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Possible Link Between Toxoplasma Gondii
and the Anosmia Associated
With Neurodegenerative Diseases

Joseph Prandota, MD, PhD1

Abstract
Toxoplasma gondii is an intracellular protozoan infecting 30% to 50% of global human population. Recently, it was suggested that
chronic latent neuroinflammation caused by the parasite may be responsible for the development of several neurodegenerative
diseases manifesting with the loss of smell. Studies in animals inoculated with the parasite revealed cysts in various regions of the
brain, including olfactory bulb. Development of behavioral changes was paralleled by the preferential persistence of cysts in
defined anatomic structures of the brain, depending on the host, strain of the parasite, its virulence, and route of inoculation.
Olfactory dysfunction reported in Alzheimer’s disease, multiple sclerosis, and schizophrenia was frequently associated with the
significantly increased serum anti–T gondii immunoglobulin G antibody levels. Damage of the olfactory system may be also at least
in part responsible for the development of depression because T gondii infection worsened mood in such patients, and the
olfactory bulbectomized rat serves as a model of depression.
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The olfactory route for various infectious and/or toxic agents

may initiate or exacerbate classical neurodegenerative and

autoimmune diseases, especially in persons with genetic pre-

disposition.1-9 Several authors showed that many neurologic

and neurodegenerative abnormalities are first demonstrable in

the olfactory system with loss of smell (anosmia) up to 10 years

before the onset of cognitive or motor dysfunction.7 Neuroin-

flammation is a common feature of these diseases mostly

emerging in the elderly individuals9 and marked by activated

glial cells that secrete numerous pro- and anti-inflammatory

cytokines and other neurobiomediators.10 For example, an

exacerbation of Alzheimer’s symptoms lasting for few months

following a systemic infection was also capable of elevating

serum interleukin (IL) 1b.11 Recently, it was suggested that

chronic T gondii infection may be the key infectious agent

responsible for triggering and development of several neurode-

generative diseases associated with an increased generation of

several pro- and anti-inflammatory cytokines, including

IL-1b.12-14

Toxoplasmosis is one of the most frequent infections affect-

ing both healthy and immunocompromised humans with

approximately 6 billion people infected.15,16 During its life

cycle, the pathogen interacts with approximately 3000 host

genes or proteins, and many of them represent an extensive

Toxoplasma gondii host–pathogen interactome enrichment in

several psychiatric and neurological diseases.17 At present, in

immunocompetent individuals T gondii infection is believed

to be asymptomatic,18,19 but an increasing body of literature

strongly suggests that the parasite is slowly emerging as a

global health threat,16,19-22 especially in neurodegenerative dis-

eases. Seroprevalence of the parasite measured by specific

serum anti–toxo immunoglobulin G (IgG) antibodies varies

widely in different countries depending on diagnostic tests

used, environmental and socioeconomic conditions, including

eating habits, health-related practices, and host susceptibility

(Table 1). All these factors considerably hinder attempts to

establish clear-cut connections between the highly prevalent

infection of T gondii and the development of neurological dis-

eases that are heralded by anosmia. In 1994, the National

Health Interview Survey data obtained from 42 000 US house-

holds showed a 1.4% prevalence of self-reported olfactory

dysfunction exponentially increasing with age.24 Pregnancy is

one of potential risk factors for olfactory disorders,25 and the

relationship between development of these abnormalities and

chronic latent T gondii infection may be supported by the fact

that at that time hormonal storm markedly affecting cellular
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and humoral immunity of pregnant woman may also exacer-

bate latent toxoplasmosis and increase the risk of congenital

infection in the fetus. At present, one cannot exclude that iso-

lated/syndromic congenital anosmia26 is due to perinatal infec-

tion with the parasite, especially that structural differences in

the brains of individuals with congenital anosmia are extending

well beyond olfactory bulb and tract, including the piriform and

orbitofrontal cortices.27,28 Thus, from the first days/weeks of

life, these neuroinflammatory processes may play an important

role in the progress of pathophysiological abnormalities devel-

oping in the brain that finally lead to the olfactory system

dysfunction also in neurodegenerative diseases.

Toxoplasma gondii tachyzoites may invade different types

of brain cells including neurons, astrocytes, microglial cells,

and Purkinje cells in the cerebellum. Intracellular tachyzoites

manipulate signaling pathways and several signs for trans-

duction mechanisms involved in apoptosis, immune cell

maturation, and antimicrobial effectors functions.29 It was

demonstrated that in neurons infected by T gondii not only

parasitic cysts but also the host cell cytoplasm and some axons

were stained positive for the parasite antigens, thus supporting

the notion that it may interfere with neuronal function.20,30 It

must be noted that in mice (at day 60 postinoculation with the

parasite type II ME49 strain), a calculation of total cyst number

per brain volume of various regions of the brain revealed that

although cyst number decreased in cortex, thalamus, hippo-

campus, and striatum, their number slightly increased in olfac-

tory bulb, hypothalamus, cerebellum, and brain stem.30,31 The

development of behavioral changes was paralleled by the pre-

ferential persistence of cysts in defined anatomic structures of

the brain,30-32 depending on the host, strain of the parasite, its

virulence, and the route of inoculation.32-34 Localization of T

gondii cysts in different brain regions and cell types in both

embryonal and adult animal brain tissues are presented in

Tables 2 to 7. Immunochemistry study revealed that all major

parts of neurons including the soma, dendrites, and axons har-

bored cysts, whereas intraneuronal T gondii antigen was pres-

ent in the cytoplasm of cyst harboring neurons, and the

parasite antigen–positive axons could be followed over long

distances.31 Astrocyte interactions with neuronal cysts were

frequently observed.33 Exposure of lipopolysaccharide (LPS)

to neurons in the central nervous system (CNS) induced strong

neurodegeneration in vivo and in vitro in substantia nigra and

midbrain dopaminergic neurons49-51 as well as in hippocampal

and cortical neurons.52,53 Similar neuronal cell death was also

reported in the enteric nervous system (ENS).54,55 It was found

that the increased production of nitric oxide (NO) by inducible

nitric oxide synthase was a major cause of cell death in LPS-

treated cell cultures.49,52 Toxoplasma gondii infection of differ-

ent host brain cells was associated with an enhanced generation

of various cytokines, including interferon (IFN) g, tumor

necrosis factor (TNF) a, IL-1b, NO, and reactive oxygen/nitro-

gen species56,57as well as with an increased production of many

neurotic biomolecules (Table 8). These molecular disturbances

could affect the sense of smell also in children with autism,13,64

Asperger’s syndrome,65 and migraine patients66,67 and result in

olfactory impairment along with age68-70(Table 9). This rea-

soning may be supported by the progressive decline in the lev-

els of serum heat shock protein (HSP) 60 and HSP70 with age,

whereas HSP70 antibody levels tend to increase (Table 10). On

the other hand, it is known that host-derived HSPs play an

important role in the development of innate immune defense

against T gondii infection.72 It must be noted that different

strains of T gondii induced several constellations of cytokine

responses73 important for the development of various clinical

signs and symptoms in the infected host. Virulence of the para-

site has been linked with strain-dependent distinct dendritic cell

responses and reduced number of activated CD8þ T cells.74 In

animals, oral/peritoneal inoculation with T gondii genotypes I

Table 2. Preferential Localization of Toxoplasma Gondii ME49 Strain
Cysts in Different Regions of Murine Brain at 2 and 6 Months
Postinoculation.a

Brain Region
2 Months After

Inoculationb
6 Months After

Inoculationc

Cerebral cortex 34 57
Hippocampus 10 25
Thalamus 5 –
Hypothalamus 6 3
Amygdala 25 9
Caudate putamen 12 6
Cerebellum 8 –

a Adapted from Melzer et al33 with own modification.
b Total number of cysts observed ¼ 67.
c Total number of cysts observed ¼ 32.

Table 1. Seroprevalence of Toxoplasma Gondii–Specific IgG
Antibodies in Pregnant Women in a Selected Number of Countries.a

Study Location Year Prevalence (%)

Mexico 2006 6.1
United Kingdom 2005 9.1
Norway 1998 10.9
Bangladesh 1997 11.18
India 1999 11.6
Thailand 1998 13.1
Sweden 1999 14
Finland 1992 20.3
Denmark 1993 27.4
Turkey 2005 30.1
The Nederlands 2004 40.5
Polandb 2012 40.6
Switzerland 1995 46.1
France 1996 54.3
West Indies 2006 57
Germany 1999 63.2
DRSTP 2007 75.2

Abbreviations: DRSTP, Democratic Republic of Sao Tome and Principe; IgG,
immunoglobulin G.
a Adapted from Elsheikha23; with own modification.
b In Poland, between 2004 and 2012, the mean seroprevalence of IgG
antibodies increased with age among 8281 pregnant women analyzed (mean
age 26.7 vs 28.7 years; P < .001) with a yearly seroconversion rate of 0.8%.24

206 American Journal of Alzheimer’s Disease & Other Dementias® 29(3)



to III resulted in atrophy or hypoplasia of some segments of the

gastrointestinal tract and death/hypertrophy of part of myen-

teric neurons.75-77 Similar morphometric abnormalities of the

ENS may be responsible for the development of gastrointest-

inal tract dysfunction reported in patients with autism, inflam-

matory bowel and/or autoimmune diseases, and in many other

gastrointestinal tract disturbances.55 Glial cells in the ENS

appear to be very similar in origin, gross morphology, and

ultrastructure to astrocytes of the CNS and bear similar rela-

tionships with neuronal cell bodies and processes to peripheral

Schwann cells.78 All these abnormalities in the brain and other

organs associated with chronic T gondii infection strongly

Table 3. Distribution of Reactivation Foci in the Central Nervous System After Acute Toxoplasma Gondii Infection in Mice.a

Cerebrumb

Mice no. Left Right Gray Matter White Matterc Cerebellumd Meningese

M1f 8 3 11 1 1 0
M2 20 19 37 2 0 0
M3 33 0 26 7 0 0
M4 3 5 5 3 0 0
M5 14 6 11 5 0 4
M6 19 29 24 22 0 2
M7 4 2 3 3 0 0
M8 13 15 17 10 2 3
M9 18 14 22 8 0 2
M10 4 6 10 0 0 0
Mean (SD) 13.5 (9.3) 9.7 (9.0) 15.2 (9.6) 7.2 (7.3) 0.3 (0.7) 1.0 (1.4)

Abbreviation: SD, standard deviation.
a Adapted from Dellacasa-Lindberg et al35 with own modification.
b Number of foci detected in the left cerebral hemisphere.
c Markedly fewer number of foci was detected in gray matter than that in white matter (P < .01).
d Significantly fewer number of foci was found in the cerebellum than that in cerebrum (P < .001).
e Significantly fewer number of foci were found in the meningeal areas than in cerebrum (P < .001). Dellacasa-Lindberg et al35 suggested that there was a striking
resemblance in the distribution of parasitic lesions during acute toxoplasmic encephalitis in human and murine infections.
f Ten BALB/c mice (M1-10) were infected intraperitoneally with 5 � 104 freshly egressed Toxoplasma gondii tachyzoites. Mice were subjected to dexamethasone
treatment and killed upon detection of central nervous system infection.

Table 4. The Number of Cysts Load in Brain Tissue and Congenital
Transmission Rate From the Offspring.a

Group of mice
Number of Cysts

in Brain

Congenital
Toxoplasma gondii

Transmission
Rate (%)

Early-stage infection 224 + 59b,c (n ¼ 18) 94.74
Intermediate-stage

infection
202 + 44b (n ¼ 19) 90.48

Late-stage infection 134 + 31 (n ¼ 22) 91.67

Abbreviations: ANOVA, analysis of variance; SD, standard deviation.
a Adapted from Wang et al36 with own modification. Each group of mice was
infected with 5 cysts of Toxoplasma gondii by oral inoculation on the 5th, 10th,
and 15th day after gestation. Results are expressed as the mean number of
cysts collected from each group + SD, generated by using one-way ANOVA.
The congenital T gondii transmission rate is shown at the age of 12 weeks after
birth in the offspring from the infected group.
b P < .01 versus late-stage infection.
c P > .05 versus intermediate-stage infection group.

Table 5. Infection Rates of Different Cell Types From Embryonal Rat
Cortices (E15) After In Vitro Infection With Toxoplasma Gondii
Tachyzoites.a

Cell Type
mAb for Host Cell

Identification
Frequency of
Cell Typeb

Rate of T gondii
Infectionb

Neurons Anti-Nf 200 kDa 88.0 + 1.3% 9.5 + 1.1%
Astrocytes Anti-GFAP 7.9 + 2.1% 9.7 + 3.3%
Microglia Anti-CD71 4.1 + 0.9% 31.5 + 5.9%

Abbreviations: mAB, monoclonal antibody; GFAP, glial filament acidic protein;
SD, standard deviation.
a Adapted from Lüder et al37 with own modification.
b Determined 48 hours postinfection by double immmunofluorescence (at
least 100 parasitophorous vacuoles were examined for each determination).
Data represent means + SD from 3 independent experiments.

Table 6. Replication and Morphology of Toxoplasma Gondii in
Different Cell Types From Embryonal Rat Cortices (E15).a

Intracellular Replication
(% PV)b Neurons Astrocytes Microglia

1-2 parasites/PV 66 + 2.6 67.2 + 5.0 93.1 + 4.5
4-8 parasites/PV 30 + 2 26.2 + 1.2 8.9 + 4.5
16-32 parasites/PV 4.3 + 1.5 5.3 + 2.9 0
>32 parasites/PV 0 1.3 + 1.2 0
Morphology of T gondii Normal Normal Often degenerated

Abbreviations: PV, parasitophorous vacuole; SD, standard deviation.
a Adapted from Lüder et al37 with own modification.
b Determined 48 hours postinfection by double immunofluorescence (at least
100 PV were examined for each determination). Data represent means + SD
from 3 independent experiments.
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suggest that similar neuroinflammatory processes are also tak-

ing place in the olfactory system, leading to its progressing

damage.

Xiao et al79 showed that in male mice, infection with the para-

site led mainly to modulation of genes associated with olfactory

function, such as downregulation of the number of olfactory

receptors and dopamine receptor D4. However, general olfactory

tests and sensorimotor gating were normal in both male and

female infection.79,80 The discrepancy between the findings in

rodents and impaired sense of smell reported in the patients with

Alzheimer’s disease, as well as in the individuals with various

autoimmune diseases having chronic T gondii infection, may

be at least in part explained by the markedly greater morpho-

metric parameters of rhinencephalon in animals (lobus olfactor-

ius) than in humans (bulbus olfactorius),81 which must be clearly

associated with a considerably smaller extent of the olfactory tis-

sue subjected to neuroinflammatory destruction.82 It must be

emphasized that low olfactory bulb volumes have been found

in patients with schizophrenia (left and right bulb) and their

first-degree relatives (right bulb) as compared with healthy indi-

viduals (Table 11).83 In 1 study, the significant atrophy was also

reported in 43.9% of 150 patients with systemic lupus erythema-

tous (SLE), with progression of reduction in right and left hippo-

campal volumes related to disease duration (P < .001).84

Moreover, patients with neuropsychiatric SLE had amygdala

damage.85 In patients with Parkinson’s disease, olfactory loss

was considered as a marked early symptom that correlated with

the progression of the disease,86 and parkinsonian symptoms

have been observed as an initial manifestation in a Japanese

patient with acquired immunodeficiency syndrome and T gondii

infection.87 Olfactory dysfunction has also been reported in HIV-

infected and AIDS individuals,88,89 in patients with Alzheimer’s

disease,90 in patients with Down’s syndrome,91 in patients with

multiple sclerosis,92 in patients with SLE,93 in patients with schi-

zophrenia94 and their relatives,95 and during several

Table 7. Toxoplasma Gondii Infection and Cyst Formation in Primary Cultures of Cells of the Central Nervous System.a

Parameters Astrocytes Microglial Cells Neurons Refs

Relative efficiency of infection 100a 50b 5-15b 39-42
Cytokine release IL-1, IL-6, GM-CSF IL-10, IL-6, TNF-a TNF-a 43-45
Cyst formation Yes Limited Yes 42,45
Size of cysts Large (*50 mm) Small (*10 mm) Small (* 10 mm) 43
Size of brain cells 100 mm (harbor several

dozen tachyzoites)
5-10 mm 10-15 mmc (contain only

few tachyzoites)
42

Effect of IFN-g and TNF-a Encystation Parasite killing ? 39,4446

Inducible NOS Low High Yesd 47,48

Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; IFN, interferon; NOS, nitric oxide synthase; TNF, tumor necrosis
factor.
a Adapted from Fagard et al38 with own modification.
b Lüder et al37 found that in rats only 30% of microglial cells were infected with Toxoplasma gondii, whereas 10% of neurons and astrocytes were invaded. Besides,
parasites showed low replication rates, with only 1 or 2 degenerated parasites in 93% of the parasitophorous vacuole.
c Cerebellar granular neurons and pyramidal hippocampal neurons (when the size of a cell doubles, its volume increases 8-fold). It must be noted that T gondii size is
2 to 4 mm.
d Not documented for T gondii infection.
? Not established yet.

Table 8. Possible Consequences on Neurons of Cytokines and
Biomolecules Secreted Upon Toxoplasma Gondii Infection.a

Cell Type Secreted Biomolecules Neurotic

Astrocyte IL-6 �
GM-CSF �
TNF-a +
IL-1b �
Arachidonic acid þ

Macrophage IL-12 �
NO +

Microglial cells RNI þ
NO +
H2O2 þ
IFN-g �
Glutamate þ

Neuron NO +
TNF-a, +
Glutamate þ

Natural killer cell IFN-g �
T cell PAF þ

IL-4 �
IFN-g �
IL-10 �

Abbreviations: RNI, reactive oxygen intermediates; PAF, platelet-activating
factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, inter-
leukin; IFN, interferon; NO, nitric oxide; TNF, tumor necrosis factor.
a Adapted from Fagard et al38 with own modification. It must be noted that
Toxoplasma gondii infection caused a significant increase in dopamine
metabolism in neural cells, which may lead to psychobehavioral changes in
humans infected with toxoplasmosis.58 Dopamine concentrations were 14%
higher in the brain of mice with chronic infections than in controls.59 In
addition, induction of indoleamine 2,3-dioxygnase expression and decreased
levels of tryptophan and increased formation of kynurenine were found in the
brain, lungs, and serum of mice infected with the parasite.60 Moreover, dopa-
mine stimulated tachyzoite proliferation in human fibroblast and primary
neonatal rat astrocyte cell cultures,61 thus further enhancing the harmful
effects of the parasite on the brain function. In addition, chronic latent T gondii
infection is associated with overproduction of various cytokines, and it was
postulated that cytokines may induce changes in mood and behavior, leading to
depressive illness in man.62,63
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pregnancies,96 that is, the clinical entities with significantly

increased serum anti–T gondii IgG antibody levels compared with

healthy controls.23,97-104 Furthermore, the above-mentioned dis-

turbed brain regions were consistently more infected than other

sites in animals with toxoplasmosis.31-33

Depression is highly prevalent in various medical condi-

tions, including infectious, autoimmune, and neurodegenera-

tive diseases. It seems that damage of the olfactory system is

at least in part responsible also for development of depression

because it was found that T gondii infection worsened mood in

pregnant women,105 female veterans,106 older persons,107 and

patients with multiple sclerosis.108,109 Higher incidence of

depression also preceded the onset of Parkinson’s disease,110

and the olfactory bulbectomized rat is usually serving as a

model of depression.111 Moreover, depression was reported

in a sample of patients with obsessive–compulsive disorder,112

and an important role of the parasite was suggested in the

pathogenesis of this clinical entity.113 Also, patients with

Table 10. Changes in Serum Heat Shock Protein (HSP) and anti-HSP Antibody Levels in Aging.a

Age group, years

<40 40-69 70-78 �90

HSP60, ng/mLb 759 (239-1356) 383 (145-777) 221 (49-547) 294 ns (117-361)
HSP70, ng/mL 400 (60-1520) 80 (40-315) 50 (0-270) 20c (0-245)
Positive samplesd 10/13; 77% 14/16; 88% 14/20; 70% 8/11; 73%
Anti-hHSP60, U/mL 482 (427-603) 439 (370-491) 389 (234-548) 577 ns (486-783)
Anti-hHSP70, U/mL 115 (102-144) 143 (130-172) 232 (134-269) 191 ns (146-267)
Anti-mHSP65, U/mL 119 (48-267) 201 (142-291) 138 (107-226) 268e (181-507)

a Adapted from Rea et al71 with own modification.
b Data are presented as medians with interquartile ranges in parentheses.
c P ¼ .02.
d All 60 serum samples contained detectable levels of HSP60 and anti-hHSP60, anti-HSP70, and anti-HSP65 antibodies. The numbers of samples with detectable
levels of HSP70 is indicated.
e P ¼ .03, nonsignificant versus <40 age group (independent samples t test on log-transformed data).

Table 9. Percentage of Toxoplasma Gondii–Positive Individuals Among 214 Nonpsychiatrically Affected Controls Depending on Age Analyzed
During a Large Epidemiologic Study of 869 Psychiatric Patients.a

Age, years

Percentage T. gondii Positive 18-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75

100 100
80 80 80
60 58 58 60
40 35 32 40 39 38
20 19
0

a Adapted from Hinze-Selch et al.70 In the control individuals 45 years or younger recruited from the same geographical region as the psychiatric patients admitted
to the hospital, the serofrequency of Toxoplasma gondii infection ranged between 20% and 40% without any systematic age effect, whereas in the individuals older
than 45 years, the serofrequency systematically increased with age from about 40% to almost 100%.70

Table 11. Olfactory Bulb Volumes in Patients With Schizophrenia, First-Degree Relatives, and Healthy Controls.a

Volumes, mm3

Left Bulb Right Bulb

Group Mean SD Mean SD

Patients (n ¼ 11) 70.82b 11.77 70.18c 14.11
Control individuals (n ¼ 20) 81.62 16.91 85.97 13.75
Relatives (n ¼ 19) 83.51 17.96 75.41d 13.56

Abbreviations: MANOVA, multivariate analysis of variance; SD, standard deviation.
a Adapted from Turetsky et al83with own modification.
b Significant difference between patients and relatives (MANOVA, P < .05, 2-tailed). c Significant difference between patients and controls (P < .05).
d Significant difference between relatives and controls (P < .05).
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recurrent mood disorders with history of suicide attempt had

higher T gondii antibody titers than nonsuicide attempters

(P ¼ .004).114 It must be added that antidepressants act on the

host immune system causing neuroendocrine alterations asso-

ciated with an increased generation of several bioneurotic

molecules (Table 12).115 Thus, the relationship between

chronic latent T gondii infection and brain damage resulting

in the development of depression should be seriously taken into

consideration. In such patients, treatment of the infestation

together with estimation of clinical course of depression would

be helpful in more beneficial modification of actual therapeutic

regimens. This suggestion is in line with the finding that the

antipsychotic haloperidol and the mood stabilizer valproic acid

most effectively inhibited the parasite growth in vitro with

synergistic activity.29

Interestingly, T gondii infection can convert the rodents’

natural aversion to cat odors into attraction,82,116,117 probably

because of altered neuronal activity in limbic brain regions that

is necessary for innate defensive behavior associated with the

activation of adjacent sexual arousal pathways79,80 and gener-

ation of various neurotransmitters.115 It should be noted that

a surface SAG1 antigen of T gondii combined with nontoxic

mutants of cholera toxin and enterotoxin (powerful mucosal

adjuvants) administered intranasally in mice provided a benefi-

cial high-level protection after virulent challenge infection with

the parasite cysts.118 In addition, treatment with monoclonal

antibody against IL-6 resulted in a remarkable decrease in

inflammation and numbers of cysts in the brain of animals with

toxoplasmic encephalitis.119 This beneficial effect may be

partly explained by the fact that IL-6 enhances intracellular

replication of the parasite acting through interactions with

IFN-g and TNF-a molecular activities.120 Unfortunately,

despite development of many serological and molecular meth-

ods in recent years, diagnosis of toxoplasmosis still faces diffi-

culties because most of the commercially available tests are not

fully specific and sensitive, representing wide variations in

accuracy due to the fact that the parasite exhibits several

protein and LPS antigens depending on its virulence, strain

type, infection stage (tachyzoites, bradyzoites, oocysts), innate

and/or acquired host immunity, and so on.121-123

In summary, damage of the olfactory system caused by

chronic latent T gondii infection may affect olfactory bulb

volume and various olfactory functions, therefore being

responsible for the smell impairment in patients with several

neuropsychiatric and/or autoimmune diseases. In addition, it

seems that damage of the olfactory system may also be at least

in part responsible for development of depression, which is

frequently observed in those individuals.

Declaration of Conflicting Interests

The author declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The author received no financial support for the research, authorship,

and/or publication of this article.

References

1. Mullol J, Alobid I, Marino-Sanchez F, et al. Furthering the under-

standing of olfaction, prevalence of loss of smell and risk factors:

a population-based survey (OLFACT study). BMJ Open. 2012;

2(6):e001256.

2. Majde JA. The potential role of common olfactory challenges in

the initiation of neuroinflammation. In: Gemma C, ed. Neuroin-

flammation. Pathogenesis, Mechanisms and Management. New

York, NY: Nova Science Publishers; 2012:237-244.

3. Moscavitch SD, Szyper-Kravitz M, Shoenfeld Y. Autoimmune

pathology accounts for common manifestations in a wide range

of neuro-psychiatric disorders: The olfactory and immune system

interrelationship. Clin Immunol. 2009;130(3):235-243.

4. Prandota J.Autoimmune hepatitis associated with the odor of fish

food proteins. A causal relationship or just a mere association? A

case report. Allergol Immunopathol (Madr). 2002;30(6):331-337.

Table 12. Antidepressant Effects on the Host Immune System.a

Antidepressant Source and Type of Effector Cells Neuroendocrine Alterations

Fluvoxamine, reboxetine, imipramine Murine glia cells # NO levels after IFN-g stimulation
Amitryptyline, nortriptyline Rat glia cells # IL-1 and TNF-a after LPS stimulation
Venlafaxine Rat encephalogenic T-cell clones, splenocytes,

peritoneal macrophages
# IL-12, TNF-a, and IFN-g

Imipramine, mianserin, clomipramine,
sertraline, and citalopram

Human peripheral white blood cells # Proinflammatory cytokines; " anti-
inflammatory cytokines

Imipramine, venlafaxine, fluoxetine Healthy human whole blood treatment resistant # IL-10
Sertraline, citalopram, fluoxetine,

fluvoxamine, paroxetine
Patients with depression # TNF-a, CRP, and leukocyte count

Bupropion, mirtazapine, citalopram,
paroxetine, venlafaxine

Patients with depression # IL-6, TGF-b

Sertraline Patients with depression # IL-12, " IL-4, TGF-b
Desipramine and fluoxetine Rats # IDO activity

Abbreviations: CRP, C-reactive protein; IDO, indoleamine 2,3-dioxygenase; TGF-b, transforming growth factor-b; LPS, lipopolysaccharide; IL, interleukin; #,
decrease; ", increase ;TNF, tumor necrosis factor ;.NO, nitric oxide; IFN, interferon.
a Adapted from Antonioli et al115 with own modification.

210 American Journal of Alzheimer’s Disease & Other Dementias® 29(3)



5. Prandota J. Autoimmune hepatitis and odour of fish food proteins.

Allergol Immunopathol (Madr). 2003;31(1):56.

6. Prandota J. Odour of aquarium fish food proteins as a probable

environmental agent causing autoimmune hepatitis in a

15-years-old boy. Pediatr Pol. 2002;77(4):337-341.

7. Doty RL. Studies of human olfaction from the University of Pennsyl-

vania Smell and Taste Center. Chem Senses. 1997;22(5):565-586.

8. Majde JA. Neuroinflammation resulting from covert brain

invasion by common viruses –A potential role in local and global

neurodegeneration. Med Hypotheses. 2010;75(2):204-213.

9. Mattson MP. Infectious agents and age-related neurodegenerative

disorders. Ageing Res Rev. 2004;3(1):105-120.

10. Perricone C, Shoenfeld N, Agmon-Levin N, et al. Smell and auto-

immunity: a comprehensive review. Clinic Rev Allerg Immunol.

2013;45(1):87-96. doi:10.1007/s12016-012-8343-x.

11. Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson

D, Perry VH. Systemic infection, interleukin 1b, and cognitive

decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry.

2003;74(6):788-789.

12. Prandota J. Neuropathological changes and clinical features of

autism spectrum disorder participants are similar to that reported

in congenital and chronic cerebral toxoplasmosis in humans and

mice. Res Autism Spectr Disord. 2010;4(2):103-118.

13. Prandota J. Autism spectrum disorders may be due to cerebral

toxoplasmosis associated with chronic neuroinflammation caus-

ing persistent hypercytokinemia that resulted in an increased lipid

peroxidation, oxidative stress, and depressed metabolism of endo-

genous and exogenous substances. Res Autism Spectr Disord.

2010;4(2):119-155.

14. Prandota J. Metabolic, immune, epigenetic, endocrine and phe-

notypic abnormalities found in individuals with autism spec-

trum disorders, Down syndrome and Alzheimer disease may

be caused by congenital and/or acquired chronic cerebral tox-

oplasmosis. Res Autism Spectr Disord. 2011;5(1):14-59.

15. Klaren VN, Kijstra A. Toxoplasmosis, an overview with emphasis

on ocular involvement. Ocul Immunol Inflamm. 2002;10(1):1-26.

16. Furtado JM, Smith JR, Belfort R Jr, Gattey D, Winthrop KL. Tox-

oplasmosis: a global threat. J Glob Infect Dis. 2011;3(3):281-284.

17. Carter CJ. Toxoplasmosis and polygenic disease susceptibility

genes: extensive Toxoplasma gondii host/pathogen interactome

enrichment in nine psychiatric or neurological disorders.

J Pathog. 2013;(2013). doi:10.1155/2013/965046.

18. Halonen SK, Weiss LM. Toxoplasmosis. In: Aminoff MJ,

Boller F, Swaab DF, eds. Neuroparasitology and Tropical

Neurology, Handbook of Clinical Neurology Series. Amsterdam,

Netherlands: Elsevier BV; 2013:125-145. doi:10.1016/B978-

0-444-440-3.00008-X.

19. McLeod R, Van Tubbergen C, Montoya JG, Petersen E. Human

toxoplasma infection. In: Weiss LM, Kim K, eds. Toxoplasma

Gondii. 2nd ed. Amsterdam, Netherlands: Academic Press;

2014:99-159.

20. Torgerson R, Mastroiacovo P. The global burden of congenital

toxoplasmosis: a systematic review. Bull World Health Organ.

2013;91(7):501-508.

21. Nissapatorn V. Toxoplasmosis: a silent threat in Southeast Asia.

J Parasitol. 2007;2(1):1-12.
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Toxoplasma gondii infection causes morphological changes in

caecal myenteric neurons. Exp Parasitol. 2012;130(2):103-109.

76. Silva LS, Sartori AL, Zaniolo LM, da Silva AV, Sant’Ana Dde M,

Araújo EJ. Toxoplasma gondii: myenteric neurons of intraperito-

neally inoculated rats show quantitative and morphometric altera-

tions. Exp Parasitol. 2011;129(1):5-10.

77. Odorizzi L, Moreira NM, Gonçalves GF, da Silva AV, Sant’ana
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