line therapy and (B) who received ASCT. Groupswere compared with pairwise Fisher’s exact
tests. (C-F) Kaplan-Meier curves showing PFS and OS from the time of progression or ASCT. P values were determined with a log-rank test.
*P < .05; **P < .01; ***P < .001. ASCT, autologous stem-cell transplantation; ER, early relapse; LR, late relapse; NS, not significant; OS, overall
survival; PFS, progression-free survival; REFR, primary refractory.
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identified by WGS at multiple time points, the breakpoints
were identical. MYC breakpoints were identified by WGS in
multiple tumors from six patients, one of which was cryptic
to FISH.35 One patient with primary refractory disease, two
with early relapse, and one late relapse had identical MYC

breakpoints in both tumors. However, two patients with late
relapses (both high-grade B-cell lymphoma with MYC and
BCL2) had different MYC translocation partners at diagnosis
and relapse (Fig 3B and Data Supplement [Table S11]). These
findings suggest that in some patients experiencing late
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FIG 3. (Continued). Barplots indicate the number of coding mutations present per patient in each mutation subset. (B) The relationship
between total variants (all or coding only) at diagnosis or relapse versus the number of mutations shared between tumors. The dashed gray
line represents the line of unity. (C) The percent of variants exclusive to either diagnostic or relapse tumors as a function of time between
biopsies. R represents the Pearson correlation coefficient. (D) Concordance of heavy chain and (E) light chain V gene usage derived from
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relapse, the original MYC-translocated aggressive lym-
phoma is effectively eradicated by treatment, whereas the
indolent CPC harboring a BCL2 translocation or other vari-
ants can persist for many years with newMYC translocations
arising in a subsequent aggressive lymphoma.

Biological Consistency of Tumor Pairs

We next evaluated the consistency of molecular subgroups
using GEP and LymphGen. We observed high levels of
concordance of COO subtype between diagnosis and relapse
in the 91 patients tested (Data Supplement [Table S3]). None
of 20 primary refractory patients, only 1 of 24 early relapse
patients (4.2%), and only 5 of 47 late relapses (10.6%) were
frankly discordant (ie, activated B-cell-like (ABC) to germinal
center B-cell-like (GCB) DLBCL or vice versa; Fig 4C).
Comparisonof theNanoString linear predictor scores between
time points revealed a weaker correlation in late relapse
patients (Fig 4D). A similar trendwas observed inDZsig scores
(Data Supplement [Supplemental Fig 8]).

To evaluate consistency in genetic subgroup assignment, we
compared LymphGen classifications across 73 diagnostic/
relapse tumor pairs, yielding a genetic classification for
80% of tumors. LymphGen classifications were highly
concordant in all relapse timing categories, with discordance
mainly occurring in patients with overlapping composite or
Other (not assigned to any subgroup with sufficient confi-
dence) tumors (Fig 4E, Data Supplement [Table S12]). A
single early relapse patient of 18 (5.6%) patients had frank
discordance (BN2 to MCD) and 4 of 41 (9.8%) among late
relapses.

Convergent Evolution in Divergent Pairs

The relative consistency of molecular subgroups as proxies
for tumor biology is at odds with our observation that late
relapses share relatively few mutations with the diagnostic
tumor. To reconcile these disparities, we performed phy-
logenetic analyses for each patient, leveraging all coding
mutations alongside noncoding mutations in regions
known to be affected by aberrant somatic hypermutation
(aSHM; Data Supplement [Table S13]).6 In primary re-
fractory tumors, most somatic variants are found in the
shared phylogenetic trunk (clonal in both tumors; Fig 5A
and Data Supplement [Supplemental Fig 9]). In early

relapse tumors, the trunk is comparatively shorter with
branching evolution giving rise to exclusive mutations in
both diagnostic and relapse tumors (Fig 5B). In late re-
lapses, few mutations are in the trunk, with substantial
divergence on each branch (Figs 5C and 5D). In the patient
with discordant IGHV usage described earlier, the trunk
comprised a single shared coding mutation (Fig 5E) pro-
viding further evidence that these tumors were not clonally
related, arising independently.

Each of the genetic subgroups of DLBCL have distinct
hallmark mutations. We examined patterns of evolution
involving these hallmark mutations to determine whether
they are present in the inferred CPC population. Variant
calls from 28 patients with divergent patterns of evolution
were used, defined as having at least 25% of mutations
exclusive to each tumor. We then identified truncal (shared
among all tumors from the same patient) and exclusive
mutations. In total, 28 genes had truncal mutations de-
tected in two or more patients (Fig 6A and Data Supple-
ment [Table S14]), including MYD88L265P (4 of 5 mutated
patients) and CREBBP KAT domain mutations (5 of 5
mutated patients), which are genetic subgroup hallmark
mutations. In contrast, other genetic subgroup-defining
mutations were less frequently truncal, including NOTCH2
PEST domain truncating mutations (1 of 3), EZH2Y646 (0 of 2),
and TET2 mutations (2 of 7). As individual mutations, for
example EZH2Y646,may be considered for treatment selection
or prognosis, this finding underscores the importance of
recharacterizing late relapses. Loci affected by aSHM, in-
cluding BCL2, IGLL5, and BTG2, had a high number of both
truncal and exclusive mutations, suggesting that aSHM can
be an early shared event but continues after divergence.

In addition, we noted that divergent tumor pairs harbored
exclusive mutations in the same genes—an example of
convergent evolution, where the tumors arrive at the same
biology. In the representative MCD-classified early relapse
tumor pair, each tumor had independently acquired class-
defining mutations in BTG1, PIM1, and ETV6 (Fig 5B);
similarly the representative late relapse BN2 tumor pair in
CD70 (Fig 5C); and the representative late relapse EZB tumor
pair in FOXO1 and MYC (Fig 5D). This pattern of recurrent,
independent mutation of the same genes was observed in 16
of 28 patients with divergent tumor evolution (Data Sup-
plement [Tables S15 and S16]). We hypothesized that

FIG 4. (Continued). BA-FISH at both timepoints; bottom: a tumor pair that was BA-FISH positive at diagnosis and negative at relapse. (C)
Alluvial comparison of COO classifications in diagnostic/relapse pairs stratified by relapse timing. Frank discordance (ABC to GCB or vice
versa) is indicated by opaque alluvia. (D) A scatter plot comparing DLBCL90 COO scores across tumor pairs. Red circles highlight frank
discordance in COO classification. R values indicate Pearson correlation coefficient. (E) Comparison of LymphGen classifications between
tumor pairs. Frank discordance (a switch between two mutually exclusive non-other classifications) is emphasized with opaque alluvia.
ABC, activated B-cell-like DLBCL; BA, break-apart; COMP, composite; COO, cell-of-origin; FISH, fluorescence in situ hybridization; GCB,
germinal center B-cell-like DLBCL; NEG, negative; POS, positive; UNCLASS, unclassified DLBCL.
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subgroup-defining mutations would be recurrent and
concordant with the defined subgroup. Although this was
observed in some features, such as MCD-related PIM1 and
ETV6 in patients with MCD-classified tumors, others, such
as ACTB, typically associated with the ST2 LymphGen class
only recurred in patients without ST2-classified tumors
(Fig 6B).

It has been speculated that the shared hallmark muta-
tions between individual LymphGen subgroups and specific
indolent lymphomas reflects shared evolutionary history
and CPC features.23,25 As expected on the basis of this
model, patients with FL at any time in their disease co-
urse had DLBCL tumors predominantly classified as EZB
while the few marginal zone lymphoma/extranodal MZL of
mucosa-associated lymphoid tissue lymphomas occurred in
patients with BN2- and ST2-classified DLBCLs (Fig 6C).

DISCUSSION

Leveraging multiple metrics of tumor evolution including
cytogenetics, GEP, and unbiased genome- and exome-wide
sequencing, we have established distinct patterns of tumor
evolution that correlate strongly with the timing of DLBCL
progression/relapse. The high rate of mutations exclusive to
both diagnostic and relapse biopsies shows that branching
evolution predominates in late relapses, strongly supporting
the existence of persistent CPC populations capable of giving
rise to multiple DLBCL manifestations over time. GEP- and
genetics-based classifications remain consistent, suggest-
ing that the earliest mutations in a CPC constrain the biology
of subsequent DLBCL(s). This constrained evolution may be
the basis for the remarkable convergence of the three studies
that defined genetic subgroups of DLBCL.7,8,24,25 Subgroup-
defining mutations in the LymphGen classification were
sometimes among the inferred CPC mutations identified
while others were not consistently clonal, suggesting that
additional genomic aberrations or other nongenetic fea-
tures, such asDNAmethylation or tumormicroenvironment,
are still to be discovered. Furthermore, these CPC mutations
appear to constrain the set of loci that acquire mutations

during tumorigenesis. Larger cohorts and model systems
will be required to determine the mechanisms of these
observed constraints. Patterns of aSHM, known to reflect
highly actively transcribed regions, are strongly associated
with genetic subgroup23 and thus may reflect B-cell dif-
ferentiation states36,37 that have been occupied during the
evolution from CPC to DLBCL.

The patterns of DLBCL tumor evolution observed here help
explain the responses to second-line (immuno)chemo-
therapy observed at disease relapse in DLBCL. In primary
refractory disease, the pattern of tumor evolution suggests
that innate chemoresistance is present at diagnosis, with
little change in the composition of mutations on treatment
(Fig 6D). The population of primary refractory patients
should, therefore, be the focus in identifying both genetic
and nongenetic mechanisms of resistance to frontline
immunochemotherapy. In this study and others, these tu-
mors do not typically respond to (immuno)chemotherapy-
based second-line regimens, and outcomes are poor3 while
alternatives to chemotherapy result in superior outcomes in
this patient population.38,39

In contrast, our observations of the biology of late relapse are
consistent with elimination of the original DLBCL but per-
sistence of a CPC harboring a very small number of muta-
tions. These CPC populations subsequently give rise to a
genetically divergent DLBCL with a large number of newly
acquired mutations (Fig 6D). Although they share genetic
features, the repertoire of driver mutations in the relapse is
not preserved. As these late relapses are effectively che-
motherapy näıve, immunochemotherapy-based regimens
may remain a rational treatment option.

This divergence in evolutionary patterns and subsequent
(immuno)chemotherapy sensitivity associated with re-
lapse timing suggests that clinical trials and routine
management should consider patients with early versus
late relapse as distinct groups. The trials demonstrating
the superiority of second-line chimeric antigen receptor
T-cell therapy compared with immunochemotherapy
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and ASCT were performed in patients experiencing
progression/relapse within 12 months of end of frontline
therapy.38,39 Larger cohorts than those examined in this
study will be required to determine whether a specific
time-to-relapse interval can be defined that reliably
differentiates patients where the disease represents

true rrDLBCL as opposed to new DLBCL arising from a
CPC population. Furthermore, particularly when precision
medicine approaches are being considered, molecular
characterization of the tumor at relapse is recommended as
mutations and specific pathway perturbations may differ
from those observed at the time of diagnosis.
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MZL, marginal zone lymphoma; Tx, treatment. Created with BioRender.com.
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