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Abstract 

Novel liquid biopsy technologies are creating a watershed moment in cancer early detection. Evidence supporting population screen
ing is nascent, but a rush to market the new tests is prompting cancer early detection researchers to revisit the standard blueprint 
that the Early Detection Research Network established to evaluate novel screening biomarkers. In this commentary, we review the 
Early Detection Research Network’s Phases of Biomarker Development (PBD) for rigorous evaluation of novel early detection bio
markers and discuss both hazards and opportunities involved in expedited evaluation. According to the PBD, for a biomarker-based 
test to be considered for population screening, 1) test sensitivity in a prospective screening setting must be adequate, 2) the shift to 
early curable stages must be meaningful, and 3) any stage shift must translate into clinically significant mortality benefit. In the past, 
determining mortality benefit has required lengthy randomized screening trials, but interest is growing in expedited trial designs 
with shorter-term endpoints. Whether and how best to use such endpoints in a manner that retains the rigor of the PBD remains to 
be determined. We discuss how computational disease modeling can be harnessed to learn about screening impact and meet the 
needs of the moment.

We are at a watershed moment in cancer early detection, with 
novel liquid biopsy technologies creating the possibility to screen 
for multiple cancers using a simple blood test. Studies to date 
have shown that such multicancer early detection tests can iden
tify cancers in people who already have a diagnosis (1-3). 
Industry messaging and public anticipation are driving a percep
tion that widespread deployment of the tests is an urgent matter 
[eg, Klein et al. (4)]; indeed, several products are being marketed 
ahead of United States Food and Drug Administration approval 
while we await evidence of clinical utility, and a congressional 
bill has been introduced to allow Medicare coverage of the new 
tests once they have been approved and shown to be clinically 
effective (5,6). There is now growing concern among early 
detection researchers that the tests will become widely available 
before they have been properly vetted for benefit and harm.

In this commentary, we examine the road from demonstrating 
the diagnostic performance of a new early detection biomarker 
to producing convincing evidence of its value for population 
screening. We explain why a measured, sequential approach has 
become standard and explore whether this standard can and 
should be adapted to meet the needs of the moment.

Cancer early detection has always been controversial because 
it involves intervening in a predominantly healthy population to 
benefit a relative few. A cancer screening test is not a simple 

matter; even if the test itself is not costly or harmful, it can lead 
to downstream interventions that are. In the past decade, 
research studies and the popular press focused far more on the 
harms of cancer screening than on its benefits. Newspaper 
articles warned about overdiagnosis and overtreatment (7,8), and 
research studies highlighted how the risk of unnecessary biopsies 
is compounded dramatically under regular screening (9).

We previously commented on the valuable lessons that the 
history of early detection holds for the field today (10). The key 
lesson bears repeating: It is not just about the test’s diagnostic 
performance. Bridging preliminary evidence that a new screening 
test can detect cancer to establishing that the population screen
ing can materially reduce deaths in a sustainable fashion 
requires a whole sequence of pieces to fall into place.

First, the promising performance of a screening test in known 
cases and noncases must lead to adequate discrimination in the 
prospectively screened (intended-use) population. In practice, 
degradation of screening test sensitivity in the prospective setting 
is expected because the case mix will be skewed toward cases 
that are earlier in their natural history and may include a fraction 
that are clinically insignificant (11,12). Moreover, in this setting, 
sensitivity will depend on what happens after a positive test; if 
accurate confirmation testing is not readily accessible, the sensi
tivity of the entire screening episode will be further degraded (13).
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Second, screening in the intended-use population must lead 
to material movement of the timing of diagnosis to an earlier, 
more treatable point in the disease’s natural history. Because we 
most often conceptualize early vs late diagnosis in terms of clini
cal stage of disease, we generally refer to this condition as 
screening that produces an adequate “stage shift.” This shift can 
happen, however, only if the cancer provides adequate opportu
nity—through a sufficiently long early-stage duration—to be 
detected at this point. Thus, the natural history of the target can
cer will factor critically into the ability of a screening program to 
change the fate of the cancers detected. Learning a cancer’s nat
ural history, however, requires incidence data with and without 
screening, which is not available for most types of cancer. 
Whether a candidate test can achieve adequate stage shift is vir
tually impossible to establish for these cancers without prospec
tive evaluation.

Third, any stage shift that screening produces should trans
late into an adequate and sustainable reduction in cancer mor
tality. Whether this will be the case depends on the cancer—the 
expected mortality reduction from a given stage shift is highly 
variable across cancers—and on the implementation of the 
screening program, including any subsequent diagnostic and 
treatment interventions. In practice, access to confirmation test
ing can be heterogeneous, and changes in available treatments 
can affect the effectiveness of screening. Thus, several factors 
determine whether a promising stage shift will result in a clini
cally significant and sustainable mortality reduction.

Establishing that a new test meets these 3 requirements while 
also controlling adverse outcomes, such as unnecessary biopsies 
and overdiagnosis, involves a corresponding sequence of studies 
that typically take many years to complete. In 2001, the Early 
Detection Research Network of the National Cancer Institute 
established the Phases of Biomarker Development (PBD) to codify 
these studies and specify criteria for progression from one phase 
to the next (14,15).

The PBD blueprint begins with discovery (phase 1) and assess
ment of the discriminative performance in known cancer cases 
and noncases (phase 2). It progresses to evaluation of prediagno
sis performance using stored serum samples (phase 3) and ascer
tainment of the change in incidence and stage induced by 
biomarker-based screening in prospective cohort studies (phase 
4). Phase 4 studies may also inform researchers about screening 
test performance in the prospective setting, but simple empirical 
estimates of sensitivity from such studies are frequently overly 
optimistic (16,17). The final phase is the randomized screening 
trial, with disease-specific mortality as a primary endpoint 
(phase 5). Screening trials not only avoid selection bias resulting 
from random assignment of screening but also examine the col
lective contributions of screening, diagnostic confirmation test
ing, and treatment to delivering mortality benefit. The 
demonstration of significant mortality benefit in a randomized 
screening trial has become established as a condition for accept
ability of a new test; the United States Preventive Services Task 
Force (USPSTF) generally requires such evidence as a prerequisite 
to recommending population screening.

To a certain extent, the PBD sequence of studies is being fol
lowed with the new cancer tests. Several retrospective (phase 2) 
and prospective (phase 4) studies of test performance have been 
or are currently being conducted (11,18). Phase 3 studies are rare 
because of the specimen volume the new multicancer tests 
require (eg, 20 mL of blood for 1 product) (19). A recent phase 3 
study presented findings regarding detection rates up to 3 years 
before clinical diagnosis based on specimens from a population 

cohort study that drew 36 mL of blood per participant (20). At this 
time, few phase 5 trials are in process, and test developers are 
making the case that trials with disease-specific mortality as a 
primary endpoint are too lengthy, costly, and complex (4,21).

Randomized screening trials are indeed lengthy, costly, and 
complex, particularly in the average-risk population. The rarity 
of disease-specific mortality in this population means that such 
trials must enroll a large number of participants; further, the 
time required to observe enough of these events in an initially 
asymptomatic cohort means that long follow-up is generally 
needed. Given their expense and duration, randomized trials can 
generally evaluate only 1 or 2 screening strategies. Further, 
because diagnostic and treatment practices often continue to 
evolve, the trial results may be less relevant to contemporary 
practice when they finally become available. Given the sheer 
number of liquid biopsy–based tests currently under develop
ment, it is unrealistic to conduct a screening trial for each one. 
To this end, there is growing interest among cancer researchers 
in expediting screening test evaluation in a manner that gains 
efficiency but retains the intent of the PBD to rigorously assess 
the mortality benefit that may be reasonably expected from a 
novel cancer screening biomarker (22).

One approach that has been gaining attention, with strong 
support from industry, is to use short-term outcomes in screen
ing trials for the new tests. A prime candidate is the reduction in 
the incidence of late-stage disease, which has been proposed as a 
surrogate or provisional endpoint for mortality benefit (4,23). At 
this time, there is no clear consensus for how this approach 
would be operationalized; for example, would conclusions about 
screening benefit be made based on this endpoint, or would the 
stage shift be used to predict the reduction in disease-specific 
mortality? We strongly recommend against the first option. We 
have previously shown that a given reduction in late-stage inci
dence does not imply the same reduction in disease mortality 
across cancers; a seemingly dramatic reduction in late-stage inci
dence would be expected to produce only a modest mortality 
benefit for some cancers (24). In short, we do not know what 
might constitute a clinically significant reduction in late-stage 
incidence. Given the challenges of deimplementing cancer 
screening programs once they have been initiated, basing screen
ing decisions on a seemingly favorable reduction that does not 
lead to a reasonable mortality benefit could be suboptimal for 
both clinical and policy purposes.

The second option—using the mortality reduction predicted 
by late-stage incidence rates as an endpoint—may be more rea
sonable. Indeed, studies have previously proposed using this end
point in breast and colorectal cancer (CRC) screening trials; 
results suggested advantages over the mortality endpoint in 
terms of both timeliness and statistical power (25,26). This 
approach will still require further investigation, however, into 
different ways to predict mortality benefit, given a stage shift 
and their validity across cancers. For example, we have shown 
that accounting for prognostic subtype when substituting early- 
stage for late-stage survival among cases shifted from a late 
stage to an early stage by screening may affect the predicted 
mortality reduction (27).

Might other approaches be harnessed to expedite evaluation 
of novel screening tests and produce evidence to support 
well-founded population screening decisions?

Real-world data have been suggested as a potentially useful 
evidence source because the tests disseminate in the clinic and 
produce data on their use and consequences in practice (28). 
There are likely to be many challenges, however, to the 
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development of reliable evidence from real-world data beyond 
the primary challenge of ensuring that key variables are collected 
in a consistent manner in the clinical setting. First, selection bias 
in real-world data is a well-understood problem that cannot 
always be remedied. Such bias will almost certainly be a major 
issue in the evaluation of benefits of novel early detection tests 
given their costs and other barriers to their use as well as to accu
rate confirmation testing. Long-term outcomes will take years to 
accumulate, and short-term outcomes will be subject to the 
same concerns as those pertaining to surrogate endpoints for 
screening trials. In addition, data sharing issues will need to be 
addressed or alternatives to data sharing adopted to permit anal
ysis of large, representative datasets. If real-world data can be 
made available, they will be most useful for assessments of 
short-term outcomes: patterns and predictors of novel test use, 
access issues with respect to both screening and confirmation 
testing, and diagnostic performance in the intended-use setting.

Computational disease modeling is an established approach 
to learn from and extrapolate beyond the empirical results of 
screening studies. A computational model for studying cancer 
screening is a mathematical representation of the events in dis
ease progression that drive screening outcomes, such as disease 
onset, metastasis, diagnosis, and survival. Once the rates of the 
relevant events have been estimated, the model permits projec
ting virtually (eg, by simulation) the impact of screening and 
treatment on key clinical outcomes, such as late-stage incidence 
and mortality. Models have been used to expand the range of 
screening strategies beyond those studied in actual trials through 
simulated trials that examine a range of screening ages and 
intervals, biopsy referral criteria, and strategies tailored to dis
ease risk (29-36). In a sense, modeling has become an informal 
sixth phase of the PBD, and the USPSTF and other national guide
lines panels have relied on modeling to inform their policies for 
lung, breast, cervical, and colorectal cancer screening (37). The 
most recent USPSTF guidelines for both lung cancer and CRC 
screening were directly informed by modeling. In the case of lung 
cancer, the modeling studies showed that changing the eligibility 
criteria from 30 to 20 pack-year smoking histories dramatically 
increased the fraction of the population eligible for screening and 
the life-years saved while only modestly increasing harms (36). In 
the case of CRC, the modeling studies showed that strategies that 
started screening at age 45 years increased life-years saved and 
yielded fewer CRC cases and deaths than similar strategies that 
started screening at age 50 or 55 years (38). The new USPSTF lung 
cancer screening guidelines expand eligibility to 20 or more pack- 
year smoking histories (39), and the new CRC screening guide
lines recommend beginning screening at age 45 years (40).

Although computational modeling cannot replace every 
screening trial, a calibrated model of the disease process—one 
that replicates observed results when simulating existing stud
ies—is a powerful tool. Indeed, a calibrated model permits rigor
ous and transparent projections that may increase efficiencies 
and even eliminate the need for some trials. Here, we consider 2 
ways in which modeling could be used to expedite the evaluation 
of novel tests, but there are likely to be many more.

First, as we have already discussed, a model that has been 
calibrated to stage-specific incidence in a trial could be har
nessed to predict the corresponding mortality reduction. A model 
that has been calibrated to incidence and mortality patterns 
could go further, predicting these outcomes beyond the trial 
duration. We previously used modeling to predict the long-term 
mortality benefit and ratio of overdiagnoses to lives saved under 
prostate cancer screening based on results obtained under 

limited follow-up from the European Randomized Study of 
Screening for Prostate Cancer (41). Although long-term empirical 
data do not always exist to validate such projections, their avail
ability in 2 CRC screening studies permitted verification that 
their long-term results matched those projected by the models 
(42,43). This application of models not only bridges from the trial 
to the policy setting, which necessarily requires quantifying out
comes over a long-term (ideally lifetime) horizon, but also opens 
the door to potentially shortening trial durations through judi
cious blending of empirical and model-based results. Prediction 
of the mortality reduction given the observed late-stage inci
dence in screen vs control groups, validated in 1 setting (eg, 
annual testing) and used to anticipate effects in another setting 
(eg, biennial testing), would be an example of such a blended 
model.

Second, a model of screening could, in principle, build from 
long-term studies of an older test to project outcomes of screen
ing using a test with different performance characteristics. 
Modeling studies [eg, Knudsen et al. (38)] have projected out
comes of newer stool-based tests for CRC by superimposing these 
tests, given their sensitivity, on existing models of CRC natural 
history that were calibrated to adenoma prevalence data and 
CRC incidence rates in the United States (44). This application of 
models could reduce the need for trials of novel tests when their 
performance in the prospective screening setting has been well 
estimated and calibrated models of screening for the tests’ target 
cancers are available.

Naturally, modeling is subject to challenges and limitations. 
Models require extensive, high-quality data for adequate calibra
tion; can be difficult to estimate, even when such data are avail
able (45); and often make unverifiable assumptions about 
natural history, screening performance, or screening benefit. The 
science of modeling has advanced over the past several decades, 
however, and methods for mitigating these limitations have been 
developed and continue to evolve (46). Notable advances include 
metrics for independently developed models to examine the val
idity of unobservable quantities (such as sojourn times) (47,48), 
efficient algorithms to calibrate models with potentially many 
parameters to multiple data targets (49), and methods to propa
gate uncertainty in model inputs to uncertainty in policy prefer
ences based on model outputs (50). As data from studies of novel 
screening tests become available, they will facilitate rigorous 
development of models for cancers with unknown natural histor
ies and provide new opportunities to validate existing natural 
history models.

In conclusion, marketing pitches for the new tests argue that 
lack of screening for many cancers has created an urgency to 
deploy novel tests as quickly as possible. The real urgency, 
though, is driven by concerns that the tests may be released to 
an unsuspecting public before researchers can establish that the 
tests will do more good than harm. The early detection research 
community must now address the conflict between the estab
lished blueprint of the PBD and the pressure to accelerate evalua
tion of novel screening tests. Will we continue to require a 
significant reduction in disease mortality from a randomized 
study to greenlight a new test? Or are we willing to expand the 
scope of what constitutes adequate evidence to recommend such 
a test? If the latter course is followed, then building a rigorous 
program of objective analytical and modeling studies to learn 
from and extend the results of PBD studies would be a worth
while investment.
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