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Abstract
Previous work has suggested that evoked potential analysis might allow the detection of subjects with new-onset Alzheimer’s
disease, which would be useful clinically and personally. Here, it is described how subjects with new-onset Alzheimer’s disease
have been differentiated from healthy, normal subjects to 100% accuracy, based on the back-projected independent components
(BICs) of the P300 peak at the electroencephalogram electrodes in the response to an oddball, auditory-evoked potential
paradigm. After artifact removal, clustering, selection, and normalization processes, the BICs were classified using a neural
network, a Bayes classifier, and a voting strategy. The technique is general and might be applied for presymptomatic detection and
to other conditions and evoked potentials, although further validation with more subjects, preferably in multicenter studies is
recommended.
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Introduction

It is important to be able to diagnose subjects with new-onset

Alzheimer’s disease (AD) both for their care and for their

personal planning. Evoked potential analysis might provide a

relatively inexpensive, quick, and noninvasive technique for

this and has therefore been investigated. A method of distin-

guishing with 100% accuracy between subjects with early-

stage AD and normal, healthy subjects (normals) based upon

the nonoscillatory, independent components (ICs) of the P300

peak in the P300 waveform elicited by an auditory oddball

paradigm is described in this article. Because averaging is not

used, potentially significant components, unsynchronized to

the stimulus, are not reduced, and results may be obtained using

fewer trials per subject. This method could be a useful tool to

aid diagnosis, and the selected ICs may be regarded as biomar-

kers. The method might also be useful for presymptomatic

testing for AD.

Since the review and description of work previous to

2011,1 there have been further publications on the topic in

question. In a review of 2011,2 it was concluded that the

sensitivities of a number of event-related potential (ERP)

components have great promise for the detection of the stages

of AD. Another review in 2014 was focused on the progres-

sion from mild cognitive impairment (MCI) to AD.3 All the

studies quoted followed changes in amplitude and latency of

the P300 peak, but on an averaged basis. In reference,4 trial

averaging and statistical analysis of the peak ERP amplitudes

and latencies derived from a 3-stimulus auditory oddball para-

digm showed that the P3a and P3b peaks produced the most

sensitive and reliable measures of the cognitive deficits asso-

ciated with early AD. None of this work2-4 addressed the

analysis on a single trial basis as described here. However,

Ouyang et al5 have analyzed single trials by applying the

technique of residue iteration decomposition to identify the

latencies of the different ERP peaks in different trials. It

seems that this technique, though, does require some aver-

aging of trials to obtain the initial most likely latency of the

ERP peaks, after which the individual latencies are found by

an iterative method. No application that differentiated

between different subject groups was presented. By contrast,

in our work, we derive the individual components of the indi-

vidual ERP peaks comprising each individual single trial

using independent components analysis (ICA) and apply this

1 Personal Contribution, Sheffield, United Kingdom
2 Ecological University of Bucharest, Bucharest, Romania
3 Neuroptics Med Clinic, Bucharest, Romania

Corresponding Author:

B. W. Jervis, PhD, 115 Button Hill, Sheffield S11 9HG, United Kingdom.

Email: barrie.jervis@cantab.net

American Journal of Alzheimer’s
Disease & Other Dementias®

2019, Vol. 34(5) 308-313
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1533317519828101
journals.sagepub.com/home/aja

https://orcid.org/0000-0003-1603-0987
https://orcid.org/0000-0003-1603-0987
mailto:barrie.jervis@cantab.net
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1533317519828101
http://journals.sagepub.com/home/aja


knowledge to differentiate between normals and ADs. It

seems none of the authors2-5 were aware of the previous work

by both ourselves and those we quoted,1 although the work of

Jung et al using ICA is mentioned in one article.5 In another

review,6 it was concluded that subjects with MCI had pro-

longed P300 latencies compared to controls, but shortened

P300 latencies when compared to subjects with AD, meaning

that ADs had longer latencies than normals.

Our research was carried out using the data obtained in

earlier work, which has been thoroughly described in 2 previ-

ous publications.1,7 Thus, only the essentials of that work are

repeated here. A selective analysis of those data using an arti-

ficial neural network, the Probabilistic Simplified Fuzzy ART-

MAP (PSFAM),8 and a voting strategy is presented.

The undulatory P300 waveform includes a number of pos-

itive and negative peaks.1 Using ICA and back-projecting the

nonoscillatory, independent, source signals to the scalp electro-

des, it was found that the peaks in the P300 waveform consisted

of many short duration, randomly occurring, and randomly

positive or negative half-sinusoidal pulses.1 Here, attention is

focused upon the positive back-projected independent compo-

nents (BICs) centered on the P300 peak because the shape of

the peak is primarily determined by these and the latency of this

peak is delayed in ADs compared to normals.1,6 Therefore,

these BICs were deemed the most likely to be useful for differ-

entiating between ADs and normals.

Theoretical Aspects

The voltage measured at each electrode depends upon the con-

tributions there from all the independent cortical signal

sources. These depend upon the unknown source signals and

their unknown transmission paths from the sources to the elec-

trodes. Fortunately, the individual source signals may be com-

puted from the measured scalp voltages using ICA,1 where it

was explained that if S be a matrix of temporally independent

source signals and Y be the matrix of measured signals at the

electrodes, which are assumed to consist of linear sums of the

source signals ðS), which have passed through an unknown,

linear transmission system characterized by an m � m mixing

matrix, A, then we may write

Y ¼ AS ð1Þ

and

Ŝ ¼ A�1Y: ð2Þ

Thus, the estimated source signals ðŜÞ may be found since

A�1 can be found. Selected estimated source signals may then

be multiplied by the mixing matrix to obtain their estimated

contributions at the measurement electrodes, Ŷ. These are

referred to as the BICs. Thus,

Ŷ ¼ AŜ: ð3Þ

The BICs are correct in both magnitude and sign and so may

be compared.

The PSFAM, used to classify the data, consisted of a Sim-

plified Fuzzy ARTMAP (SFAM) and a Bayes classifier.8 The

latter produced the Bayes posterior probability PðAjXÞ that the

test vector X belonged to the class AD or class normal.

Measurements

Six male and 3 female normal, healthy subjects and 2 male and

7 female newly diagnosed, early-stage, mildly cognitively

impaired subjects with AD participated in auditory-evoked

oddball P300 recordings as fully detailed previously.1,7 The

ADs were under various drug treatments,1 where age effects

are also discussed.

Scalp voltages were recorded at 27 standard electrode sites

(see below). The voltage waveforms were sampled at 1024 Hz,

the high-pass cutoff frequency was 0.016 Hz, and the low-pass

cutoff was at 60 Hz. A notch filter eliminated the mains fre-

quency of 50 Hz. There were 40 target tones of 2 kHz and 160

nontarget tones at 1 kHz. The interstimulus interval was 1.29

seconds. The subjects had closed eyes, were relaxed, and

responded to the target tones by button-pressing. For each sub-

ject, 360 target stimuli were recorded, with 600 prestimulus

samples and 700 poststimulus samples.

Procedures

The following signal processing was performed as fully

detailed before.1,7 The ICs of the P300 waveforms were

obtained by applying principal components analysis first and

then ICA.1 These ICs were then back-projected to the measure-

ment electrodes as the BICs. These were separated into sepa-

rate bins centered around the P300 peaks. The highest variance

BICs were selected for further processing. The BICs in each bin

were clustered in 2 stages using the k-means clustering algo-

rithm.1,7 In the primary stage, clustering was by amplitude and

latency, in the secondary stage by the scalp topographies.1,7

Noise components were eliminated by filtering out ICs accord-

ing to the number of zero-crossings in their waveform and their

largest and smallest amplitudes.1,7 Within each bin, the peak

amplitudes, latencies, and the scalp topographies of the BICs

were saved for analysis.1,7

In the previous article,1 the BIC results obtained at this stage

of processing were discussed and have also been briefly

reviewed in the Introduction. Here, we describe that data in

detail and how they have been processed further to allow iden-

tification of the individuals with newly diagnosed AD. These

data may be requested from the corresponding author.

The data spreadsheet was 39 columns wide and contained

5302 rows. The data in each row included subject details, sub-

ject class (AD or normal), trial number, BIC information

(which bin, which cluster, positive or negative, amplitude,

latency), and the voltages of the BICs at the 27 measurement

electrodes used which were Fp1, Fp2, F7, F8, F3, F4, FC5,

FC6, FC1, FC2, T7, T8, C3, C4, CP5, CP6, CP1, CP2, P7,

P8, P3, P4, O1, O2, Fz, Cz, and Pz. These 27 BIC voltages,

taken in the above order, comprise the BIC topology vector.
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This spreadsheet was divided into separate spreadsheets for the

subjects with AD and normal subjects.

Data Preparation for PSFAM

It was intended to use the data in the above 2 spreadsheets to

train classifiers to distinguish between the subjects with AD

and normal subjects. These 5302 � 39 data contained some

personal details which were irrelevant to this training, and so

these columns were ultimately deleted. Since it had been estab-

lished1 that those positive BICs associated with the P300 peak,

and their latencies, were the most significant in distinguishing

the 2 classes, the amount of data could be considerably reduced

by using only that for positive BICs found close to the P300

peak, that is, those in bin 5. This reduced the data arrays to 520

and 581 rows for the subjects with AD and normal subjects,

respectively. Since latency was more important than amplitude,

the amplitude column was also deleted. The training and test

vectors then consisted of the latency vector and the topology

vector, making a 1 � 28 row vector per trial.

The PSFAM neural network required input data normalized

to between 0 and 1. The latency column was normalized by

dividing all values by the largest. Some of the elements of a

topology vector could be positive, while others were negative,

reflecting the scalp voltage topography. A simple formula was

applied to convert the values over the positive and negative

voltage range of the topology vector array to values between

0 and 1. A spreadsheet function was used to set all data to

numerical values because the classifiers could not accept expo-

nentials. A sample section of a resulting data array up to col-

umn F4 is shown in Table 1. The values are as calculated, but of

course were not measured to the accuracy shown. The contents

of the first column define the bin and cluster numbers of the

BIC in a particular row. Subj is the subject number. Trial is the

trial number for that subject. Latencies are in milliseconds, and

voltages in millivolt. Files in training and validation data for-

mats were derived from the 2 data arrays by deleting columns 1

to 3, and replacing column 4 (trial) by the subject class; 0 for a

normal and 1 for a subject with AD. Test vectors may be

formed by deleting the first 4 columns.

A training file was constructed consisting of the data for the

first 5 normal subjects and for the first 5 subjects with AD. A

validation file was constructed from the last 4 normal subjects

and the last 4 subjects with AD. Thus, all the data were used.

The structures of these 2 files were identical, and so their

training and validation roles were reversible. These files con-

tained the data obtained from all 40 trials. In clinical practice,

where subjects may not be sufficiently cooperative, it is nec-

essary to use fewer trials. For this reason, we also explored the

use of just 10 trials and of just 5 trials. We had observed that 5

trials were necessary to ensure that a BIC was found (remember

the random nature of the appearance of the BICs). Thus, addi-

tional training and validation files were produced by eliminat-

ing the row data for trial numbers greater than 11 and greater

than 6 using functions of the spreadsheet.

Probabilistic Simplified Fuzzy ARTMAP
Procedures and Considerations

A number of tests were carried out using the training and vali-

dation files to determine the optimal values of the PSFAM

parameters. These were found to be as follows: vigilance, r
¼ .65; global smoothing parameter, s¼ .02; and the remaining

parameters set to 1. In the training mode, the data were pre-

sented in random order using the “shuffle” button. The normal

subjects were assigned to the reference class 0 and the subjects

with AD to class 1. Each subject was represented by several

row vectors, which contained the values calculated for different

trials and clusters. The classification of an individual row for a

given subject could be correct or incorrect. When the overall

accuracy per subject was investigated, the SFAM was found to

result in the higher accuracy for the normal subjects, but the

subjects with AD were most accurately classified by the Bayes

method. The reason for the difference lies in the different clas-

sification techniques used by these classifiers. In the SFAM,

the degree of fuzzy membership of the test input vector I to the

fuzzy power set of the weight vector WJ is calculated using the

match function MFðI;WJÞ8 where

Table 1. Sample Section of Data Array.

Bin and Cluster Sex Subj Trial Latency Fp1 Fp2 F7 F8 F3 F4

B5C7 M 5 0.98242 0.50569 0.50308 0.50855 0.49351 0.50064 0.51222
B5C7 M 5 9 0.945306 0.48338 0.48203 0.50514 0.50355 0.50223 0.49200
B5C4 F 14 6 0.790989 0.52205 0.51503 0.50927 0.51248 0.51003 0.51407
B5C5 F 14 3 0.84373 0.49514 0.50459 0.49695 0.48690 0.49842 0.50018
B5C5 F 14 6 0.83201 0.49751 0.49771 0.49366 0.50117 0.49390 0.49727
B5C5 F 14 8 0.83787 0.51013 0.51636 0.51359 0.52257 0.51380 0.52197
B5C7 F 14 10 0.958979 0.50815 0.50307 0.50486 0.49801 0.51677 0.50936
B5C2 F 15 8 0.61128 0.50710 0.51153 0.51494 0.50784 0.50121 0.50973
B5C2 F 15 9 0.595653 0.51948 0.51007 0.52694 0.48678 0.52015 0.51536
B5C4 F 15 3 0.800756 0.51126 0.51315 0.50458 0.50959 0.51277 0.51684
B5C4 F 15 6 0.763642 0.48685 0.48498 0.48810 0.49188 0.49468 0.49973
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MFðI;WJÞ ¼
I^WJ

I
ð4Þ

and ^ is the fuzzy logic operator. Thus, each input vector’s

similarity to each weight vector is determined and the test input

vector is assigned to the class of the weight vector for which

MF >r, that is, for which it is acceptably close. In the Bayes

classifier, the summed differences of the test input vector to all

the training vectors of the normal class is compared to those of

the AD class, according to

Xi ¼ nN

i ¼ 1

expf�ðX� YNiÞtðX� YNiÞ=2s2g

�
Xi ¼ mAD

i ¼ 1

expf�ðX� YADiÞtðX� YADiÞ=2s2g; ð5Þ

Where n and m are the numbers of training vectors for the

normal subjects and patients with AD, respectively; the indices

N and AD refer to the normal and AD classes; X is the assumed

normal input test vector; the YNi and the YADi are the training

vectors; s is the smoothing parameter; and t denotes the vector

transpose. If the equality is satisfied, the test input vector is

assigned to the class normal. This difference in the classifica-

tion methods explains why in general the 2 classifiers do not

always assign the same class to a test vector. The discrepancies

between the 2 classifiers can be expected to be greater when the

training and test vectors have more random properties as in the

case for the BICs of both the normal subjects and the subjects

with AD obtained in this work. Further, it was also suspected

that the ADs’ BICs were more random than those for the nor-

mal subjects. In fact, it was found that the SFAM gave the

higher classification accuracy for the normal subjects, while

the Bayes classifier gave the higher classification accuracy for

the subjects with AD. The correct class for a subject was indi-

cated by the classifier that classed the most input vectors for

that subject as being of the same class. The classification of a

subject was, therefore, decided by adopting this voting strategy.

When the number of test vectors assigned to the 2 classes was

equal, they both indicated the correct class.

Another test was undertaken to establish whether fewer,

carefully chosen electrodes might be used. Thus, classification

using only columns Lat, Fp1, Fp2, P3, P4, Fz, and Pz was

attempted, but the results were worse than when all 28 columns

were used. In another test, the training and validation files were

exchanged, when equally good results were obtained.

Probabilistic Simplified Fuzzy
ARTMAP Results

40 Trials

Table 2 gives the overall percentage classification accuracies

for training and testing the PSFAM with the full set of data

from 40 trials when the training and validation files were pre-

pared as described above. It is seen that the higher percentage

correct classification of normal subjects is achieved by the

SFAM (77%:45%) and that of the subjects with AD by the

Bayes classifier (62%:40%).

The percentage classification accuracies of the individual

subjects, by their individual input test vectors, are shown in

Table 3. It is seen that, if the percentage correct in the SFAM

column is greater than that in the Bayes column, the subject is

normal; if the converse is true, the subject is in the AD class. This

is the basis of the voting strategy, which yields 100% correct

classification of the subjects newly diagnosed with AD in this

study from the positive BICs at the 27 electroencephalogram

(EEG) electrodes centered on the P300 peak. Of course, slightly

different numerical values are obtained when the training is

repeated, owing to the shuffling of the training data, but the con-

clusions remain unaltered.

Ten Trials

Similar results were obtained as for the case of the 40 trial data

when only the first 10 trials were used. Table 4 gives the

subject classification accuracies. The same conclusions apply

as for 40 trials, with the addition that in 2 cases, N14 and AD40,

the percentage accuracies are the same for both classifiers, but

they both predict the same correct class. We also see that the

accuracy of classification of the normal subjects by the SFAM

and that of the subjects with AD by the Bayes classifier have

increased with the reduced number of trials. Some of this may

be attributed to the shuffling of the input vectors, but it seems

more likely it could be owing to a reduction in the degree of

randomness associated with using fewer vectors.

Table 5 presents a sample of the numbers of 0s and 1s output

by the classifiers to represent the classes of the input vectors for

Table 2. Overall Percentage Classification Accuracies by the 2
Classifiers for Normal Subjects and Patients With AD.

SFAM Bayes

Normal
Subject

Patient
With AD

Normal
Subject

Patient
With AD

77% 40% 45% 62%

Abbreviations: AD, Alzheimer’s disease; SFAM, simplified fuzzy ARTMAP.

Table 3. Percentage Classification Accuracies for Individual Test
Subjects Based on Their Test Vectors Using 40 Trials.

Subject SFAM % Correct Bayes % Correct

N14 61 53
N15 69 41
N16 75 39
N20062 84 41
AD36 52 90
AD38 39 86
AD40 34 82
AD43 43 77

Abbreviation: SFAM, simplified fuzzy ARTMAP.
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the subjects, normal and AD, respectively, and the classifica-

tion voted, which is correct in each case.

Five Trials

Similar results were obtained again in the case of 5 trials as

shown in Table 6. Apart from subject N15, the classification

accuracies were again improved by this further reduction in the

number of trials included. However, the use of fewer trials still

is likely to lead to more classification failures when there may

be too few input vectors for reliable testing or even the absence

of any vector.

Discussion

It has been clearly demonstrated in this research that the pos-

itive voltage BICs associated with the P300 peak may consti-

tute an excellent biomarker for new-onset AD, since 100%
accurate differentiation between new-onset ADs and normals

was achieved. It is quite possible that they could indicate AD

presymptomatically. This could be tested by making measure-

ments on subjects at risk of AD, such as carriers of the apoli-

poprotein E4 gene with a family history of AD or subjects for

whom synaptic dysfunction has been detected by elevated cer-

ebrospinal fluid phosphor-t.2 The technique is noninvasive,

requires a reduced number of trials, is inexpensive, and can

be employed in any hospital EEG department. Because of the

small sample size, it is desirable that far more subjects be

tested, and preferably in multicenter studies, to validate it, if

it be considered useful. The digitized multicenter recordings

could be processed centrally to ensure conformity. This valida-

tion could take place during the clinical studies. Such studies

might also be used to investigate the effects of drug treatment,

the relationship of the results to those of similar studies on

subjects with other neurological diseases to reduce the risk of

misdiagnosis, and the possible usefulness of the BICs associ-

ated with other peaks in the waveform. Extension to other

conditions such as Parkinson’s disease and other evoked poten-

tials is also a possibility.

Conclusions

New-onset ADs were differentiated from normals to 100%
accuracy by classifying the positive voltage BICs centered on

the P300 waveform peak response to an oddball task, auditory-

evoked potential using a SFAM neural network, a Bayes clas-

sifier, and a voting strategy. It may also be possible to detect

AD presymptomatically, but more preferably multicenter

research on more subjects is necessary to validate the tech-

nique. Extension to other conditions and evoked potentials is

a possibility.
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