
Current Topics in Research

Learning Metabolic Brain Networks in MCI
and AD by Robustness and Leave-One-Out
Analysis: An FDG-PET Study

Zhijun Yao, PhD1, Bin Hu, PhD1, Xuejiao Chen, MD1,
Yuanwei Xie, MD1, Jürg Gutknecht, PhD2, and Dennis Majoe, PhD2

Abstract
This study attempted to better understand the properties associated with the metabolic brain network in mild cognitive
impairment (MCI) and Alzheimer’s disease (AD). Graph theory was employed to investigate the topological organization of
metabolic brain network among 86 patients with MCI, 89 patients with AD, and 97 normal controls (NCs) using 18F fluoro-
deoxy-glucose positron emission tomography (FDG-PET) data. The whole brain was divided into 82 areas by Brodmann atlas to
construct networks. We found that MCI and AD showed a loss of small-world properties and topological aberrations, and MCI
showed an intermediate measurement between NC and AD. The networks of MCI and AD were vulnerable to attacks resulting
from the altered topological pattern. Furthermore, individual contributions were correlated with Mini-Mental State Examination
and Clinical Dementia Rating. The present study indicated that the topological patterns of the metabolic networks were aberrant
in patients with MCI and AD, which may be particularly helpful in uncovering the pathophysiology underlying the cognitive
dysfunction in MCI and AD.
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Introduction

Alzheimer’s disease (AD) is generally characterized with

symptoms such as cognitive dysfunction, neurodegenerative

disease, or even abnormal neuronal systems.1 Mild cognitive

impairment (MCI) characterized by memory impairment is a

kind of clinical syndrome, considered as the transition stage

from normal aging to dementia.2,3

Within the past decades, magnetic resonance imaging

(MRI) and diffusion tensor imaging (DTI) have been widely

utilized, as these modern brain mapping techniques were useful

in the early diagnosis and monitoring of progress made in MCI

and AD. Functional MRI (fMRI) could be employed to

describe hemodynamic response related to neural activity.4,5

Liu et al6 suggested that the nodal centrality was altered in

medial temporal lobe (MTL) and occipital lobe during resting

state fMRI scan, implying a rewiring in the brain network of

MCI. A structural MRI study of MCI and AD explored the

brain networks by measuring the gray matter volume, reporting

altered correlations in the MTL and the abnormal hub regions

in the frontal lobe.7 Furthermore, the default mode network

(DMN) deficits in amnestic MCI, such as a functional disrup-

tion in the alpha band and structural disconnection, were

reported in a bimodal study that combined magnetoencephalo-

graphy (MEG) with DTI.8 In a DTI/FDG-PET study, patients

with MCI and AD showed a reduced fractional anisotropy and

white matter integrity within the limbic system, potentially

causing MTL atrophy and posterior cingulate cortex

hypometabolism.9

Fluoro-deoxy-glucose positron emission tomography (FDG-

PET) could measure the metabolic patterns of the brain by

examining the values of cerebral glucose metabolism.10,11 A

longitudinal research suggested that 18F-FDG-PET was a valu-

able diagnostic tool for the prediction of clinical outcome in

individual patients with MCI.12 Using PET imaging, Caminiti

et al investigated the alterations in connectivity indexes, brain

modularity, and hubs configuration in 42 patients having

dementia with Lewy bodies.13 Toussaint et al combined the

voxel-based analysis and independent component analysis to

extract the characteristic metabolism patterns for discriminat-

ing stable MCI and converting MCI from AD with support

vector machine classifier.14 Recently, Zippo et al pointed out

a new topological feature (compression flow) with random
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centrality-driven walks method to estimate the functional inte-

gration ability in the brain network among normal controls

(NCs), patients with MCI, and patients with AD. 15 Further-

more, the disturbance in glucose metabolism might predict

future cognitive decline.16 The graph–theoretical analysis was

introduced to analyze the brain networks, and it could provide a

mathematical and conceptual framework to construct a whole

network for exploring the topological patterns of brain net-

works.17 Watts and Strogatz 18 had proposed that neural net-

works could be known as “small-world” networks with densely

local connectivity between neighboring regions and sparsely

long-range connectivity among distant regions. A previous

study on the functional networks in MCI and AD indicated that

functional integration in whole-brain network gradually

declined with increasing severity of the illness.19 Although

most of the previous studies suggested disease-related altera-

tions in topological patterns of AD/MCI, the findings were

substantially inconsistent with different modalities (fMRI,20

MEG,21 and EEG22). The large sample sizes and parametric

investigation derived from PET imaging were essential to

examine the MCI- and AD-related abnormalities in metabolic

brain network at different scales. However, the characteristics

of the metabolic brain networks of MCI and AD have not been

explored extensively.19,23

In this study, we hypothesized that the metabolic networks

of MCI and AD were characterized by abnormality in topolo-

gical properties based on FDG-PET data. Metabolic networks

were established by the average metabolism level of brain

regions for MCI, AD, and NCs. We attempted to investigate

the topological pattern, network robustness, and individual

contribution using the network-based algorithm in MCI and

AD. These findings in the metabolic network may provide

critical insight into the brain pathophysiological mechanism

in patients with MCI and AD.

Materials and Methods

Ethics Statement

Before the imaging collection, patients in Alzheimer’s Disease

Neuroimaging Initiative (ADNI) provided written informed

consent, which was approved by the institutional review boards

at 59 performance sites. All the PET acquisition sites and prin-

cipal investigator (PI) names can be found at http://adni.loni.us

c.edu/about/centers-cores/study-sites/. The ADNI Data and

Publications Committee approved the study for sharing and

analyzing the PET data anonymously.

Patients

In this study, 272 right-handed patients undergoing FDG-PET

scans were selected from the ADNI database (Supplementary

Text 1), including 97 NC individuals, 86 patients with MCI,

and 89 patients with AD. Clinical Dementia Rating (CDR) and

Mini-Mental State Examination (MMSE) scores were used to

evaluate dementia severity and cognitive function of all the

patients.24,25 The 97 NCs aged 62 to 87 (mean ¼ 75.77; SD

¼ 6.28; male/female, 42/55), 86 patients with MCIs aged 57 to

90 (mean ¼ 76.67; SD ¼ 7.45; male/female, 36/50), and 89

patients with ADs aged 56 to 90 (mean ¼ 75.52; SD ¼ 7.36;

male/female, 33/56). All the neuropsychological scores were

significantly different among the 3 groups (Table 1). A statis-

tically significant difference between the groups was not found

in age and gender. Additional information about the inclusion/

exclusion criteria is described on http://www.adni-info.org/

Scientists/doc/grant.pdf.

Construction of the Metabolic Network

After FDG-PET data acquisition and processing (Supplemen-

tary Text 2), the correlation matrices were computed. In this

study, Brodmann atlas (Supplementary Text 3) was applied to

subdivide the cortex into 82 regions (ROI-based), which had

been widely used as a reference for functional parcellation in

brain imaging studies.26 The metabolic correlations were sta-

tistical correlation coefficients between the average metabolic

levels of discrete brain regions. Three steps were adopted to

estimate the correlation matrices. First, we used the linear

regression model to remove the effects of age, gender, and the

average value of whole-brain metabolic level for each patient.

Second, a correlation matrix R with dimensions 82� 82 was

generated, where every individual entry Rij was computed by

the Pearson correlation coefficient between region i and j.7

Finally, the correlation matrices were obtained with diagonal

elements equivalent to 1 and the number of total probable

correlations were 82� ð82� 1Þ=2 for each group. The binary

matrices P were applied to simplify the metabolic networks and

reduce the computing scale for graph theory analysis.

Graph Theoretical Approaches

Graph theory is a reliable and an attractive model for analyzing

the parameters of networks.27 In the gained networks, the nodes

Table 1. Group Differences in Demographics and Neuropsychological
Tests.a

NC, n ¼ 97 MCI, n ¼ 86 AD, n ¼ 89 P Value

Age, mean (SD) 75.77 (6.28) 76.67 (7.45) 75.52 (7.36) .606
Gender (male/

female)
42/55 36/50 33/56 .173

MMSE,b means (SD) 28.97 (1.24) 27.08 (1.70) 20.69 (3.70) <.001
CDRb score (%) <.001

0 100 0 0
0.5 0 100 25.8
1 0 0 50.6
2 0 0 23.6

Abbreviation: AD, Alzheimer’s disease; CDR, Clinical Dementia Rating Scale;
MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NC,
normal control; SD, standard deviation.
aAge, Gender, MMSE, and CDR differences among the 3 groups were analyzed
by analysis of variance (ANOVA) with Bonferroni-corrected post hoc t tests.
bStatistically significant difference in each pair of groups at P < .001.
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and edges corresponded to the Brodmann areas and the undir-

ected connections of each pair in Brodmann areas, respectively.

The topology of each group network would differ significantly

from each other under the thresholding of the same correlations

value. In order to resolve this issue, sparsity (S) was used to

threshold the correlations matrices of the networks into binar-

ized matrices P, where an entry Pij equals 1 if |Rij| exceeded

sparsity and 0 otherwise.7 Sparsity was defined as the number

of existing edges, K, divided by the maximum possible number

of edges in a graph.5 Definitive way for choosing a single

optimal threshold value is yet absent.28 Thus, a range of S

values was utilized to threshold each correlations matrix

repeatedly (18% � S � 40%).28 This range of S values could

provide a fully connected undirected graph, which provided a

reasonable estimation of the properties of networks. In the

current situations, a fixed sparsity (S ¼ 18%) could guarantee

that all regions were included in the networks, while minimiz-

ing the quantity of false-positive connections, thereby using it

to threshold the metabolic networks of each group.29

Small-World Properties Analysis

Small worldness is a ubiquitous property of complex brain

networks.30 The clustering coefficient (Cp) and the character-

istic path length (Lp) of a network are used as the indices to

describe the small world properties (Supplementary Text 4).

Criteria for the small-world characteristics aree as follows:

g ¼ Creal
p =Crandom

p > 1; ð1Þ
l ¼ Lreal

p =Lrandom
p � 1: ð2Þ

Crandom
p and Lrandom

p indicates the Cp and the Lp of the

matched random networks,7 respectively, and the number of

nodes, edges, and degrees distribution of these random net-

works were in line with the real network.18

Nodal Centrality

The “betweenness centrality” was defined as a local character-

istic for exploring the outstanding nodes in the metabolic net-

works (Supplementary Text 4). A node, which had a high

betweenness might bridge different parts of the network.31 A

node with 2-fold higher than the average betweenness of the

network would be defined as a hub region in our study. The

betweenness value of each node was computed at a fixed spar-

sity 18% to ensure that the metabolic brain network was fully

connected without fragmentation in each group. The hub nodes

played a crucial role in facilitating information communication

and processing among the human brain networks.32 The arith-

metic description of these characteristics is provided in the

supporting information.

Network Robustness Analysis

Network robustness referring to the network stability and plas-

ticity in the case of losing nodes or edges was a crucial para-

meter of a complex network.33 In the metabolic brain networks,

the network robustness could be evaluated by removing the

nodes or edges in random and targeted patterns at the sparsity

of 18%.

In the “random pattern analysis,” the basic design principle

was removing nodes in the random order. The same operation

was performed on the edges in the network. In the “targeted

pattern analysis,” we first computed the betweenness value of

each node and edge in the metabolic brain network for the 3

groups, respectively. Next, the nodes were deleted in decreas-

ing sequence of their betweenness value. The same operation

was performed on the edges. The size of the remainder com-

ponent was a critical measurement of the ability to resist

crashes.34

Estimation of Individual Contribution by Leave-One-Out
Approach

Previous graph–theoretical studies have uncovered abnormal-

ities in structural and functional brain network on the group

level or individual level. Using the leave-one-out (LOO)

approach, we adequately considered the effects of both indi-

vidual contribution and group-level properties. The individual

contribution was estimated by removing 1 individual and

reshaping the group-level brain network. Then, we combined

the information regarding the individual cognitive impairment

with the group-level brain parameters. The individual contri-

bution was considered as a proxy of individual contributions

from homologous group,35 thereby providing preliminary evi-

dence for the diversity of clinical symptoms (excessive jea-

lousy, delusions of infidelity, and emotional distress) of

patients with MCI and AD.36 The correlation between clinical

scores and individual contributions was introduced to identify

the accuracy of the individual contribution in tracking the pro-

gression of the cognitive impairment or dementia in MCI and

AD. We assumed that patients with higher differences have

worse network organization patterns, which were specifically

related to impairments in fundamental circuits for information

integration.35 Here, the participant Rx was removed to measure

his or her individual contribution to the overall organization of

the network. The Mantel’s test statistic (Supplementary Text 5)

was used to evaluate the similarity between the original and

specific elements-removed metabolic brain networks.37 To

estimate the individual contribution Rx to global metabolism

correlation matrix P, we used the Saggar estimation formula:35

LooRx ¼ 1�Mantel testðPi¼1 ... :n; Pi¼1 ... :x;xþ1 ... :nÞ: ð3Þ

In order to investigated the relationships between LooRx

and clinical assessments, we calculated the Pearson correlation

coefficients between LooRx and MMSE scores (as a measure

of mental status) as well as between LooRx and CDR scores (as

a measure of dementia severity), respectively.

Statistical Analysis

In our test, we would rearrange the PET data from 3 groups and

then we get a reference distribution about the possible values of

44 American Journal of Alzheimer’s Disease & Other Dementias® 33(1)



the test statistic.7 To estimate the between-group significant

differences in age, gender, MMSE, and CDR, analysis of

variance with post hoc test was used in this study. First, we

would compute the Cps and Lps in each real metabolic net-

work over a wide range of network sparsity thresholds. For

testing the significant between-group difference, we ran-

domly intermix 1 group data with the 2 other groups sepa-

rately. Second, we would divide the data into 2 groups in

line with the numbers of the original groups. We took the

same sparsity threshold to obtain the correlation coefficient

matrices so as to compute the Cps and Lps. Then, we did the

repetitive experiment for 1000 times. At last, we sorted the

1000 results and found the between-group differences in

real networks. If between-group differences were included

in 95% (2-tailed) of the supposed between-group differ-

ences, we would accept the null hypothesis of the same

probability between the 2 groups at the 5% level. If not,

we rejected the null hypothesis.38

Figure 1. Metabolism-based connectivity matrices for normal control (NC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD).
The color bar showed the strength of the correlations. Pearson correlation matrices in NC (A), MCI (B), and AD (C). Left: weighted correlation
matrices, Right: binary matrices. The binary matrices were obtained by sparsity threshold (18%).
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Results

Correlation Matrices of the Metabolic Networks

The correlation coefficients of the metabolic networks were

computed to obtain the correlation matrices (82� 82) for

NC, MCI, and AD groups. Although the correlation matrices

of each group exhibited unique pattern, they had strong voxel-

mirrored homotopic correlations and intrahemisphere correla-

tions in common (Figure 1).

Small-World Properties of Metabolic Networks

Over a wide range of sparsity values, the Cp and Lp were

calculated, which were the precondition to evaluate the balance

of integration and interconnectivity. The expected results are

shown in Figure 2, 3 networks were with g > 1, l� 1, and d > 1

(d ¼ g/l) through a wide range of sparsity (18% � S � 40%),

which implied the presence of small-world properties. These

findings were consistent with previous studies that revealed

human brain with an efficient organizational structure.29

Moreover, AD presented the highest Cp and the longest Lp

(Figure 3). The permutation test was introduced to explore the

between-group differences in these attributes. With respect to

Lp, the 3 groups showed no significant differences between

each other, but AD had significantly higher Cp than MCI and

NC for the entire sparsity (Figure 4).

Differences in Nodal Centrality and Hub Regions of the
Metabolic Networks

The 1000 nonparametric permutation tests were used to explore

the between-group differences in the nodal centrality of the

metabolic brain networks. Figure 5 displayed the significant

differences in nodal centrality among the 3 groups. Between-

group comparisons revealed that AD group had significantly

lower nodal centrality in the left BA7 (lateral precuneus

cortex), BA8 (superior frontal gyrus), right BA25 (anterior

Figure 2. Small-world properties of the metabolic brain networks. The images indicate the changes in g ¼ Creal
p =Crandom

p , l ¼ Lreal
p =Lrandom

p and
s ¼ g/l in normal control (NC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) groups (sparsity ranging 18%-40%).

Figure 3. Mean clustering coefficients (Cp) and mean absolute path lengths (Lp) in normal control (NC), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD). The blue circles represented the NC, red stars for MCI, and black dots for AD.
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cingulate), and BA48 (medial surface of the temporal lobe),

whereas AD had higher nodal centrality in the left BA20 (infer-

ior temporal gyrus), right BA11 (orbitofrontal area), and BA40

(Wernicke’s area) compared to NC. In comparison to the NCs,

the nodal centrality of the patients with MCI decreased mainly

in the brain areas of left BA7, right BA8, and BA25 and

increased primarily in the brain areas of the left BA26 (ecto-

splenial area) and the right BA45 (Broca’s area) and BA47

(inferior prefrontal gyrus). A reduced nodal centrality in right

BA48 was observed in AD with respect to the MCI group.

Contrastingly, some regions in AD showed increased values,

such as the left BA20 and right BA40 (Figure 6). The hub

regions in the NC group were primarily located in somatosen-

sory association cortex and cingulate cortex and in the MCI

group were majorly distributed around the Broca’s area and

parahippocampal gyrus. As for AD group, the hub regions were

found approximately in Wernicke’s area and cingulate cortex

(Table 2; Figure 6).

Figure 4. The left panel shows the between-group differences in clustering coefficients (DCp) and the right panel absolute path lengths (DLp).
Top images display delta variables as DCp¼ CpNC-CpAD and DLp¼ LpNC-LpAD. Middle images display delta variables as DCp¼ CpNC-CpMCI and DLp

¼ LpNC-LpMCI. Bottom images display delta variables as DCp ¼ CpMCI-CpAD and DLp ¼ LpMCI-LpAD. The black hollow circles show the average
values, and the black lines represent 95% confidence intervals of the between-group differences through 1000 permutation tests per sparsity.
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Network Robustness Analysis

As seen in Figure 7, in all the 3 groups, the sizes of the largest

component decreased as the deletion ratio grew. The sizes of

the largest component in patients with MCI and AD were

smaller than that of the NC over a wide percentage of removal.

We also noted that the performance of the 3 groups was inter-

woven near the end of the removal processes in both patterns

(Figure 7). Responding to the failures and crashes, the meta-

bolic brain network in patients with MCI and AD were more

vulnerable than the NCs.

Correlations Between Individual Contribution and
Clinical Assessments

Before exploring the relationship between individual contribu-

tion and clinical assessments, we assessed the individual con-

tribution of each person in the 3 groups (Figure 8). Figure 9A

illustrated the significant negative correlation between individ-

ual contribution and MMSE using Pearson linear correlation

coefficient (r ¼ �.394, P < .001). As expected, the individual

contribution positively correlated with the CDR score (r ¼
.350, P < .001; Figure 9B). Moreover, the analyses revealed

that participants with higher individual contribution to the

overall metabolic brain network showed a worse clinical

performance, with respect to cognitive disturbance and mem-

ory impairment and vice versa.

Discussion

In the present study, we examined the topological pattern of the

metabolic brain network using Brodmann atlas by the resting-

state FDG-PET data in NC, MCI, and AD. To the best of our

knowledge, this is the first report using LOO approach to

explore the individual contribution to group-level metabolic

network in the 3 groups. The main findings of our study could

be summarized as follows: (1) The metabolic brain networks of

both MCI and AD groups showed loss of the small-world prop-

erties compared to NC. (2) Relative to NC, the MCI and AD

groups showed the disrupted topological organization in the

metabolic brain network. (3) MCI and AD showed vulnerable

network robustness compared to NC. (4) The individual con-

tribution was significantly correlated with clinical assessments.

Small-World Properties of the Metabolic Networks

Previous studies focused on brain network functionality or

structures, whereas the integrated regulation and information

transfer reflected through metabolic changes in a cell or organ-

isms.39 The metabolic activity has been shown to correlate with

Figure 5. Hub region’s distribution in normal control (NC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). (A) Axial, (B)
coronal, and (C) sagittal. Hub regions in NC (red), MCI (yellow), and AD (green). Cyan indicated common hub in NC and MCI. Blue indicated
common hub in MCI and AD. Sphere size was decided by the region’s betweenness values. L indicates left; R, right.
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clinical features in patients with chronic schizophrenia.40

Regions with synchronous metabolic level are functionally

interconnected.41 On this assumptions, our approach investi-

gated the regional metabolic relationships by estimating the

region-to-region correlations in order to understand the

abnormality of functional pathways in pathological dis-

eases.42,43 The correlation analysis of regional metabolism data

was speculated to behave as a proxy for analyzing the patterns

of synchronization of brain activity and disease-related influ-

ences among connected regions.44 The 3 groups showed strong

correlations between most homologous regions (same areas in

the opposite hemispheres; Figure 1), which might be associated

with the directly functional coupling between the left and the

right hemispheres.41 Recent studies indicated that there were

small-world properties in functional and structural brain net-

works.30,45 Watts et al18 suggested that small-world networks

displayed enhanced signal-propagation speed, self-organizing

power, and synchronization ability when compared to regular

networks. In this study, the highest Cp and the longest Lp were

observed in AD, while MCI showed the intermediate values

between normal aging and AD. Our findings provided addi-

tional evidence that MCI could be considered as the prodromal

stage of AD. The longer Lp led to the lower level of the global

efficiency in MCI and AD.46 A lower speed of information

processing and dissemination caused by low global efficiency

might indicate poor manifestation in cognitive responses of

Figure 6. Brain regions showed abnormal nodal centrality in whole
brain networks. All the regions belong to the hub regions, which are at
least in 1 network of the 3 groups, and these hub regions indicated the
significant between-group differences (P < .05). Regions showing
decreased (blue) and increased (red) nodal centrality in former com-
pared to the latter group. L indicates left; R, right.

Table 2. Hub Regions in Metabolic Networks for NC, MCI, and
AD Groups.a

Hemisphere
Brodmann
Areas Brain Regions

Normalized
Betweenness

NC MCI AD

Left Area 8 Frontal eye fields 3.352 2.297 0.706
Area 7 Somatosensory

association cortex
2.596 0.246 0.554

Area 5 Somatosensory
association cortex

2.526 0.600 0.249

Area 4 Primary motor
cortex

2.436 2.237 0.395

Area 29 Retrosplenial
cingulate cortex

2.370 1.143 0.608

Area 32 Dorsal anterior
cingulate cortex

1.001 0.591 5.362

Area 47 Inferior prefrontal
gyrus

0.446 3.693 0.044

Area 26 Ectosplenial area 0.410 2.550 0.535
Area 35 Perirhinal cortex 0.358 2.193 0.100
Area 27 Piriform cortex 0.326 2.976 0.362
Area 20 Inferior temporal

gyrus
0.249 0.325 5.702

Areas 3, 1,
and 2

Primary
somatosensory
cortex

0.172 0.276 4.565

Right Area 48 Retrosubicular area 3.615 2.583 0.134
Area 25 Subgenual cortex 3.233 1.227 0.623
Area 30 Part of cingulate

cortex
3.082 1.358 0.407

Areas 3, 1,
and 2

Primary
somatosensory
cortex

2.696 0.221 0.920

Area 5 Somatosensory
association cortex

2.684 0.775 0.104

Area 34 Anterior entorhinal
cortex

2.469 0.488 0.181

Area 8 Includes frontal eye
fields

2.448 0.489 0.574

Areas 3, 1,
and 2

Primary
somatosensory
cortex

2.139 1.180 0.173

Area 11 Orbitofrontal area 1.817 3.083 4.302
Area 40 Wernicke’s area 1.057 0.100 5.792
Area 32 Dorsal anterior

cingulate cortex
0.963 0.745 2.547

Area 47 Inferior prefrontal
gyrus

0.923 2.206 0.159

Area 44 Broca’s area 0.780 2.327 0.360
Area 45 Pars triangularis

Broca’s area
0.493 3.800 0.004

Abbreviation: AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC,
normal control.
aThe hub regions in the metabolic network of the NC group were listed in a
descending order of their normalized betweenness in left brain and then in the
right brain.
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MCI and AD.47 Using the permutation tests (Figure 4), we

found significant differences in Cp between NC and AD, and

also between MCI and AD, which could be one plausible con-

jecture that the metabolic brain network of MCI was closer to

NC. Moreover, the high Cp in patients indicated that the net-

works might self-rewire to improve the local efficiency as the

compensation system for maintaining the brain organization.48

In addition, the 3 groups presented no significant differences

in Lp (P < .05), which indicated the differences in global

integrated information processing failed to pass the statistical

level.7

Abnormal Changes in Nodal Centrality (Hub) in
MCI and AD

The hub regions in the metabolic networks included 13 regions

in NC, 11 in MCI, and 7 in AD (Table 2; Figure 5). The hub

regions in MCI and AD altered in number and spatial distribu-

tion, which might increase the risk of losing the plastic ability

of the brain.49 The left BA4 (primary motor cortex), BA8, and

right BA48 showed a high nodal centrality as common hubs in

NC and MCI, implying stabilized state in the motor function

and limited memory impairment during the MCI process.50,51

Combining FDG-PET with fMRI, Perrotin et al suggested that

hypometabolism in BA11 correlated with anosognosia in

patients with AD.52 In our study, the common hub region in

MCI and AD groups might indicate a compensatory nature for

mediating memory processes.53

Figure 6 showed the higher nodal centrality in brain regions

including BA26, BA45, and BA47 in MCI and BA20 and

BA40 in AD when compared to NC. Mild cognitive impair-

ment had been associated not only with structural but also with

functional aberrations, such as metabolism enhanced in

BA26,54 and significant activation in BA45 during the phono-

logical processing.55 Moreover, evidence from a face-matching

task showed an increased functional connectivity related to

BA20 in MCI.56 Previous research indicated that the temporal

pole underwent serious structural changes involving cortical

atrophy and synaptic loss in AD.57 Furthermore, BA40 pos-

sessed a higher proportion of fibers in patients with AD.58

Thus, the increased nodal centrality in Figure 6 might be the

compensation responses in MCI and AD.27 On the other hand,

the nodal centrality regions in MCI and AD were also found to

be significantly decreased (Figure 6), predominately located in

BA7, BA8, and BA25. The prior structural network study using

MRI reported that the gray matter volume of BA25 was highly

atrophied in the MCI and AD.59 A review of neuroimaging in

AD suggested that hypometabolism or hypoperfusion occurred

in the cingulate cortex and precuneus.60 In the present study,

the lower nodal centrality likely reflected the breakdown of

Figure 7. Network robustness under random and target analysis. The sizes of largest components under removing node at random (top panel)
and targeted pattern (bottom panel). The black line corresponded to the performance of normal control (NC), red line for mild cognitive
impairment (MCI), and blue line for Alzheimer’s disease (AD).
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metabolism system which might impede cognitive functioning

in MCI and AD.

Network Robustness Analysis

In this study, we established the largest cluster as a measure of

quantifying network robustness. By deleting the nodes or edges

in the metabolic brain network and computing the largest clus-

ter, our approach enabled the quantitative inquiry of network

robustness. We observed that metabolic brain network in MCI

and AD were more vulnerable to perturbations or attacks com-

pared to NC, and the performance of MCI was located between

NC and AD, which provided the additional evidence that MCI

was an intermediate stage from NC to AD (Figure 7). Because

of the power-law distribution, brain networks of the 3 groups

were almost constant when deletion ratio was low.61 After

deletion ratio reached 50%, the performance of the 3 groups

were amalgamated, thereby suggesting that the topological

structure of the brain networks was extremely destroyed and

thus unable to support integrality. From the network system

perspective, the impact of losing nodes or edges could indicate

a decline in cognition and memory in MCI and AD. Supporting

evidence from He et al demonstrated that structural brain net-

work of patients with AD showed vulnerability against pertur-

bations compared to NC.28 The reduced attack survivability

might reflect the topological reorganization of the metabolic

brain network, providing implications for cognition and mem-

ory impairment in MCI and AD.28,33

Correlations Between Individual Contribution and
Clinical Assessment

The leave-one-out approach has been widely employed in clas-

sification accuracy validation and brain network research with

regard to the mental illnesses with cognitive and behavioral

deficits. Given that the individual contribution reflected an

optimal balance between an individual and a group, it could

be treated as an innovative measurement of brain network in

neurological disease.35

We detected that the individual contributions toward the

group-level network were negatively associated with MMSE

scores (Figure 9A) and positively correlated with CDR scores

(Figure 9B). This suggested that participants with higher con-

tributions have poor network topology because of their poor

mental status and dementia severity. In congruence with pre-

vious studies, our findings provided additional evidence that

higher individual contributions in the global metabolic network

were related to severe cognitive impairment.35 Patients with

Figure 8. Flow diagram of the leave-one-out (Loo) approach. Meta-
bolism data were segmented using Brodmann atlas. With the matrix of
all and N� 1 participants, the individual contribution can be estimated
by Mantel’s test statistic. Pi ¼ 1 . . . N represents the successive
removal of Pi from the original group.

Figure 9. Correlations between individual contribution and clinical assessment. Relations (r) represented the Pearson linear correlation
coefficient. MMSE indicates Mini-Mental State Examination; CDR, Clinical Dementia Rating Scale.
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AD were characterized by various deteriorations in language,

memory, praxis, and general intellectual status.62 These clin-

ical differences in AD might be caused by functional and

structural alterations in the entire brain networks, leading to

the highest contribution toward global metabolic network.28

In addition, the general linear model between individual con-

tribution and MMSE or CDR might be valuable to predict

cognition status, which suggested the individual contribution

might be considered as a biomarker in the diagnosis of MCI

and AD.

Conclusions

In this study, we combined the robustness analysis and LOO

approach to investigate the organization of metabolic networks

in patients with MCI and AD based on the FDG-PET data. Both

MCI and AD showed a loss of small-world properties and

abnormal organization of the metabolic networks, which were

explored by local and global characteristics, that is, increased

Cp and Lp, and altered nodal centrality. Additionally, the brain

networks in MCI and AD were vulnerable to random or sequen-

tial targeted attacks compared to NC. Finally, individual con-

tribution significantly correlated with neuropsychological

scores. Findings in the metabolic brain networks might eluci-

date the pathological mechanism of MCI and AD for further

perspective studies.
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