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Abstract
The analysis of excursion sets in imaging data is essential to a wide range of scientific disciplines such as 
neuroimaging, climatology, and cosmology. Despite growing literature, there is little published concerning the 
comparison of processes that have been sampled across the same spatial region but which reflect different 
study conditions. Given a set of asymptotically Gaussian random fields, each corresponding to a sample 
acquired for a different study condition, this work aims to provide confidence statements about the intersection, 
or union, of the excursion sets across all fields. Such spatial regions are of natural interest as they directly 
correspond to the questions ‘Where do all random fields exceed a predetermined threshold?’, or ‘Where does at 
least one random field exceed a predetermined threshold?’. To assess the degree of spatial variability present, 
our method provides, with a desired confidence, subsets and supersets of spatial regions defined by logical 
conjunctions (i.e. set intersections) or disjunctions (i.e. set unions), without any assumption on the dependence 
between the different fields. The method is verified by extensive simulations and demonstrated using task-fMRI 
data to identify brain regions with activation common to four variants of a working memory task.
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1 Introduction
The collection and analysis of imaging data, modelled as a random field regularly sampled on a 
spatial domain, is central to a broad range of scientific disciplines such as neuroimaging, climat
ology, and cosmology. By combining spatial data from n observations of a random field, research
ers can estimate a spatially varying target function μ : S→ R, where the spatial region S is a closed 
subset of RN. Examples of such outcomes include cosmic microwave background in astronomy, 
temperature data for climate, and changes in blood oxygenation in the brain. Empirical interest 
often lies in identifying locations where the target function exceeds a certain value, c; for example 
‘Where has a significant change in temperature occurred?’, or ‘Which part of the brain demon
strated a strong response to stimuli?’. Such questions are addressed by the study of excursion 
sets, sets of the form {s ∈ S : μ(s) ≥ c}.

Previous literature has documented many geometric and topological properties of excursion sets 
of random functions (c.f. Adler, 1981; Adler & Taylor, 2009; Azas & Wschebor, 2009; Cao, 
1999; Torres, 1994). These include the Euler characteristic (a measure of topological structure), 
the Hausdorff dimension (indicating how fractal the set may be), Lipschitz-Killing curvatures 
(describing high-dimensional volumes and areas), and Betti numbers (describing how many sta
tionary points appear above the threshold, c) (Adler, 1977; Adler et al., 2017; Pranav et al., 
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2019; Worsley, 1996). However, much of this work is limited to homogeneous stationary proc
esses, i.e. those with zero mean and a spatial covariance structure dependent upon only distance. 
Only the most recent literature, including the present paper, concerns processes with a non-zero 
mean function and a potentially heterogeneous covariance function.

At present, little is published concerning how excursion sets may be compared to one another. 
Often researchers collect data from two or more study conditions and contrast the results to draw 
some meaningful inference. For example, comparing temperature changes in winter vs. summer, 
heat measurements gathered using different imaging modalities, or brain activity in healthy sub
jects across a range of tasks. Such settings are modelled as M spatially aligned, potentially corre
lated, estimates, μ̂1

n, μ̂2
n, . . . μ̂M

n : S→ R, of M target functions, μ1, μ2, . . . μM.
In such settings, research questions are often expressed as logical statements involving logical 

conjunctions, negations, and disjunctions. For example, a climatologist may ask where significant 
changes in temperature were observed during either winter or summer. Alternatively, a neurosci
entist may ask where was cognitive behaviour observed in the brain during one task and not an
other. Formally, these questions may be expressed as ‘Where does μ1 or μ2 exceed c?’ and ‘Where 
does μ1, and not μ2, exceed c?’, respectively.

Images corresponding to different study conditions are often compared via rudimentary visual in
spection (see Dijkstra et al., 2021; Ferreira et al., 2021; Zhang et al., 2021 for recent examples of 
qualitative assessment of ‘overlap’ and ‘differences’ in neuroimaging). Such a subjective practice 
may lead to biased or misleading results. To formalise these inferences, recent work has proposed 
confidence regions (CRs), subsets, and supersets that bound the excursion set of a single target func
tion with a given confidence (Bowring et al., 2019, 2021; Cuevas et al., 2006; French & Sain, 2013; 
Ren et al., 2022; Sommerfeld et al., 2018). However, current CR theory does not offer a means for 
investigating logical conjunctions and disjunctions of exceedance statements, i.e. intersections and 
unions of excursion sets. In this work, we provide a new method for generating CRs for ‘conjunction 
inference’ in image analysis, and then discuss how the proposed method may be adapted to allow the 
investigation of statements containing disjunctions and negations. An example application is pro
vided in Figure 1, which shows CRs generated for the region of the brain that was active in all 
four variants of a working memory task (see Section 5 for further detail).

Formally, we primarily focus on the intersection of M excursion sets, over which the conjunc
tion statement ‘μ1(s) ≥ c and μ2(s) ≥ c and · · · and μM(s) ≥ c’ holds. We denote M = {1, . . . , M}, 
and for each i ∈M define the ith true and estimated excursion sets as

Ai
c = {s ∈ S : μi(s) ≥ c} and Âi

c = {s ∈ S : μ̂i
n(s) ≥ c}, 

respectively. Next, we define F c := ∩i {Ai
c}i∈M and F̂ c := ∩i {Âi

c}i∈M. The spatial region we are in
terested in, and our estimate of that region, are now given by

F c =
􏼚

s ∈ S : min
i∈M

μi(s) ≥ c
􏼛

and F̂ c =
􏼚

s ∈ S : min
i∈M

μ̂i
n(s) ≥ c

􏼛

, 

respectively. An illustration of F c in a setting in which M = 2 is provided in Figure 2. We note that 
the above construction can be adjusted to allow c to vary across study conditions (i.e. ‘μ1(s) ≥ c1 

and · · · and μM(s) ≥ cM’ for c1, . . . , cM ∈ R) by substituting each {μi}i∈M for {μi − c + ci}i∈M). For 
ease, we assume c is equal for all study conditions. In addition, although the results we shall pre
sent theoretically hold in arbitrary dimensions, we shall focus primarily on two-dimensional sim
ulations and applications to investigate the method’s performance.

Our goal is to obtain CRs F̂+
c and F̂−

c such that the below holds as n tends to ∞:

P

􏼔

F̂+
c ⊆ F c ⊆ F̂−

c

􏼕

= 1 − α (1) 

for a predefined tolerance level α (say, α = 0.05). Pictorially, the above states that the sets F̂−
c , F c, 

and F̂+
c are nested within one another as shown in Figure 2c with probability (1 − α). To generate 

178                                                                                                                                    Maullin-Sapey et al.



such regions, we build on the theory of Sommerfeld et al. (2018) to show that if F̂+
c and F̂−

c are 
defined as appropriately chosen level sets of a standardised minimum process, the above probabil
ity may be approximated using quantiles of a well-defined random variable. Using a wild 
t-bootstrapping procedure, under the assumption of a Gaussian central limit theorem, we will 
then demonstrate that the relationship between this random variable and the above probability 
can be used to generate F̂+

c and F̂−
c for any desired value of α. Unlike previous literature on random 

excursion sets, in this work no model is assumed for the processes’ means or spatial covariance 
structure, and we do not make any assumption of between-‘study condition’ independence 
(i.e. {μ̂i

n}i∈M may be correlated with one another).

Figure 1. Functional magnetic resonance imaging (fMRI) % blood oxygenation level dependent (BOLD) images (top) 
and 95% confidence regions (CRs) (bottom left) for the Human Connectome Project working memory task for each 
of the four visual stimuli types, alongside conjunction CRs assessing the overlap of the four thresholded %BOLD 
images (bottom right). The thresholds employed were c = 1% BOLD change, for all images, and α = 0.05, for the 
CRs. Upper and lower CRs are displayed in red and blue, respectively. Across the bottom row, the yellow sets are 
the point estimates Â1

c , . . . Â4
c and F̂ c respectively. The red conjunction set has localised regions in the superior 

frontal gyrus (top) and the angular gyri (left/right), for which we can assert with 95% confidence that, for all four study 
conditions, there was (at least) a 1% change in BOLD response. Displayed is axial slice z = 46 mm.

Figure 2. Illustration of the set F c for a setting in which M = 2. Shown in (a) are two spatially varying target 
functions, μ1(s) (blue) and μ2(s) (green), overlaid and thresholded at the level c. In (b), the regions at which μ1(s) ≥ c 
and μ2(s) ≥ c are displayed as red and yellow circles, respectively, with the intersection set, F c , illustrated in purple. 
In (c), potential CRs, F̂+

c (grey) and F̂−
c (orange), for F c are illustrated.
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If the CRs F̂+
c and F̂−

c closely resemble one another, this may be interpreted as signifying that F̂ c 

is a reliable estimate of F c. Alternatively, little resemblance may suggest that there is a high degree 
of spatial variability present in the data and that the estimated shape, size, and locale of F̂ c are not 
particularly reliable. Such statements are of particular value in imaging applications where the aim 
of a statistical analysis is typically to assess how reliably some form of activity may be localised to a 
particular spatial region. For instance, in the fMRI example of Figure 1, F̂ c is the yellow conjunc
tion region displayed in the bottom right panel, which represents an estimate of the brain regions 
which were active in response to all four variants of a working memory task. Here, the poor re
semblance between the blue and red CRs may be interpreted as suggesting that more data is re
quired for F̂ c to be reliable as an estimate of F c.

Conjunction and disjunction inference is an active area of research in the broader statistical lit
erature. A typical approach for such conjunction or disjunction inference is to employ null- 
hypothesis testing. A hypothesis test of a disjunction of nulls to assess evidence for a conjunction 
of alternative hypotheses can be conducted with an ‘intersection-union’ test. An intersection- 
union test rejects at level α when all of the individual nulls are rejected at level α. This approach 
has proven useful for tests of bioequivalence (Berger, 1997; Berger & Hsu, 1996), but does not 
consider the spatial aspect that is our focus here.

This work focuses on the quantification of spatial uncertainty present in the locale of intersec
tions and unions of random excursion sets, which can be visualised using CRs. CR methodology 
has previously been developed for individual excursion sets in a wide range of contexts. For in
stance, Davenport et al. (2022) derive CRs for local extrema in Gaussian fields, whilst 
Craigmile et al. (2005) quantify uncertainty in extrema estimates within a Bayesian framework. 
Another active area of research concerns kernel density estimation, in which many authors have 
proposed CRs for excursion sets of kernel estimates (Chen et al., 2017; Mammen & Polonik, 
2013; Qiao & Polonik, 2019). Further, in the setting of hotspot identification for geospatial 
data, CRs have been proposed to bound a target functions derived from Bayesian spatial mixed 
effects models (French & Hoeting, 2015; Hazra & Huser, 2021), as well as more general latent 
Gaussian models (Bolin & Lindgren, 2015; Mejia et al., 2020). Despite this, to our knowledge, 
no prior work exists that explicitly considers the generation of CRs for conjunction or disjunction 
inference. Moreover, such inference concerns spatial regions with piece-wise continuous bound
aries, which are not typically considered in the CRs literature. The combinatoric nature of the 
boundary decompositions considered in this work adds an additional layer of complexity to the 
results and proofs provided, and has not previously been considered in the CRs literature.

In the following sections, we first describe the notation and assumptions upon which our theory 
relies. Following this, we provide the central theoretical result of this work, which relates equation 
(1) to an exceedance statement for a well-defined random variable. Next, via the use of the wild 
t-bootstrap, we detail how this result may be employed to obtain CRs for conjunction inference 
in the setting of linear regression modelling under the assumption of a Gaussian CLT. Finally, 
we validate our results with simulations and a real data example based on fMRI data taken 
from the Human Connectome Project (HCP) (Van Essen et al., 2013). Proofs of the theory pre
sented in this work, alongside further illustration and extensive simulation results, are provided 
as online supplementary material.

2 Confidence regions for excursion set combinations
2.1 Notation
In the following sections, we shall need to denote the numerous possible low-dimensional sub- 
manifolds which can arise from intersecting the boundaries of M excursion sets. To do so, we first 
denote the power set of a finite set, A, as P(A), and define P+(A) as P+(A) = P(A) \ {∅}. For each 
i ∈M, we define ∂Ai

c as the level set {s ∈ S : μi(s) = c}. Similarly, we define ∂F c as the level set 
{s ∈ S : mini∈M μi(s) = c}. For a spatial set, B ⊆ S, its complement in S is denoted as Bc = S \ B, 
its topological closure is denoted as B, its interior is denoted as B◦, and its boundary is denoted 
as ∂B. We note here that the notation ∂Ai

c and ∂B may conflict with one another. This conflict 
is resolved, however, by the assumptions of Section 2.2 which ensure that the boundaries of 
{Ai

c}i∈M and F c are equal to the level sets {∂Ai
c}i∈M and ∂F c (at least locally, in the vicinity of 

∂F c, which is sufficient for our purposes).
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We can now partition the level set ∂F c into sub-manifolds using the set of possible intersections 
of the M excursion set boundaries. For all ϕ ∈ P+(M), we define the boundary segment ∂ϕF c as 
follows:

∂ϕF c = ∂F c ∩
􏽜

i∈ϕ
∂Ai

c

􏼠 􏼡

∩
􏽜

j∈M\ϕ
(∂Aj

c)
c

􏼠 􏼡

.

We note it is possible that, for some ϕ ∈ P+(M), the boundary segment ∂ϕF c is empty (in fact, this 
is often the case in practice). This notation is crucial to the statement of Theorem 2.1 and is illus
trated in Figure 3.

In the fMRI example presented in Section 1, M = {1, 2, 3, 4} is a set of indexes representing the 
four working memory conditions and F c represents the brain regions that are active in response to 
all four conditions. In this setting, an example of the notation ∂ϕF c is given by the boundary seg
ment ∂{1}F c, which represents the edges of F c which arose solely due to the first working memory 
condition.

Figure 3. Annotated images of ‘overlapping’ excursion sets (top) with corresponding illustrations of boundary 
partitions (bottom) for settings in which the number of study conditions, M, is equal to 2 (left) or 3 (right). Shown in 
Panels (a)-(d) are two overlapping excursion sets A1

c and A2
c . In Panels (e) and (f), a third set has also been included. 

Panels (b) and (f) illustrate settings in which the excursion sets share boundaries, Panels (a), (d) and (e) exemplify 
instances where F c has sharp corners, and Panels (c) and (f) show that the excursion sets may be nested. 
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2.2 Assumptions
In this section, we outline and discuss the assumptions upon which our theory relies. Further de
tailed discussion of Assumption 2.2.3, alongside illustration, is given in online Supplementary 
Theory Section S2.

Assumption 2.2.1 For each i ∈M, there exists a bounded function σi : S→ R+ and posi
tive sequence τn → 0, such that the below joint central limit theorem 
(CLT) holds:

μ̂i
n(s) − μi(s)

τnσi(s)

􏼚 􏼛

s∈S,i∈M

d

→
{Gi(s)}s∈S,i∈M, 

where {Gi(s)}s∈S,i∈M is a well-defined multivariate random field with con

tinuous sample paths in S and d
→ represents convergence in distribution.

Remark This assumption introduces the notation σi(s) and τn. In typical applications, σi(s) rep
resents standard deviation across observations (for study condition i, at spatial loca
tion s) and τn is a decreasing function of sample size. If μ̂i

n were derived as the mean of 
n i.i.d. observed Gaussian random fields {Xi

1, . . . , Xi
n}, then Assumption 2.2.1 would 

reduce to a standard Gaussian functional CLT with μi = E[Xi
1], σi =

����������

Var(Xi
1)

􏽱

, τn = 

n−1
2 and Gi being a Gaussian random field with unit variance.
For conciseness in the following text, we now define {gi}i∈M and {ĝi

n}i∈M as

gi(s) =
μi(s) − c

σi(s)
and ĝi

n(s) =
μ̂i

n(s) − c
σi(s)

.

Pictorially, each {gi} may be visualised as a transformation of the surfaces de
picted in Figure 2. Such a transformation would first vertically translate the en
tire image so that the purple plane, {Y = c}, coincides with the plane formed by 
the s1 and s2 axis. It would then stretch, or shrink, the resulting function away 
from, or towards, this plane. From this, it can be seen that the excursion sets 
of {μi} and {μ̂i} at the level c are equal to those of {gi} and {ĝi

n} at the level 0 
(i.e. Ai

c = {s ∈ S : gi(s) ≥ 0} and Âi
c = {s ∈ S : ĝi

n(s) ≥ 0}).

Assumption 2.2.2 We assume that: 

(a) The functions {gi}i∈M are continuous on S.
(b) For n large enough, the functions {ĝi

n}i∈M are continuous on S.

Remark For the practical settings we consider, such as fMRI neuroimaging, astronomy 
and climate, the above assumptions of continuity are ubiquitous in the literature. 
Common reasons for this include: (1) the underlying estimator is assumed to be 
drawn from a smooth process and (2) spatial smoothing is often applied to the 
data during preprocessing to improve the signal-to-noise ratio (SNR) (see 
Adler & Taylor, 2009; Brett et al., 2004; Poldrack et al., 2011).

Assumption 2.2.2 ensures that all limits taken across space in the proofs in 
online Supplementary Theory Section S4 are well defined. However, it does 
not guarantee that the sets {Ai

c}i∈M will resemble the well-defined ‘blobs’ which 
may be expected. Without further assumptions, it is still possible for {Ai

c}i∈M to 
appear extremely erratic, possessing jagged edges and displaying fractal-like be
haviour. A well-known example of a random field that satisfies Assumption 
2.2.2 but which is not well-behaved in the sense we desire is the highly fractal 
Wiener process (also known as Brownian motion, c.f. Adler, 1981). To restrict 
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our attention to situations encountered in imaging studies, the below assumption 
is required.

Assumption 2.2.3 We assume that: 

(a) Every open ball around a point on the boundary ∂F c has a non- 
empty intersection with (F c)

◦. In addition, for all ϕ ∈ P+(M) every 
open ball around a point in ∂ϕF c has a non-empty intersection with 
the set:

J ϕ
c :=

􏽜

i∈ϕ
(Ai

c)
c

􏼠 􏼡

∩
􏽜

j∈M\ϕ
(A j

c)
◦

􏼠 􏼡

, 

where, if M\ ϕ is empty, the last term is defined to be equal to S.
(b) There is an open neighbourhood of ∂F c over which the functions 

{gi}i∈M and, for n large enough, {ĝi
n}i∈M are C1 with finite, non- 

zero, gradients. The same condition holds for the restrictions of 
each {gi}i∈M and {ĝi

n}i∈M to ∂S.
(c) For every point s ∈ ∂F c and ϕ ∈ P+(M), if s ∈ ∂(

􏽔
i∈ϕA

i
c) then the 

set ∂(
􏽔

i∈ϕA
i
c) partitions every sufficiently small open ball around s 

into exactly two components, each of which is path-connected.

Remark The above statements ensure that F c is non-empty and has a well-defined bound
ary which is equal to the level set ∂F c = {s ∈ S : mini∈M gi(s) = 0}. All three state
ments ensure that no changes in topology occur at the level c by requiring that 
∂F c does not contain plateaus, local minima or maxima. In addition, each state
ment handles pathological cases that the others do not. Statement (a) handles 
cases in which {∂Ai

c}i∈M coincide exactly with ∂S, Statement (b) ensures that 
the notion of the gradient is well defined in a neighbourhood of ∂F c, and 
Statement (c) handles unusual, potentially unintuitive, fractal-like behaviour 
which is not ruled out by the first two statements. Further nuanced discussion 
and illustrations of the degenerate fractal-like cases that are ruled out by 
Statement (c) are provided in online Supplementary Theory Section S2.

Each of the examples presented in Figure 3 satisfies Assumptions 2.2.2 and 2.2.3 and highlight sev
eral features worthy of note. Firstly, as shown in examples (d) and (e), we do not assume ∂F c is a C1 

curve, but rather piece-wise C1. Secondly, the assumptions allow for the possibility that the excursion 
sets could be nested within one another (c.f. examples (c) and (f)). Thirdly, the assumptions permit the 
excursion sets to share common boundaries (see examples (b), (c), and (f )). The last two observations 
are of practical relevance as, in many applications, it may be expected that the target functions for 
different study conditions exhibit a strong similarity. This relevance is exemplified by the four bottom- 
left panels of Figure 1 in Section 1, in which the regions of the brain that displayed activation in re
sponse to four study conditions are displayed in yellow. It can be seen that these regions are notably 
similar in terms of anatomy. Further, we note that, throughout this work, there is no requirement that 
F c be (globally) path-connected. For instance, in the fMRI example shown in Figure 1, the estimated 
yellow set F̂ c in the bottom-right panel has many disconnected components.

2.3 Theory
We now present the central result of this work, Theorem 2.1. To do so, we now define the nested 
sets F̂−

c and F̂+
c by thresholding the statistic τ−1

n mini∈M ĝi
n(s):

F̂±
c := F̂±

c (a) =
􏼚

s ∈ S : τ−1
n min

i∈M
ĝi

n(s) ≥ ±a
􏼛

, 
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using some constant a ∈ R+. To find an appropriate value of a, such that equation (1) holds for a 
desired tolerance level (e.g. α = 0.05), Theorem 2.1 is required.

Theorem 2.1 Under the assumptions of Section 2.2, the below holds:

lim
n→∞

P[F̂+
c ⊆ F c ⊆ F̂−

c ] = P[H ≤ a], (2) 

where the variable H is defined as follows:

H = max
ϕ∈P+(M)

􏼒

sup
s∈∂ϕF c

􏼌
􏼌min

i∈ϕ
(Gi(s))

􏼌
􏼌

􏼓

.

The above theorem shows that violations of the inclusion statement, F̂+
c ⊆ F c ⊆ F̂−

c , are de
pendent on the extreme values of limiting processes {Gi} along the boundary ∂F c. In the context 
of the fMRI example of Section 1, this means that the probability that the red and blue CRs in 
Figure 1 correctly bound the conjunction region for the four working memory conditions depends 
solely on the measurement noise distribution along the boundary of this region. The exact relation
ship between the measurement noise along a given boundary segment, and the probability of the 
inclusion failing in a vicinity of that segment, depends directly on which study conditions the seg
ment was derived from. For instance, in the example of Figure 3c, it may be expected that the prob
ability of observing a violation along the blue boundary segment, ∂{1}F c, will depend upon only the 
limiting noise distribution of the first study condition, G1. However, for the green boundary seg
ment, ∂{1,2}F c, violations of the subset condition may depend on the noise distributions of both 
study conditions.

From the above, it follows that if a ∈ R satisfies P[H ≤ a] = 1 − α then asymptotically, the in
clusion probability, P[F̂+

c ⊆ F c ⊆ F̂−
c ], will also equal 1 − α. Thus, given the (1 − α)th quantile 

of the distribution of H, CRs F̂−
c and F̂+

c may be constructed which satisfy equation (1). We 
shall take up the task of evaluating the quantiles of H in Section 3. Using De Morgan’s laws 
and direct algebraic substitution, Theorem 2.1 may also be employed to answer questions 
about logical disjunctions and negations. For brevity, the extraneous details are not given 
here but are instead discussed at length with worked examples in online Supplementary 
Theory Section S3.

3 Spatial conjunction inference for the linear model
In this section, we build upon the work of Sommerfeld et al. (2018) and Bowring et al. (2019), in 
which CRs were generated for a single target function, μ(s), derived from a linear regression 
model. In Section 3.1 we introduce the spatially varying linear model (LM) for M study condi
tions and, in Section 3.2, we apply the wild t-bootstrap to estimate quantiles of the variable H. 
Further implementation details, for when data are sampled from a discrete lattice rather than 
across a continuous space, alongside pseudocode, are provided in online Supplementary 
Results Section S2. This section focuses solely on conjunction inference. However, the methods 
described here may also be employed to perform inference on other logical statements via the 
corollaries of Section 2.3.

3.1 Model specification
For each study condition, study condition i ∈M, we assume that the data follow a spatially vary
ing LM defined at location s ∈ S as

Yi(s) = Xiβi(s) + ϵi(s), ϵi(s) ∼ N(0, Σi(s)). (3) 

The known quantities in the model are: the (n × 1) vector of responses, Yi(s), and the (n × p) design 
matrix, Xi. The unknown model parameters are: the (p × 1) vector of regression coefficients, βi(s), 
and the (n × n) random error covariance matrix, Σi(s). We emphasise that βi(s) and Σi(s) model the 
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signal observed at location s ∈ S, and do not incorporate any spatial information. In particular, 
Σi(s) denotes the covariance between the n observed values at s, and not the spatial covariance 
of the field.

To illustrate the above notation in practice, we briefly detail its usage for the fMRI example of 
Section 1. Here, Yi represents the blood oxygenation level dependent (BOLD) signal, a proxy 
measure of brain function derived from the properties of blood oxygenation, for n subjects in re
sponse to study condition i. Xi represents covariates of interest (e.g. subject age, gender, body mass 
index, etc.) which are assumed not to vary across the brain. βi models the relation between Xi and 
Yi, and ϵi represents random measurement noise.

For each spatial location, s ∈ S, the generalised least squares estimator of the parameter vector 
βi(s), β̂i(s), is given by

β̂i(s) = (Xi′Σi(s)−1Xi)−1Xi′Σi(s)−1Yi(s).

In this context, under the ith study condition, at each spatial location s, our interest lies in assessing 
whether linear relationships hold between the elements of the parameter vector βi(s). Such rela
tionships may be expressed using a contrast vector Li of dimension (p × 1). In the notation of 
the previous sections, the target functions for the spatially varying LM (i.e. the surfaces depicted 
in Figure 2) are given as μi(s) = Li′βi(s), with corresponding estimator functions μ̂i

n(s) = Li′ β̂i(s). 
τ−1
n σi(s) is the contrast standard error, given as

τ−1
n σi(s) =

􏼂
Li′ (Xi′Σi(s)−1Xi)−1Li􏼃1

2.

Although we have presented {β̂i(s)}i∈M as being estimated separately using M different models, 
there is nothing in our theory that prevent the same model being used for all M study conditions. 
For example, it is possible for the model matrices, {Yi(s)}i∈M and {Xi}i∈M, and parameter vector, 
{βi(s)}i∈M, to be equal for all i ∈M, with the only distinction between study conditions being rep
resented by the contrast vector Li. This observation is noteworthy as it allows researchers to com
pile all study conditions into a single LM to obtain a heightened statistical power.

In the settings we are motivated by, such as neuroscience and geospatial data, it is common to 
assume that Yi(s), Σi(s) and βi(s) are smooth functions over space. Such assumptions are reasonable 
due to the point spread function of imaging devices or spatial smoothing applied during data pre
processing. As a result, we assume that derivative measures, such as contrast estimates and statis
tical values, are also spatially smooth. In the fMRI example of Section 1, the yellow excursion sets 
in the four bottom-left panels of Figure 1 were derived from a linear regression as excursion sets of 
the form Âi

c := {s ∈ S : Lβ̂i(s) ≥ c}, and each represent the BOLD response to the ith working mem
ory stimuli type, respectively.

To apply Theorem 2.1 to the above LM, we now assume that Assumptions 2.2.1–2.2.3 hold. 
Such assumptions are commonly satisfied by standard conditions placed on the continuity and 
boundedness of the increments and moments of {βi(s)}s∈S and {ϵi(s)}s∈S. A sufficient list of such con
ditions is provided in online Supplementary Theory Section S5 and further detail may be found in 
Sommerfeld et al. (2018). We note here that the covariance matrix, Σi(s), is usually unknown in 
practice, meaning the function τ−1

n σi(s) cannot be calculated. As demonstrated in Sommerfeld 
et al. (2018), however, Σi(s) can be replaced by any consistent estimator Σ̂i(s) and the assumptions 
given in Section 2.2 are still satisfied. Such estimation is common in the statistics literature and is 
typically achieved by assuming that some fixed correlation structure applies to Σi(s) (e.g. diagonal 
independence, auto-regressive, etc.) so that the number of independent variance parameters which 
must be estimated is small.

3.2 The wild t-bootstrap
In practice, the distribution of H is unknown and must be estimated. In this section, for the model 
specification described in Section 3.1, we employ a wild t-bootstrap resampling scheme to obtain 
the quantile, a, of H which satisfies P[H ≤ a] = 1 − α.
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To do so, we first define the (n × 1)-dimensional decorrelated residual vector, Ri, for the LM of 
the ith study condition (i ∈M) as

[Ri
1(s), . . . , Ri

n(s)]′ = Ri(s) = [Σ̂i(s)]−1
2(Yi(s) − Xiβ̂i(s)).

The wild t-bootstrap proceeds by, in each bootstrap instance, generating n i.i.d. Rademacher ran
dom variables, {r1, . . . , rn} (random variables which take the values −1 and +1 with equal prob
ability) independently of the data. For the ith study condition, at spatial location s, a new bootstrap 
sample is then obtained by multiplying the elements of the decorrelated residual vector by the 
Rademacher variables (i.e. the new sample is given by {r1Ri

1(s), . . . , rnRi
n(s)}). Once the boostrap 

sample has been generated, the standard deviation of the bootstrap sample, σ̂∗,i(s), is calculated. A 

bootstrap instance of the variable Gi, G̃
i
, is now generated as follows:

G̃
i
(s) = n−1

2

􏽘n

l=1

rlRi
l(s)

σ̂∗,i(s)
.

A bootstrap instance of the variable H, H̃, may then be computed using the bootstrap variables 

{G̃
i
(s)}s∈S,i∈M as follows:

H̃ = max
ϕ∈P+(M)

􏼒

sup
s∈∂ϕF̂ c

􏼌
􏼌min

i∈ϕ
(G̃

i
(s))
􏼌
􏼌

􏼓

. (4) 

Quantiles of the distribution of H may now be estimated empirically from the observed sampling 
distribution of H̃. Discussion of how the above supremum, taken across continuous space, is eval
uated in practice is deferred to online Supplementary Results Section S2.1. We note here that, as 
the locations of the boundary segments {∂ϕF c}, depicted in Figure 3, are in practice unknown, the 
boundary segments {∂ϕF c} have been substituted for estimates {∂ϕF̂ c}. The performance of substi
tutions of this form is discussed and verified extensively in the works of Sommerfeld et al. (2018), 
Bowring et al. (2019), and Bowring et al. (2021). In keeping with these publications, all simula
tions in this work have been replicated using both the true and estimated boundary segments, 
{∂ϕF c} and {∂ϕF̂ c}, with a full comparison being provided in online Supplementary Results 
Sections S5 and S6. We note that, due to this substitution, our proposed method may not be ap
plied when F̂ c is empty.

Telschow and Schwartzman (2021) show that the above procedure provides asymptotically 
consistent estimates of the distribution of H if each {Gi}i∈M satisfies the below.

Assumption 3.2.1 For each {Gi}i∈M, we assume: 

• {Gi}i∈M is L2 Lipschitz with respect to the Euclidean distance met
ric. In other words, there exists a random variable A satisfying 
E[|A|2] < ∞ such that |Gi(s) − Gi(s′)| ≤ A|s − s′| for all s, s′ ∈ S.

• {Gi}i∈M has finite l∞ second moment. That is, E[|Gi(s)|2∞] < ∞.

The above procedure is reliant on the Gaussianity of each Gi. However, it has been suggested 
that this approach may also be suitable for estimating quantiles of maxima distributions for gen
eral symmetric Gi (see Efron & Tibshirani, 1994; Hesterberg, 2015; Wu, 1986).

In order to utilise the results of Section 2 when the random variables {Gi}i∈M are not symmetric, 
the wild t-bootstrap must be adjusted to account for skewness. One approach commonly adopted 
for this purpose is to replace the Rademacher variables in the above with Mammen variables (var
iables which take values −(

��
5
√

− 1)/2 and (
��
5
√

+ 1)/2 with probabilities (
��
5
√

+ 1)/(2
��
5
√

) and 
(
��
5
√

− 1)/(2
��
5
√

)) (c.f. Mammen, 1993). This procedure preserves the third moment of the boot
strap distribution but at the expense of an inflated kurtosis which may negatively impact the esti
mation of the distribution tail probabilities. For this reason, alternative resampling procedures, 
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such as, for instance, the generalised Jackknife (c.f. Gomes et al., 2015), may provide improved 
performance over the Mammen-based wild t-bootstrap. As a comparison of such resampling 
methodology is beyond the scope of this work, in the following sections, we make the common 
simplifying assumption that {Gi}i∈M are Gaussian, with unknown spatial and between-‘study con
dition’ covariance structure, and refer the reader to Efron and Tibshirani (1994) for further dis
cussion of resampling techniques. Here we stress that, whilst the theory presented in Section 2
places no restrictions on the distribution of {Gi}i∈M, throughout Section 3 {Gi}i∈M are assumed 
to be Gaussian.

4 Simulations
4.1 Simulation settings
To assess the correctness and performance of the method, a range of simulations were conducted 
using synthetic data. Each simulation was designed to investigate how the empirical coverage (i.e. 
the proportion of simulation instances in which the inclusion F̂+

c ⊆ F c ⊆ F̂−
c held) was affected by 

various secondary factors of practical interest. In this section, we describe three simulations de
signed to investigate how the methods’ performance was influenced by: (1) the degree of overlap 
between excursion sets, (2) the presence of correlation between the noise fields for different study 
conditions, and (3) the magnitude of the spatial rate of change of the signal.

In all simulations, the model used to generate the synthetic data took the form:

Yi(s) = μi(s) + ϵi(s), ϵi(s) ∼ N(0, σi(s)In), for each i ∈M, (5) 

where n was allowed to vary from 40 to 500 in increments of 20. To induce spatial correlation 
between observations, ϵi(s) was smoothed using an isotropic Gaussian filter with a full-width 
half maximum (FWHM) of 3 pixels. The aim, across all simulations, was to assess the performance 
of the method when employed for conjunction inference on the true signal {μi}i∈M. This setting cor
responds to asking research questions of the form ‘Where do all of the {μi}i∈M exceed c?’.

The mechanism used to generate the true signal, {μi}i∈M, varied across simulations. In 
Simulations 1 and 2, {μi}i∈M were generated using two binary images of circles and squares, re
spectively, positioned in a ‘Venn diagram’ arrangement. Each binary image was scaled by a pre
defined amount and then smoothed using an isotropic Gaussian filter with an FWHM of 5 
pixels. The resulting signal for Simulation 1 strongly resembled that depicted in Figure 2, whilst 
Simulation 2’s signal resembled Figure 3b in order to test the effect of ∂{1,2}F c having non-zero 
length. In Simulation 3, μ1 and μ2 were simulated as a horizontal and vertical linear ramp, 

Figure 4. (a) The circular, square, and ramp high-SNR signals used for μ1 in Simulations 1, 2, and 3, respectively. (b) 
Binary images for A1

c , A2
c , and F c , for Simulations 1, 2, and 3. (c) Instances of the high- and low-SNR data generated 

for study condition 1 in Simulation 1. (d) The estimated mean signal for study condition 1, μ̂1, in Simulation 1, 
generated using n = 120 high-SNR, and low-SNR, simulated data instances.
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respectively, with predefined gradients. For each simulation, μ1 is depicted in Figure 4a, with cor
responding binary images for A1

c , A2
c , and F c shown in Figure 4b.

Each simulation was performed twice, once using noisier ‘low SNR’ synthetic data and again 
using less noisy ‘high-SNR’ synthetic data. To generate the high-SNR synthetic data for 
Simulations 1 and 2, all simulated {μi}i∈M were scaled by a factor of 3 prior to smoothing. This 
data generation process is identical to that employed in Bowring et al. (2019), in which it is noted 
that synthetic data generated using these parameters strongly resembles that of an fMRI analysis 
when voxels are of dimension 2 mm3. In Simulation 3, for the high-SNR data, the linear ramps 
were initially simulated with a gradient of 1 per 50 pixels. Across all simulations, the low-SNR 
data was generated by reducing the signal magnitude of the high-SNR data by a factor of 4. 
In all simulations, thresholds of c = 1/2 and c = 2 were employed for the low-SNR data and 
high-SNR data, respectively. Data realisations and signal estimates employed for Simulations 
1–3 are illustrated in Figure 4c and d, respectively.

As Simulation 1 aimed to investigate the method’s performance as the overlap between excur
sion sets increased, in this simulation, the distance between the centre of the circles was varied, 
ranging from 0 pixels (full overlap) to 50 pixels (barely overlapping) in increments of 2 pixels. 
Similarly, as Simulation 2 aimed to assess the effect of correlation between ϵ1 and ϵ2, in this simu
lation, this correlation was varied between −1 and 1 in increments of 0.1 (in all other simulations, 
the noise fields were generated independently). As Simulation 3 served to assess how sensitive the 
empirical coverage was to the rate of change of μ1 and μ2 over space, in this simulation, the initial 
ramp gradients were divided by a factor of k, where k was varied from 0.25 to 1.75 in 0.05 
increments.

All simulation results were obtained as averages taken across 2,500 simulation instances and 
compared to the nominal coverage using 95% binomial confidence intervals. In all simulation in
stances, the image dimensions were (100 × 100) pixels, CRs were computed for a tolerance level of 
α = 0.05 using 5,000 bootstrap realisations, σi(s) was computed using the ordinary least squares 
estimator and τn was computed as τn = n−0.5. In each simulation instance, the assessment of 
whether the inclusion statement, F̂+

c ⊆ F c ⊆ F̂−
c , held was verified using the interpolation-based 

methods of Bowring et al. (2019). In this approach, the inclusion statement was deemed to hold 
if, and only if, the sets of pixels which were identified as F̂−

c , F c and F̂+
c were appropriately nested 

and, in addition, interpolation along the boundary ∂F c confirmed that no violations of the inclu
sion statement had occurred.

A further 12 simulations which investigated the influence of other secondary factors of interest 
were also conducted. The secondary factors considered by these simulations include: the presence 
of spatial structure in the noise, the effect of ∂{1}F c and ∂{2}F c having differing lengths, the effect of 
ϵ1 having a much larger variance than ϵ2, spatial smoothing on {μi} and {ϵi}, raising and lowering 
the threshold c, {ϵi} having heavy-tailed non-Gaussian symmetric distributions, and the impact of 
varying the value of M. Also considered was the effect of {Ai

c} having higher order shared bound
ary segments of the form depicted in Figure 3f. A full discussion of these simulations is deferred to 
online Supplementary Results Section S4. In addition, in keeping with the previous literature, tol
erance levels of α = 0.1 and α = 0.2, as well as the substitution of ∂F c for ∂F̂ c in equation (4), were 
also considered for simulation (c.f. Bowring et al., 2019, 2021; Sommerfeld et al., 2018). These 
simulation results may be found in online Supplementary Results Sections S5 and S6.

4.2 Simulation results
For a majority of the simulations conducted, the empirical coverage estimates for the proposed 
method were tightly distributed around the expected nominal coverage. In particular, for the 
high-SNR data, across all simulations, the 95% binomial confidence intervals for the proposed 
method consistently captured the nominal coverage at the predicted rate. However, when the sim
ulations employed the low-SNR data, the proposed CRs method was conservative under certain 
unfavourable conditions. The low-SNR results for Simulations 1–3 are shown in Figure 5.

For example, in Figure 5a, it can be seen that some over-coverage was observed for Simulation 1 
when the data was noisy, and the number of subjects was low. This observation is corroborated by 
the remaining low-SNR synthetic data simulations (c.f. online Supplementary Results Section S5). 
However, in all cases, the degree of agreement between the empirical and nominal coverage 
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improved as sample size increased, and no such over-coverage was observed for the equivalent 
high-SNR simulations. This observation matches expectation, as Theorem 2.1 holds only asymp
totically, and is supported by the previous literature on CRs, in which similar results were ob
served for the single-‘study condition’ setting (c.f. Bowring et al., 2019; Sommerfeld et al., 2018).

The presence of strong negative correlation between the study conditions and the rate at which 
the signal varied across space both also appeared to influence the methods’ performance (c.f. 
Figure 5b and c, respectively). In both instances, it is likely that the observed over-coverage is 
due to difficulties in estimating the true location of the boundary ∂F c, as each of these factors 
make it harder to identify the locations at which small changes in mini∈M μi occur. When 
high-SNR data was used in the place of low-SNR data, both of these factors had a substantially 
reduced impact on the empirical coverage.

Despite the above observations, the simulation results overwhelmingly supported the claim that 
the proposed method is robust to a range of secondary factors. Included in the list of such factors 
are: variation in the shape and size of F c, spatial correlation in the noise, variation in the lengths 
of individual boundary segments, between-‘study condition’ correlation, variation in the magni
tude of the noise, high spatial smoothness of the signal and noise, raising and lowering the 
threshold, heavy-tailed noise distributions, large numbers of study conditions, and situations in 
which boundary segments are shared by many excursion sets. For further detail, see online 
Supplementary Results Sections S5 and S6.

In terms of time efficiency, the wild t-bootstrap provided extremely fast computational perform
ance. For instance, using an Intel(R) Xeon(R) Gold 6126 2.60 GHz processor with 16 GB RAM, 
and averaging over the 2,500 simulation instances conducted for n = 500 high-SNR observations, 
in Simulation 1, the time taken to generate CRs for a circle separation of 20 pixels was 5.98 s. For a 
comprehensive summary of computation times, see online Supplementary Results Section S7.

5 Real data application
In Section 1, an fMRI application based on using data from the HCP dataset (Van Essen et al., 
2013) was presented. Here, we provide further detail for this application. In this example, 
task-fMRI data were collected as part of a block design from 80 healthy, unrelated, young adults 
as part of a working memory task that had four distinct components, each using a different stimuli 
type: pictures of places, tools, faces, and body parts. In online Supplementary Results Section S3, 
we provide a brief overview of the imaging acquisition protocol, task paradigm, preprocessing 
stages and first-level analysis employed for generating this dataset (for further detail, see Barch 

Figure 5. Simulation results generated using the low-SNR synthetic data. Nominal coverage is shown as a dashed 
line, with a corresponding binomial confidence interval also shaded. All data points are averages taken across 2,500 
simulation instances.
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et al., 2013; Glasser et al., 2013). Following first-level analysis, the data consisted of 4 images for 
each of the 80 subjects, measuring the %BOLD response to each of the 4 stimuli types. In this ex
ample, our interest lies in identifying, at the group-level, which regions of the brain are associated 
with working memory regardless of stimuli type. In other words, ‘Which regions are active in re
sponse to all four working memory stimuli types?’.

As this work has focussed on two-dimensional excursion sets, a single slice of the brain was 
chosen for analysis (z = 46 mm, covering portions of the frontal gyrus involved in working mem
ory). For each stimuli type, an n = 80 group-level LM was constructed. Using the proposed meth
od, CRs were then generated at the 5% confidence level to assess where the group-level percentage 
BOLD change exceeded 1% for all four stimuli types. To compare the proposed method to stand
ard fMRI inference procedures, a group-level contrast was also generated using the Big LM tool
box for each of the four stimuli types. In addition, single-‘study condition’ CRs were also 
generated using the methods of Sommerfeld et al. (2018) for each of the four stimuli types.

The results are those shown in Figure 1. The conjunction inference identified several localised 
regions, including the superior frontal gyrus, which is well known for its involvement in working 
memory (Alagapan et al., 2019; Boisgueheneuc et al., 2006; Vogel et al., 2016), and the angular 
gyri, which are well known to be involved in memory retrieval, attention, and spatial cognition 
(Bréchet et al., 2018; Seghier, 2013).

Whilst the CRs for conjunction inference illustrated in Figure 1 exhibit a clear resemblance to 
the four contrast images, we note that the red set, F̂+

c , is very small in comparison to the blue 
set, F̂−

c , which is large and diffuse. This observation conveys important information about the spa
tial variability of the regions identified. In particular, it can be seen that, in the regions immediately 
surrounding the superior frontal gyrus and angular gyri, there is a much higher resemblance be
tween the blue (F̂−

c ) and yellow (F̂ c) sets than is seen across the rest of the brain. This resemblance 
provides an insight into the degree of spatial variation present surrounding these regions. In this 
case, the strength and localisation of this resemblance suggest that the spatial variability of F̂ c is 
less severe in and around the aforementioned anatomical regions than it is across the rest of the 
brain. It may be concluded that the estimated yellow ‘blobs’ corresponding to the superior frontal 
gyrus and the angular gyri have been more reliably localised than the other yellow ‘blobs’ appear
ing in the image.

In general, the single-‘study condition’ CRs can be seen to be much larger than those observed 
for conjunction inference. This observation matches expectation as the overlap of the four excur
sion sets is smaller than each set individually. In addition, in this example, the conjunction method 
employed the entire experimental design for analysis, as opposed to the single-‘study condition’ 
method which employed only the data concerning the stimuli of interest. It is therefore expected 
to have a higher statistical power and, thus, tighter confidence bounds.

6 Conclusion and discussion
In this work, we have produced a method for generating CRs for intersections and unions of mul
tiple excursion sets. The CRs generated by the method generalise the notion of confidence intervals 
to arbitrary spatial dimensions and possess the usual frequentist interpretation that, were the 0.95 
procedure repeated on numerous samples, the proportion of CRs, F̂+

c and F̂−
c , that correctly en

close F c in the manner depicted in Figure 2c, would tend to be 0.95. Such CRs serve as an indicator 
of the reliability of F̂ c as an estimate of F c.

We stress here that, whilst F̂ c is equal to the intersection of {Âi
c}i∈M, the CRs F̂±

c are not the 
intersections of the single-‘study condition’ CRs {Â±,i

c }i∈M which would be obtained using the 
methods of Sommerfeld et al. (2018). In other words, the intersection of the yellow sets in the 
four bottom-left panels of Figure 1 is equal to the yellow set in the fifth, but the corresponding 
statement does not hold for the blue or red sets. This claim follows from the fact that {Â±,i

c }i∈M
are defined using separate quantile estimates from different bootstraps and can be heavily influ
enced by the behaviour of {∂Ai

c}i∈M in spatial regions far from F c. In fact, treating the naive inter
section of the (1 − α) CRs {Â±,i

c }i∈M as (1 − α) CRs for F c is not a valid method in general and can 
result in undesirable asymptotic coverage lying anywhere inside the range [1 − Mα, 1]. This claim 
is further discussed in online Supplementary Theory Section S6 and verified in Simulations 14 and 
15 of the online Supplementary Results document, which show that naive intersections can 

190                                                                                                                                    Maullin-Sapey et al.

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad104#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad104#supplementary-data


provide over- and under-coverage, respectively. To our knowledge, the only valid approach for 
generating CRs for conjunction inference is that outlined in this work.

One potential limitation of the specific methods of Section 3 is that they allow for CRs to be 
generated only when the target functions, {μi}i∈M, are linear combinations of regression parameter 
estimates. As noted by Bowring et al. (2021), it is often preferable for an analysis to consider stand
ardised effect sizes, such as Cohen’s d (Cohen, 2013) or Hedges’ G (Hedges, 1981), instead of re
gression parameter estimates, as standardised effect sizes allow for information about statistical 
power to be incorporated into the analysis. To this end, Bowring et al. (2021) outlined an ap
proach for generating CRs (in the single-‘study condition’ setting) for images of Cohen’s d effect 
sizes. Here, we suggest that a potential avenue for future work is to combine the methods of 
Bowring et al. (2021) and those proposed in this work to allow for conjunction, or disjunction, 
inference to be performed on standardised effect sizes rather than regression parameter estimates.

It must also be noted that the wild t-bootstrap has only been shown to consistently estimate 
quantiles of the supremum in equation (2) when the {Gi} are Gaussian random fields satisfying 
Assumption 3.2.1 (c.f. Telschow & Schwartzman, 2021). As discussed in Section 3.2, it has 
been suggested that this approach may also be used for estimating suprema quantiles for symmet
ric non-Gaussian random fields, and further adapted to non-symmetric cases by substituting the 
Rademacher variables for Mammen variables. However, to our knowledge, the consistency of 
such approaches has not yet been shown to hold theoretically. Our preliminary simulations 
have indicated that consistency may hold in the symmetric case (c.f. online Supplementary 
Results Simulation 13), and thus we suggest theoretical exploration of this topic may provide a 
basis for future investigation.

Another limitation noted here is that, whilst our proposed method theoretically works for data 
of arbitrary dimensions, the simulations of Section 4 verify the performance of our method only 
for two-dimensional data. Whilst it is typical for many practical applications to focus on two- 
dimensional data (e.g. climate maps, surface images), higher dimensional datasets are abundant 
in a wealth of disciplines such as brain imaging and astrological mapping. For this reason, we in
tend to investigate further the performance of the method in higher dimensions in future work.

A possible direction for future exploration is to investigate the applicability of the method with
in the framework of latent Gaussian models. Such models seek to explain non-Gaussian outcomes 
as a combination of Gaussian processes transformed via a link function. By using the proposed 
method, it may be possible to assess the regions of space in which a combination of latent processes 
predicted the outcome. If successful, such an approach would have high utility for the analysis of 
spatial data with a count or binary structure, making it a promising direction for further research.
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