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Khanh vinh quó̂c Lu’o’ng, MD1, and Lan Thi Hoàng Nguyẽ̂n, MD1

Abstract
According to genetic studies, Alzheimer’s disease (AD) is linked to beta-adrenergic receptor blockade through numerous factors,
including human leukocyte antigen genes, the renin–angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve
growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. Beta-
adrenergic receptor blockade is also implicated in AD due to its effects on matrix metalloproteinases, mitogen-activated protein
kinase pathways, prostaglandins, cyclooxygenase-2, and nitric oxide synthase. Beta-adrenergic receptor blockade may also have a
significant role in AD, although the role is controversial. Behavioral symptoms, sex, or genetic factors, including Beta 2-adrenergic
receptor variants, apolipoprotein E, and cytochrome P450 CYP2D6, may contribute to beta-adrenergic receptor blockade mod-
ulation in AD. Thus, the characterization of beta-adrenergic receptor blockade in patients with AD is needed.
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Introduction

Alzheimer’s disease (AD) is the most common form of demen-
tia in the elderly individualsand is associated with progressive
memory loss and cognitive dysfunction. The AD is associated
with beta-adrenergic receptors. In the brain, beta-adrenergic
receptors are widely distributed in different regions, including
the frontal, parietal, piriform, and retrosplenial cortices, medial
septal nuclei, olfactory tubercle, midbrain, striatum, hippocam-
pus, and thalamic nuclei.1,2 The adrenergic receptors (or adreno-
ceptors) are a class of G-protein-coupled receptors that are
targets of the catecholamines, especially norepinephrine (nora-
drenaline) and epinephrine (adrenaline). Many cells possess
adrenergic receptors, and the binding of a catecholamine to
these receptors will generally stimulate the sympathetic nervous
system. There are 2 main groups of adrenergic receptors, α and
β. Beta receptors have the subtypes beta1, beta2, and beta3. All 3
beta subtype receptors are linked to Gs proteins (although beta2
also couples to Gi), which in turn are linked to adenylate
cyclase. Agonist binding thus causes a rise in the intracellular
concentration of the second messenger cyclic adenosine mono-
phosphate (cAMP). Downstream effectors of cAMP include
cAMP-dependent protein kinase (PKA), which mediates some
of the intracellular events following hormone binding. Amyloid
beta peptide (Aβ) induces subtle alterations in the synaptic func-
tion in AD. The Aβ interacts with beta2 adrenergic receptors in
the central noradrenergic system to regulate synaptic functions
in the prefrontal cortical neurons and induces the internalization
and degradation of the beta2-adrenergic receptor that results in

the impairment of adrenergic and glutamatergic activities.3,4

Beta2-adrenergic receptors play an important role in AD. Com-
pared with the thalamus of control brains, the thalamus of the
brains with dementia had a lower total concentration of beta-
adrenergic receptors. Compared with the control brains, brain
with dementia have significantly lower concentrations of
beta1-adrenergic receptor in the hippocampus and higher con-
centrations in the nucleus basalis of Meynert (NbM) and cere-
bellar hemisphere, whereas brains wirh dementia have lower
concentrations of beta2-adrenergic receptor concentrations in
the thalamus, NbM, and cerebellar hemispheres and higher con-
centrations in the hippocampus and putamen.5 Compared with
non-AD patients, patients with AD have lymphocytes that have
lower beta2-adrenergic receptor levels and lower levels of
beta2-adrenergic-stimulated cAMP.6 Fibroblasts isolated from
patients with AD have a reduced beta2-adrenergic receptor
response.7 Karczewski et al8 demonstrated the presence of ago-
nistic autoantibodies directed at adrenergic receptors in the
circulation of patients with mild-to-moderate Alzheimer’s and
vascular dementia. Beta-adrenoceptors mediate the ability of
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norepinephrine (NE) to differentially modulate Aβ1-42-
induced immune responses. The NE suppresses Aβ1-42-
mediated cytotoxicity and monocytic chemotactic protein 1
secretion but enhances Aβ-mediated IL-1β secretion via
beta-adrenoceptor activity combined with the activating of
cAMP/protein kinase A pathway and cAMP response ele-
ment binding in human microglia-like THP-1 cells.9 In addition,
reduced levels of NE are associated with behavioral phenotypes
observed in aTgCRND8mousemodel ofAD.10TheNEpromotes
murine microglial uptake and degradation of Aβ.11 Moreover, the
beta3-adrenergic receptor agonist (CL316243), but not the beta2-
adrenergic receptor agonist, rescued this Aβ-induced memory
loss.12 The beta2-adrenergic agonist clenbuterol improved the per-
formance of many of the young and aged rats and monkeys that
had performed poorly under control conditions.13 The degenera-
tion of locus ceruleus neurons and reduced levels of NE
potentiated Aβ-induced cortical inflammation.14 Moreover,
patients with cognitive impairment who were on beta2-adrenergic
receptor blockers had poorer delayed memory retrieval.15 How-
ever, comparedwith both nonaggessive patientswithADand con-
trol participants, agrressive patients with AD had small but
significant increases (approximately 25%) in beta1- and beta2-
adrenergic receptors of the cerebellar cortex.16 Patients with AD
have larger total numbers of beta2- and beta1-adrenoceptors in the
hippocampus.By contrast, in theADputamen,where beta1-recep-
tors were highly expressed, the total numbers of beta- and beta1-
receptors were significantly reduced with no consistent change
in the number of beta2-receptors.

17 Furthermore, compared with
cerebellarADand control tissues, the hippocampal has higher total
beta adrenoceptor density.18 The AD has significantly higher total
number of beta receptors of the cerebralmicrovessels and numbers
of beta2-receptors, which is the type that is predominately
expressed in microvessels.19 Activation of the beta2-adrenergic
receptor stimulates γ-secretase activity and accelerates amyloid
plaque formation. The beta2-adrenergic receptor-selective
antagonist ICI 118,551 reduced Aβ peptide production,20,21

suggesting that blockade of beta2-adrenergic receptor function
might be effective in the prevention and treatment of AD. The
use of beta2-adrenergic receptor antagonists correlated with a
decreased incidence of AD among patients with hyperten-
sion.22-24 Propranolol reduced aggression and agitation in
patients with senile dementia.25-28 Propranolol also restored
cognitive deficits and improved amyloid and tau pathologies
in a senescence-accelerated mouse model.29,30 Carvedilol, a
nonselective beta-adrenergic receptor blocker, demonstrated a
neuroprotective effect in colchicine- and aluminum chloride-
induced cognitive dysfunction and oxidative damage.31,32

Carvedilol also significantly attenuated brain oligomeric beta-
amyloid content and cognitive deterioration in 2 independent
AD mouse models.33 In addition, nebivolol is highly tolerable
and safe and can significantly reduce amyloid neuropathology
in the brain, which could be one of the most important para-
meters for primary prevention of AD.34 These findings sug-
gested that beta-adrenergic receptor blockade may play a role
in AD. Thus, we discuss the potential role of beta-adrenergic
receptor blockers in AD.

Genetic Factors Associated With Beta-Adrenergic
Inhibition and AD

Genetic studies provide an excellent opportunity to link molecu-
lar variations with epidemiological data. Variations in DNA
sequences such as polymorphisms exert modest and subtle bio-
logical effects. Receptors play a crucial role in the regulation of
cellular function, and small changes in their structure can influ-
ence intracellular signal transduction pathways.

Previous studies have suggested that human leukocyte antigen
(HLA) genes are located in the major histocompatibility complex
(MHC) class II loci and that several genes in theMHC region pro-
mote susceptibility to AD. Previous studies showed that HLA-
DR1 was associated with enhanced cumulative recall ability, and
conversely, HLA-DR5 was associated with a diminished delayed
verbal recall and spatial recall abilities on cognitive abilities in an
older nondemented population.35 Brains with AD have increased
MHC class II glycoprotein expression on microglial cells.36-39

Furthermore, the AD retina has a significantly increased level
of MHC class II expression.40 HLA-DR was abnormally
expressed in the neutrophils and monocytes of patients with
AD.41 Moreover, the postmortem brains of patients with AD had
increased numbers of HLA-DR and interleukin 2 (IL-2)-receptor-
positive cells, which were correlated with the number of senile
plaques.42 Shalit et al43 observed a slight increase in HLA-DR
levels in the mild stage of ADwithout changes in CD4, CD8, and
IL-2 levels. In the moderately severe stage of AD, however,
HLA-DR and CD4 levels increased, and CD8 levels slightly
increased, suggesting that the peripheral immune reaction in
AD may be correlated with the clinical stage of the disease.
Furthermore, following long-term therapeutic immunization of
an AD mouse model carring the DRB1*1501 allele, Aβ were
effectively cleared from the brain parenchyma, and brain micro-
glial activation was reduced.44 These results suggested that HLA-
DR alleles are directly associated with specific Aβ T-cell epitopes
with highly immunogenic properties of the abundantDRB1*1501
allele in this mouse model of AD. Moreover, HLA-DR and HLA-
DQ gene polymorphisms may be correlated with the anti-beta-
receptor antibodies in familial cardiomyopathy.45 Cardiac beta-
adrenergic receptors and adenylate cyclase activity in dilated car-
diomyopathy are modulated by circulating autoantibodies against
the cardiac beta1-adrenoceptor, the presence of which is regulated
by the HLA-DR.46 In addition, propranolol abrogated the
interferon-gamma-induced increases in HLA class II expression
and interleukin-1beta (IL-1β) secretion.47 The lymphocytes of
carvedilol-treated chronic heart failure (CHF) patients have sig-
nificantly reduced HLA-DR expression.48 These findings sug-
gested that beta-adrenergic receptor blockers might affect AD
via the suppression of MHC class II antigen expression.

The primary function of the renin–angiotensin system (RAS)
is to maintain fluid homeostasis and regulate blood pressure. Sev-
eral components and receptors of the RAS have been identified in
the central nervous system (CNS),49-52 suggesting that the RAS
might be involved in brain activity. Increasing evidence suggests
that specific components of the RAS may have a crucial role in
learning and memory processes. Angiotensin-converting enzyme
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(ACE) activity was reported in the homogenates of postmortem
brain tissue from patients with AD and was correlated with Aβ
plaque load.53 The increased binding of radioactively labeled
ACE inhibitor to ACE was demonstrated in AD temporal cor-
tices.54 Another report also demonstrated elevated neuronal and
perivascular ACE immune-reactivity in AD parietal cortices.55

Recently, ACE activity was found to be increased in the periph-
eral blood of patients with late-onset AD; however, ACE activity
was not correlated with the level of Aβ in peripheral blood.56

Thus, the role of ACE in AD remains controversial as well as the
role of beta-adrenergic receptor antagonisms in AD; ACE inhibits
Aβ aggregation and lowers the levels of secreted Aβ in living
cells, an effect that is blocked with ACE inhibitor.57,58 By con-
trast, in another study, the ACE inhibitor did not have an effect
on cerebral Aβ levels and plaque deposition in vivo.59 Although
short-term treatment with ACE inhibitors failed to increase Aβ
formation in the brain, long-term treatment enhanced the Aβ
deposition in aged amyloid precursor protein (APP) transgenic
mice.60 Moreover, treatment with RAS blockers modulated
serum adipocytokines and glucose homeostasis, thereby poten-
tially slowing the cognitive decline in patients with AD.61 The
angiotensin receptor blocker losartan also exerted direct neuro-
protective effects via its Aβ-reducing and anti-inflammatory
effects in the CNS.62 Furthermore, the renin inhibitor aliskiren
conferred neuronal resistance to Aβ toxicity in primary rat corti-
cal cultures.63 The ACE I/I genotype and I allele showed an
increased risk of AD,64,65 but the D/D genotype was associated
with a reduced risk.66 Compared with the D/D genotype, the I/I
genotype is linked to smaller volumes of the hippocampus and
the amygdala67 and has increased brain Aβ42 load.

68 Moreover,
catecholamines altered the release of AT II (Angiotensinogen
II). Ming et al69 demonstrated that isoproterenol enhanced the
stimulatory effect of dexamethasone on AT gene expression via
β2-adrenergic receptors in mouse hepatoma cells. In addition, iso-
proterenol promoted an increase in the release of AT II from isola-
ted perfused mesenteric arteries, and this release was blocked by
propranolol treatment.70 In other studies, isoproterenol increased
the secretion of AT II in neuronal cultures, cultured bovine aortic
endothelial cells, and the brachial arteries of patients with hyper-
tension.71-73 Compared with nontreated patients, patients with
cirrhosis had reduced plasma renin activity (PRA) and AT I,
AT II, and AT-(1-7) expression in the portal vein and periphery
due to propranolol treatment.74 Prevention or modification of cer-
tain vascular risk factors and proper management of cardiovascu-
lar disease may prevent the development or progression of
dementia, including AD.75 Protein homeostasis plays a role in the
development of numerous disorders. Misfolded proteins are cen-
tral in the pathophysiology of neurodegenerative diseases, such
as AD, and play a role in the pathophysiology of common human
cardiac diseases such as pathologic cardiac hypertrophy and
dilated and ischemic cardiomyopathies.76 In addition, cardiac sur-
gery with cardiopulmonary bypass caused a profound cerebral
inflammatory response, which was accompanied by increased
postoperative cerebrospinal fluid (CSF) levels of the AD biomar-
ker Aβ1-42.77 Carvedilol inhibited basal and stimulated ACE
production in human endothelial cells78 and exhibited beneficial

effects on ACE activity and PRA levels in patients with CHF .79

In addition, proliferating infantile hemangiomas expressed 2
essential components of the RAS, namely ACE and the AT II
receptor, which are responsible for the propranolol-induced
accelerated involution of large proliferating infantile heman-
giomas.80-82 Taken together, the RAS is activated in AD and the
impact of beta-adrenergic receptor blockade on this system will
affect AD.

Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear protein
that contributes to both neuronal death and survival under stress-
ful conditions. The residual PARP activity found in PARP-1-
deficient cells has been recently attributed to a novel DNA
damage-dependent PARP.83 The PARP cleavage is enhanced in
the peripheral blood mononuclear cells of patients with mild cog-
nitive impairment.84 Enhanced PARP activity has been reported
in AD andmay be a marker for AD.85 Poly-ADP-ribose polymers
increase with age in the brains of an Alzheimer’s mouse model,
and Aβ-activated poly-ADP-ribose polymers induced astrocytic
metabolic failure and neuronal death in response to oxidative
stress. Inhibition of either PARP or the nicotinamide adenine
dinucleotide phosphate oxidase prevented the appearance of
poly-ADP-ribose polymers and the mitochondrial depolari-
zation.86 The PARP-1 polymorphism modified the risk of AD
in both an independent manner and through an interaction with
the proinflammatory factor IL-1A.87 The PARP-1 gene is also
highly associated with AD susceptibility. Both Ht3-TT and
Ht4-CC, which are the PARP haplotypes, were significantly
associated with an increased risk of AD, whereas the Ht1-TC
haplotype showed a protective effect against AD when com-
pared with control participants.88 Moreover, rabbits treated with
ketamine exhibited reduced left ventricular ejection fractions,
ventricular conduction velocity, and increased susceptibility to
ventricular arrhythmia, which were prevented by metoprolol
treatment. The expression of Parp-1 and apoptosis-inducing fac-
tor increased after ketamine treatment and sharply decreased
after metoprolol administration.89 Propranolol treatment mark-
edly suppressed PARP activation in skeletal muscle biopsies
from pediatric patients with burn.90 Propranolol also protected
against staurosporine-induced DNA fragmentation and PARP
cleavage in SH-SY5Y neuroblastoma cells.91 Furthermore, the
nonselective β-receptor blocker carvedilol significantly inhib-
ited apoptosis and suppressed activated PARP-1 cleavage in
human cardiac tissue.92 Carvedilol significantly reduced ische-
mia–reperfusion-induced poly- and mono-ADP-ribosylation in
heart perfusion and rheological models.93 Carvedilol also
reduced PARP activity in the hippocampus and protected neu-
rons against death after transient forebrain ischemia.94 Metipra-
nolol reduced the sodium nitroprusside-induced breakdown of
PARP-1 in the eyes and retinas of rats.95 These findings sug-
gested that PARP-1 is activated in patients with AD and that
beta-adrenergic receptor antagonists may affect AD through the
suppression of PARP-1.

Angiogenesis is a complex process that involves the coordi-
nated steps of endothelial cell activation, proliferation, migra-
tion, tube formation and capillary sprouting. In addition,
angiogenesis requires the participation of several intracellular

Lu’o’ng and Nguyễn 429



signaling pathways. Vascular endothelial growth factor (VEGF)
is a key mediator of angiogenesis. Pathological angiogenesis
may be a key event in the pathogenesis of AD. The abnormal
regulation of VEGF expression has been reported in AD patho-
genesis. Brain homogenates of APP23 mice, a transgenic model
of AD, induced the formation of new vessels during in vivo
angiogenesis and was blocked by a VEGF antagonist.96 Com-
pared with control participants, patients with AD had higher
expression levels of angiopoietin 2 and VEGF in the micro-
circulatory system.97 Clusters of reactive astrocytes showed
enhanced VEGF immunoreactivity in the neocortex of patients
with AD but not in elderly control participants.98 Increases in the
VEGF levels in the CSF were also observed in patients with AD
and vascular dementia but not in healthy controls.99 These find-
ings suggested that angiogenic changes occur in the micro-
circulation of the brain with AD and may contribute to disease
pathogenesis. The VEGF interacts with Aβ and co-localizes with
Aβ in the brains of patients with AD.100 The Aβ also inhibits
VEGF-induced migration of endothelial cells as well as VEGF-
induced permeability in an in vitro model of the blood–brain bar-
rier.101 The VEGF gene variability may be a genetic factor that
influences lifespan in a cohort of Italian patients.102 The VEGF
polymorphisms are associated with AD in Italian, Han Chinese,
and Tunisian populations.103-106 A number of mechanisms might
link cancer with AD and other neurodegenerative diseases.107

Roe et al108 used population-based data from the Cardiovascular
Health Cognition study to confirm the negative correlation
between cancer and AD but not vascular dementia in Caucasian
adults. Results from the Framingham Heart Study also had the
same conclusion.109 Moreover, the beta-adrenergic receptor
agonist isoproterenol significantly increased VEGF protein levels
in human choroidal endothelial cells.110 The NE treatment
increased VEGF levels in cultured nasopharyngeal carcinoma
(NPC) tumor cells, and this increase was inhibited by propranolol
treatment. Norepinephrine also induced invasiveness in all NPC
cell lines in a dose-dependent manner, and this induction was
blocked by propranolol treatment.111 Moreover, propranolol sig-
nificantly reduced VEGF activity in a phorbol myristate acetate
(PMA)-activated human leukemic cell line.112 This drug also
repressed gastric cancer cell growth via its downstream effects
on VEGF.113,114 Alternatively, NE increased VEGF expression,
and these effects were inhibited by propranolol treatment in pan-
creatic cancer cells.115,116 In addition, epinephrine enhanced the
VEGF expression in colon adenocarcinoma cells, and the stimula-
tory action of epinephrine on colon cancer growth was blocked by
treatment with atenolol and ICI 118 551, which are beta1- and
beta2-selective antagonists, respectively.117 Beta2-adrenergic
receptor blockade regulated VEGF production in a mouse model
of oxygen-induced retinopathy.118 Hypoxia-inducible factor 1α
and VEGF messenger RNA and protein expression were both
upregulated in a ratmodel of volume-overload heart failure; carve-
diol treatment reversed these abnormalities.119 These findings
suggested that beta-adrenergic receptor antagonists modulated
VEGF expression in AD.

The reduced form of the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX) enzyme complex mediates

critical physiological and pathological processes including cell
signaling, inflammation and mitogenesis, by generating reactive
oxygen species (ROS) from molecular oxygen. The NOX is
widely expressed in various immune cells, including microglia,
macrophages, and neutrophils. In AD, NOX is activated in
microglia, resulting in the formation of ROS that are toxic to
neighboring neurons.120 The Aβ induces mitochondrial dys-
function and oxidative stress in astrocytes and neural death via
NOX activation.121,122 The NOX expression and activity are
specifically upregulated in vulnerable brain regions of mildly
cognitive impaired patients.123 The NOX is also upregulated
in the frontal and temporal cortices and contributes to AD pro-
gression.124 The inhibition of NOX or the gene deletion of its
functional p47phox (phox: phagocyte oxidation) subunit pro-
motes alternative and anti-inflammatory microglial activation
during neuroinflammation.125 Moreover, nebivolol, a third-
generation selective beta1-adrenoceptor, improved left ventricle
dysfunction and survival immediately after myocardial ischemia
and inhibited cardiac NOX activation.126 Nebivolol treatment
has been associated with improvements in insulin resistance,
reduced proteinuria, and reduced NOX activity as well as the pro-
duction of ROS in the kidneys and skeletal muscle tissue of trans-
genic TG(mRen2)27 rats (Ren2).127,128 Moreover, nebivolol also
improved diastolic relaxation, fibrosis, and remodeling in obese
Zucker rats and also reduced NOX-dependent superoxide
production.129 Carvedilol attenuated the increased expression
of NOX subunits in the hearts and kidneys of rats after
daunorubicin-induced cardiotoxicity and nephrotoxicity.130

Activity of NOX in whole blood and isolated neutrophils
was inhibited by nebivolol in a dose-dependent manner,
whereas atenolol, metoprolol, and carvedilol were markedly
less effective in Watanabe heritable hyperlipidemic rabbits.131

Celiprolol, a specific beta1-receptor antagonist with weak beta2-
receptor agonistic activity, suppressed NOX p22phox, p47phox,
gp91phox, and Nox1 expression in the left ventricle of deoxy-
corticosterone acetate-salt hypertensive rats.132 Taken together,
these findings suggested that beta-adrenergic receptor antagonists
play a role in AD through the suppression of NADPH expression.

The Role of Beta-Adrenergic Blockers in Alzheimer’s
Disease

Matrix metalloproteinases (MMPs) are proteolytic enzymes that
are responsible for remodeling the extracellular matrix and regu-
lating leukocyte migration through the extracellular matrix. This
migration is an important step in inflammatory and infectious
pathophysiology. The MMPs are produced by many cell types,
including lymphocytes, granulocytes, astrocytes, and activated
macrophages.133 Increasing evidence suggests that MMPs play
an important role in the pathogenesis of AD. Leake et al134 iden-
tified an approximately 50% increase in the cortical levels of
MMP-1 in AD. This finding is consistent with the presence of
an inflammatory state within the brain in AD and contributes to
the blood–brain barrier dysfunction observed in AD. Plasma
MMP-3 was also significantly elevated in patients with AD.135

The MMP-3 was expressed predominantly in the brain white
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matter and was also expressed in senile plaques in the cortices of
patients with AD.136 Compared with the control participants,
patients with AD had significantly elevated plasma MMP-9 lev-
els.137 In the brain tissue of patients with AD, MMP-9 expression
was found in the cytoplasm of neurons, neurofibrillary tangles,
senile plaques, and vascular walls.138 In addition, there were
inverse correlations between the Global Cognitive and Mini-
Mental State Examination scores and MMP-9 activity.139 The
Aβ is a potent stimulator of MMP-9 and MMP-2 activity in
mixed hippocampal astrocyte cultures.140 The interaction of Aβ
and RAGEs induces MMP-2 expression in brain endothelial
cells.141 TheMMP genotypes may influence the risk of dementia,
and MMP gene polymorphisms have been reported to associate
with vascular dementia and AD.142 TheMMP-3 variants are asso-
ciated with changes in the Aβ levels in humans and an increased
risk of dementia.143,144 Treatment with an MMP-9 inhibitor
improved the Aβ-mediated cognitive impairment and neurotoxi-
city in mice.145 These findings further suggested that MMP-9
plays a causal role in Aβ-induced cognitive impairment and
neurotoxicity. Moreover, propranolol inhibited human brain
endothelial cell tubulogenesis and MMP-9 secretion.146 A selec-
tive beta3-adrenoceptor agonist prevented human myometrial
remodeling and MMP-2 and MMP-9 activation in an in vitro
model of chorioamnionitis.147 The NE treatment increased
MMP-2 and MMP-9 levels in cultured NPC cells, and these
increases were inhibited by propranolol treatment. The NE also
induced the invasiveness of all the NPC cell lines in a dose-
dependent manner, and this effect could be blocked with anMMP
inhibitor and propranolol treatment.111 Propranolol significantly
reduced MMP-2 activity in a PMA-activated human leukemic
cell line.112 Propranolol-induced growth inhibition has been asso-
ciated with arrest at both G0/G1 and G2/M and repressed gastric
cancer cell growth via the downstream inhibition of MMP-2 and
MMP-9.113 NE increased MMP-2 and MMP-9 expression, and
these effects were inhibited by propranolol treatment in pancrea-
tic cancer cells.115,116 Epinephrine upregulated MMP-9 activity
in human colon adenocarcinoma HT-29 cells, and this effect was
blocked by beta1- and beta2-selective receptor antagonists, ateno-
lol, and ICI 118,551.117 These studies suggested that beta-
adrenergic receptor antagonists might play an important role in
the pathological process of PD via the regulation of tissue inhibi-
tor of mettaloproteinase levels and the downregulation of MMPs.

The mitogen-activated protein kinase (MAPK) signaling path-
ways provide a key link between membrane-bound receptors that
receive cues from signaling molecules and changes in the patterns
of gene expression, which include the extracellular signal-
regulated kinases cascade, the stress-activated protein kinases/c-
Jun N-terminal kinase (SAPK/JNK) cascade, and the p38
MAPK/RK/HOG cascade.148 An increase in the activation and
expression levels of MKK6, one of the upstream activators of
p38MAPK, has beenobserved inADbrain tissue.149 Patientswith
AD had increased levels of p38 MAPK phosphorylation associ-
ated with Aβ plaques and neurofibrillary tangle-bearing neu-
rons.150.151-152 There is a link between Aβ-induced oxidative
stress, activation of stress kinases SAPK/JNK and p38, and tau
hyperphosphorylation, which was suggested in neurites

surrounding amyloid plaque.151 Strong protein kinase of 38-kDa
(p38-P) immunereactivity was observed in about 50% to 70% of
neurons with neurofibrillary tangles and in dystrophic neurites
of senile plaques in AD.152 In vitro activation of MKK6-p38
MAPKpathway resulted in tau phosphorylation at Ser-396, which
suggested that MAPK pathway has a functional role in microtu-
bule binding. Abnormal phosphorylation at Ser-396 was demon-
strated in AD brain but not in normal functioning adult brain.153

In addition, AD hippocampal isolated from post-mortem human
brains showed co-immunopreciptate of MKK6 and phosphory-
lated tau protein, and such studies also showed that APP co-
immunoprecipitated with both ASK-1 and MKK6.154 Moreover,
Aβ stimulated glial cell cultures and activate p38 MAPK,155 con-
tributing to the loss of neurons observed in neurodegenerative dis-
ease. A novel p38 α-MAPK inhibitor (MW01-2-069A-SRM)
suppressed brain proinflammatory cytokine upregulation and atte-
nuated synaptic dysfunction and behavioral deficits in an AD
mouse model.156 Inhibition of p38 MAPK with SB203580
decreased IL-1β-induced tau phosphorylation in vitro in neuronal
cultures,157 thus highlighting the importance of p38 MAPK as a
target for combating neuro-inflammation. Moreover, beta-
adrenoceptor stimulation activated the cAMP/PKA and MAPK
pathways in pancreatic cancer cells. Beta2-adrenergic receptor
antagonists suppressed invasion and proliferation via the inhibi-
tion of both cAMP/PKA and Ras, which regulateMAPKpathway
activation.116 The NE stimulated pancreatic cancer cell prolifera-
tion, migration, and invasion via the beta-adrenergic receptor-
dependent activation of the p38/MAPK pathway. These stimu-
latory effects were completely abolished by treatment with
propranolol or the p38/MAPK inhibitor SB203580.158 Propra-
nolol exerts its suppressive effects on hemangiomas via the
hypoxia-inducible factor-1α-VEGF-A angiogenesis axis, with
effects mediated by the PI3K/Akt and p38/MAPK pathways.159

Taken together, these findings suggested that beta-adrenergic
receptor antagonists may play a role in AD via suppression of
the MAPK pathway.

Inflammation is thought to be integral to the pathogenesis of
AD. Prostaglandins (PGs) play a role in inflammatory pro-
cesses.160 Cyclooxygenase (COX) participates in the conversion
of arachidonic acid (AA) into PGs. The AA and its various
metabolites, including PGs, thromboxanes, and leukotriene B4,
induce a significantly higher secretion of both Aβ40 and Aβ42 pep-
tides.161 COX-2 and PGE2 synthesis are induced by Aβ1-42 in
astrocytic cells via a nuclear factor-κB-dependent mechanism.162

The PG receptors are expressed in the hypothalamus, thalamus,
and limbic system,163 and COX-2 is expressed by excitatory neu-
rons at postsynaptic sites in the rat cerebral cortex.164 Overexpres-
sion ofCOX-2 is observed in the perinuclear, dendritic, and axonal
areas of pyramidal neurons as well as in subregions of the hippo-
campal formation in AD.165,166 Moreover, COX-2 potentiated Aβ
protein generation via mechanisms that involve γ-secretase
activity.167,168 Long-term treatment with nonsteroidal anti-
inflammatory drugs has shown beneficial effects, including the
improvement in AD progression.169,170 The COX-2 was abnor-
mally expressed in neutrophils and monocytes in patients with
AD.41 The COX-2 G/G genotype is associated with AD.171
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Moreover, epinephrine increased the release of PGE2 in human
colon adenocarcinoma HT-29 cells, and this release was blocked
by treatment with COX-2 inhibitors or atenolol and ICI 118 551
(beta1- and beta2-selective adrenergic antagonists, respec-
tively).117 Beta2-adrenergic receptor antagonists suppressed
COX-2 expression in pancreatic cancer cells.116 Propranolol
inhibited cell proliferation and repressed gastric cancer cell growth
via the downstreamCOX-2pathway.113,114 In addition, the admin-
istration of propranolol and a COX-2 inhibitor, applied periopera-
tively inmost patients with cancer with minimal risk and low cost,
counteracted several immunological and endocrinological pertur-
bations and improved recurrence-free survival rates inmice under-
going primary tumor excision.172,173 These findings suggested
that beta-adrenergic receptor antagonists play a role inmodulating
the inflammatory process in AD.

The ROS have been implicated in the pathogenesis of neuronal
death in AD. Increased levels of ROS have been reported in
AD.174,175Oxygen-free radical injury causes someAD-typemole-
cular abnormalities in human neuronal cells.176 Oxidative stress is
a sign of AD pathology and may be an early event in the progres-
sion of the mild cognitive impairment that leads to AD.177 Cul-
tured skin fibroblasts from patients with AD exhibited increased
superoxide dismutase activity, and these cells were more suscepti-
ble to free radical damage.178,179 Mitochondria-derived ROS
resulted in enhanced amyloidogenic amyloid precursor protein
(APP) processing, and Aβ itself led to mitochondrial dysfun-
ction and increased ROS levels.180 Moreover, myocardial tissue
sections displayed increased ROS levels after traumatic brain
injuries. Treatment with propranolol lowered cardiac ROS
levels.181 D-propranolol attenuated lysosomal iron accumulation
and oxidative injury in endothelial cells.182 Carvedilol modulated
ROS-induced signaling. Carvedilol also significantly reduced
ischemia–reperfusion-induced free radical production and NAD+

catabolism, lipid peroxidation, and red blood cell membrane dam-
age, as determined by free malondialdehyde production in heart
perfusion and rheological models.93 Carvedilol also protected
against colcichine- and aluminum-induced neurotoxicity in rats
by attenuatingoxidative stress, including lipid peroxidation, nitrite
concentration and restored reduced glutathione, superoxide dis-
mutase, catalase, and glutathione S-transferase activity. Carvediol
also improved the memory of rats in the Morris water maze
test.31,32 Furthermore, nebivolol improved diastolic dysfunction
and myocardial remodeling through reductions in oxidative stress
in transgenic (mRen2) rats.183 These findings suggested that beta-
adrenergic receptor antagonists modulate oxidative stress in AD.

Nitric oxide synthase (NOS)generates nitricoxide (NO),which
is a critical signaling molecule involved in synaptic plasticity and
memory.184,185 Endothelial NO (eNO) plays an important role in
modulating APP expression and processing within the brain and
cerebro-vasculature. Brain tissue from eNOS-/- mice had statisti-
cally higher APP and BACE1 protein levels, as well as increased
BACE1, beta-site APP-cleaving enzyme1, enzyme activity and
Aβ1-42 wild-type control.

186 Prolonged NO treatment resulted in
tau aggregation in SH-SY5Y cells.187 Studies have reported that
the leukocytes and brain microvessels of patients with AD had
significantly increased NOS activity.188,189 Moreover, NOS may

contribute to the pathogenesis of AD. In AD and APP transgenic
mice, astrocytes with high NOS levels were associated with Aβ
protein deposits.190 In AD-like mice, NOS deficiency also pro-
tected against premature mortality, cerebral plaque formation,
increased Aβ protein levels, astrocytosis, and microgliosis.191

Moreover, metipranolol suppressed NO-induced lipid peroxida-
tion in the eyes and retinas of rats.95 Nebivolol prevented vascular
NOS III uncoupling in experimental hyperlipidemia,131 and
propranolol suppressed hemangioma growth via inhibition of
eNOS protein expression and the subsequent production of
NO.192 Furthermore, celiprolol activated eNOS through the
PI3K-Akt pathway via oxidative stress-induced NF-kB activ-
ity.132 These findings suggested that beta-adrenergic receptor
antagonists play a role in AD via the inhibition of NOS
expression.

Conclusion

Beta-adrenergic receptor blockademay play a role inAD. Genetic
studies have identified proteins that link beta-adrenergic receptor
antagonism to the pathology of AD, including HLA genes, the
RAS, PARP-1, NGF, VEGF, and the reduced form of NADP.
Beta-adrenergic receptor inhibition also affects AD via nonge-
nomic mechanisms, including MMPs, MAPK pathways, PGs,
COX-2, and NOS. The beta-adrenergic receptor blockades are
contradicted in patients with asthma and CHF and cautioned to
nursing women. Depression has been associated with lipophilic
beta-adrenergic receptor blockades, such as propranolol. Serious
CNS adverse effects, including agitation, confusion, and halluci-
nations, are rare. However, the most interesting side effect of
beta-adrenergic receptor blockade is hypotension or symptoms
associated with hypotension. The role of beta-adrenergic receptor
blockade in AD is still controversial. It is still unclear whether
behavioral symptoms, sex, or genetic factors, including beta2-
adrenergic receptor variants, apoliporotein E (apoE), and cyto-
chrome P450 CYP2D6 participate in the beta-adrenergic receptor
blockade modulation in AD. Various behavioral abnormalities
appear to be present in subgroups of patientswithAD.193,194Com-
pared with both nonaggressive patients with AD and control par-
ticipants, aggressive patients with AD had small but significant
(approximately 25%) increases in concentrations of beta1- and
beta2-adrenergic receptors in the cerebellar cortex.16 There was
also an apparent sex difference in cerebral amyloid plaque forma-
tion. Compared with the males, transgenic female Tg2576 mice
had more Aβ40 and Aβ42 in the brain.195 Ni et al20 reported that
female mice had more amyloid plaques than age-matched males
among the control mice. These authors also revealed that female
mice appeared to be more sensitive to chronic treatment with
beta-adrenergic receptor agonist than the male mice. Beta2-adre-
nergic receptor polymorphisms contributed to AD pathol-
ogy.196,197 The ApoE is a major cholesterol carrier that supports
lipid transport and injury repair in the brain. The ApoE poly-
morphic alleles are themain genetic determinants ofAD risk; indi-
viduals carrying the ε4 allele are at increased risk of AD compared
with those carrying the more common ε3 allele, whereas the ε2
allele decreases risk.198 The apoE ε4 allele frequency was
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significantly higher in the AD groups compared with the control
group.199 Carvedilol reduces the severity of atherosclerosis in
apoE-deficient mice via reducing superoxide production.200 The
CYP2D6B allele is associated with AD.201,202 TheCYP2D6 allele
frequency is known to vary among racial/ethnic groups. Ingeneral,
the frequency of the functional group of predominant alleles in
European caucasians is 71%. In Asians, the functional alleles rep-
resent only ∼50% of the frequency of CYP2D6 alleles.203 More-
over, genetic polymorphism of CYP2D6 results in altered
pharmacokinetics of beta-adrenergic receptor antagonistic medi-
cations.204-207 However, substantial reservation regarding these
findings need to be noted. It is not entirely clear whether the direct
action of beta-adrenergic receptor antagonists in brain has been
separated from the impact of beta drugs on the cardiovascular sys-
tem, which, in turn, affects AD. Thus, further studies on the rela-
tionship between beta-adrenergic receptor antagonists and AD
are warranted.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to
the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship,
and/or publication of this article.

References

1. Asanuma M, Ogawa N, Mizukawa K, Haba K, Hirata H, Mori A.
Distribution of the beta-2 adrenergic receptor messenger RNA in the
rat brain by in situ hybridization histochemistry: effects of chronic
reserpine treatment. Neurochem Res. 1991;16(12):1253-1256.

2. Nicholas AP, Pieribone VA, Hökfelt T. Cellular localization of mes-
senger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an
in situ hybridization study. Neuroscience. 1993;56(4):1023-1039.

3. Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, Xiang
YK. Binding of amyloid beta peptide to beta2 adrenergic receptor
induces PKA-dependent AMPA receptor hyperactivity. FASEB J.
2010;24(9):3511-3521.

4. Wang D, Yuen EY, Zhou Y, Yan Z, Xiang YK. Amyloid beta pep-
tide-(1-42) induces internalization and degradation of β2 adrener-
gic receptors in prefrontal cortical neurons. J Biol Chem. 2011;
286(36):31852-31863.

5. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M. Changes
in beta-adrenergic receptor subtypes in Alzheimer-type dementia.
J Neurochem. 1987;48(4):1215-1221.

6. Oppenheim G, Mintzer J, Halperin Y, Eliakim R, Stessman J,
Ebstein RP. Acute desensitization of lymphocyte beta-adrenergic-
stimulated adenylate cyclase in old age and Alzheimer’s disease.
Life Sci. 1984;35(17):1795-1802.

7. Huang HM, Gibson GE. Altered beta-adrenergic receptor-
stimulated cAMP formation in cultured skin fibroblasts from Alz-
heimer donors. J Biol Chem. 1993;268(20):14616-14621.

8. Karczewski P, Hempel P, Kunze R, Bimmler M. Agonistic autoan-
tibodies to the α1-adrenergic receptor and the β2-adrenergic recep-
tor in Alzheimer’s and vascular dementia. Scand J Immunol. 2012;
75(5):524-530.

9. Yang JH, Lee EO, Kim SE, Suh YH, Chong YH. Norepinephrine
differentially modulates the innate inflammatory response pro-
voked by amyloid-β peptide via action at β-adrenoceptors and acti-
vation of cAMP/PKA pathway in human THP-1 macrophages.
Exp Neurol. 2012;236(2):199-206.

10. Francis BM, Yang J, Hajderi E, et al. Reduced tissue levels of nor-
adrenaline are associated with behavioral phenotypes of the
TgCRND8 mouse model of Alzheimer’s disease. Neuropsycho-
pharmacology. 2012;37(8):1934-1944.

11. Kong Y, Ruan L, Qian L, Liu X, Le Y. Norepinephrine promotes
microglia to uptake and degrade amyloid beta peptide through
upregulation of mouse formyl peptide receptor 2 and induction
of insulin-degrading enzyme. J Neurosci. 2010;30(35):
11848-11857.

12. Gibbs ME, Maksel D, Gibbs Z, Hou X, Summers RJ, Small DH.
Memory loss caused by beta-amyloid protein is rescued by a β3-
adrenoceptor agonist. Neurobiol Aging. 2010;31(4):614-624

13. Ramos BP, Colgan LA, Nou E, Arnsten AF. Beta2 adrenergic ago-
nist, clenbuterol, enhances working memory performance in aging
animals. Neurobiol Aging. 2008;29(7):1060-1069.

14. Heneka MT, Galea E, Gavriluyk V, et al. Noradrenergic depletion
potentiates beta -amyloid-induced cortical inflammation: implica-
tions for Alzheimer’s disease. J Neurosci. 2002;22(7):2434-2442.

15. Gliebus G, Lippa CF. The influence of beta-blockers on delayed
memory function in people with cognitive impairment. Am J Alz-
heimers Dis Other Demen. 2007;22(1):57-61.

16. Russo-Neustadt A, Cotman CW. Adrenergic receptors in Alzhei-
mer’s disease brain: selective increases in the cerebella of aggres-
sive patients. J Neurosci. 1997;17(14):5573-5580.

17. Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI,
Unnerstall JR. Adrenergic receptors in aging and Alzheimer’s dis-
ease: increased β2-receptors in prefrontal cortex and hippocampus.
J Neurochem. 1989;53(6):1772-1781.

18. Lemmer B, Langer L, Ohm T, Bohl J. Beta-adrenoceptor density
and subtype distribution in cerebellum and hippocampus from
patients with Alzheimer’s disease. Naunyn Schmiedebergs Arch
Pharmacol. 1993;347(2):214-219.

19. Kalaria RN, Harik SI. Increased α2- and β2-adrenergic receptors in
cerebral microvessels in Alzheimer disease. Neurosci Lett. 1989;
106(1-2):233-238.

20. Ni Y, Zhao X, Bao G, et al. Activation of β2-adrenergic receptor
stimulates gamma-secretase activity and accelerates amyloid pla-
que formation. Nat Med. 2006;12(12):1390-1396.

21. Yu NN, Wang XX, Yu JT, et al. Blocking β2-adrenergic receptor
attenuates acute stress-induced amyloid beta peptides production.
Brain Res. 2010;1317:305-310

22. Hajjar I, Catoe H, Sixta S, et al. Cross-sectional and longitudinal
association between antihypertensive medications and cognitive
impairment in an elderly population. J Gerontol A Biol Sci Med
Sci. 2005;60(1):67-73.

23. Khachaturian AS, Zandi PP, Lyketsos CG, et al. Antihypertensive
medication use and incident Alzheimer disease: the Cache County
Study. Arch Neurol. 2006;63(5):686-692.

24. Rosenberg PB, Mielke MM, Tschanz J, et al. Effects of cardiovas-
cular medications on rate of functional decline in Alzheimer dis-
ease. Am J Geriatr Psychiatry. 2008;16(11):883-892.

Lu’o’ng and Nguyễn 433
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