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Abstract
Base	editors	are	emerging	as	powerful	tools	to	correct	single-	nucleotide	variants	
and	 treat	 genetic	diseases.	 In	particular,	 the	 adenine	base	editors	 (ABEs)	 exhibit	
robust	and	accurate	adenine-	to-	guanidine	editing	capacity	and	have	entered	 the	
clinical	 stage	 for	 cardiovascular	 therapy.	Despite	 the	 tremendous	progress	using	
ABEs	 to	 treat	heart	diseases,	a	 standard	 technical	 route	 toward	successful	ABE-	
based	therapy	remains	to	be	fully	established.	In	this	study,	we	harnessed	adeno-	
associated	virus	 (AAV)	and	a	mouse	model	 carrying	 the	cardiomyopathy-	causing	
Lmna	c.1621C > T	mutation	to	demonstrate	key	steps	and	concerns	in	designing	a	
cardiac	ABE	experiment	 in	vivo.	We	found	DeepABE	as	a	reliable	deep-	learning-	
based	model	to	predict	ABE	editing	outcomes	in	the	heart.	Screening	of	sgRNAs	for	
a	Cas9	mutant	with	relieved	protospacer	adjacent	motif	(PAM)	allowed	the	reduc-
tion	of	bystander	editing.	The	ABE	editing	efficiency	can	be	significantly	enhanced	
by	modifying	 the	TadA	and	Cas9	 variants,	which	 are	 core	 components	 of	ABEs.	
The	ABE	systems	can	be	delivered	into	the	heart	via	either	dual	AAV	or	all-	in-	one	
AAV	 vectors.	 Together,	 this	 study	 showcased	 crucial	 technical	 considerations	 in	
designing	an	ABE	system	for	the	heart	and	pointed	out	major	challenges	in	further	
improvement of this new technology for gene therapy.
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1  |  INTRODUC TION

Single-	nucleotide	 variation	 (SNV)	 is	 a	major	 form	of	 genetic	 aber-
rations that can cause or modify human diseases. Nearly half of 
pathogenic	SNVs	are	C•G-	to-	T•A	base	pair	conversions,	which	can	
potentially	be	corrected	by	the	adenine	base	editors	 (ABE).1	ABEs	
are	 ribonucleoprotein	 complexes	 that	 are	 composed	 of	 a	 single-	
guide	 RNA	 (sgRNA)	 and	 a	 TadA-	Cas9n	 fusion	 protein.	 TadA	 is	 an	
engineered adenine deaminase that converts adenine into inosine, 
which	 is	 subsequently	 edited	 into	 guanine.2	 Cas9n	 is	 a	 mutant	
Cas9	 nickase2	 that	 locally	 unwinds	 the	 DNA	 double	 helix	 on	 the	
sgRNA-	matched	genomic	 locus	and	expose	 the	 target	adenine	 for	
deamination	 by	 TadA.	 Because	 ABEs	 circumvent	 the	 adverse	 and	
uncontrollable	consequences	of	CRISPR/Cas9-	triggered	DNA	dou-
ble strand breaks, they exhibit safer and more precise editing pro-
files	than	the	conventional	CRISPR/Cas9	gene	editing.2

Cardiovascular	diseases	(CVDs)	are	the	leading	healthcare	prob-
lems	worldwide.	ABE	provides	a	novel	therapeutic	option	for	CVDs,	
particularly	 the	 ones	 caused	 by	 SNVs.	 An	 array	 of	 recent	 studies	
demonstrated	ABE-	based	 therapy	 to	 prevent	 or	 reverse	 inherited	
cardiomyopathy.3–7	 Despite	 these	 tremendous	 progress,	 multiple	
technical problems remain unsolved. For example, the outcome of 
ABE	editing	is	highly	variable	and	poorly	predictable.3–7	Whether	a	
computational model could be harnessed to assess the editing out-
come before the expensive experiments were conducted is unclear. 
Moreover,	many	TadA	and	Cas9n	variants	have	been	developed	for	
ABE,2 but which combinations are more suitable for cardiac gene 
editing	remain	undetermined.	Designing	an	ABE	system	targeting	an	
adenine-	rich	region	is	particularly	challenging,	as	ABE	could	simul-
taneously edit multiple adjacent adenines.8 How to reduce this by-
stander	effect	remains	a	major	problem	in	ABE	applications.	Lastly,	
the	 canonical	ABE	 systems	 are	 oversized	 and	 require	 two	 adeno-	
associated	virus	(AAV)	vectors	to	deliver	to	the	heart.3–7 How to im-
prove this gene delivery system is also a major technical challenge.

Dilated	 cardiomyopathy	 (DCM)	 is	 a	 major	 form	 of	 lethal	 car-
diomyopathy	that	is	frequently	caused	by	SNVs	in	the	LMNA gene. 
We	recently	identified	the	LMNA	c.1621C > T	mutation	in	DCM	pa-
tients	and	created	a	knock-	in	mouse	model	carrying	 this	mutation	
(LmnaRC/RC	mice).9	Based	on	this	model,	we	attempted	to	develop	an	
ABE	system	to	correct	this	mutation	in	mice.	As	an	orthogonal	tech-
nical	validation,	we	also	demonstrated	the	design	of	an	ABE	system	
targeting Camk2d in the heart. Camk2d	is	a	well-	established	thera-
peutic	target	for	many	forms	of	heart	diseases	including	DCM.10,11 
These efforts generated important new insights regarding the key 
technical	pathways	of	applying	ABEs	to	the	heart.

2  |  RESULTS AND DISCUSSION

Previous	 studies	 relied	 heavily	 on	 stem	 cell	 or	 animal	 models	 to	
test	if	a	given	adenine	can	be	efficiently	edited	by	ABE.3–7 To solve 
this	problem,	we	tested	if	DeepABE,12	a	deep-	learning-	based	com-
putational	 tool,	 could	 predict	 cardiac	 ABE	 outcomes	 in	 mice.	We	

harnessed	published	data	from	four	landmark	studies	using	ABE	to	
treat cardiomyopathy in mice4–7	(Figure 1A)	and	calculated	their	ed-
iting	outcomes	by	DeepABE.	The	experimental	results	and	the	com-
putational	prediction	exhibit	highly	robust	correlation	(Figure 1B).

We	next	designed	sgRNAs	targeting	the	Lmna	c.1621C > T	mu-
tation in mice.9	The	target	c.1621 T	base	is	adjacent	to	c.1619 T	and	
c.1613 T,	which	are	potential	bystanders	(Figure 1C).	SpCas9-	derived	
ABEs	 require	 a	 guanine-	containing	 protospacer	 adjacent	 motif	
(PAM).	A	guanine-	rich	region	was	found	close	to	the	3′ side of the 
c.1621 T	site,	which	is	suitable	for	sgRNA	design.	This	fact	allowed	
us	to	design	five	sgRNAs	(Figure 1C)	targeting	the	c.1621 T	base	pair	
and	used	DeepABE	to	predict	their	potential	ABE	activity.	Strikingly,	
with	most	 sgRNAs,	 DeepABE	 implied	 that	 ABE	would	mainly	 act	
on	c.1619 T	and	cause	a	strong	bystander	effect.	SgRNA1	would	be	
the	 only	 sgRNA	 that	 edits	 c.1621 T	more	 efficiently	 than	 c.1619 T	
(Figure 1D).

To	 validate	 this	 in-	silico	 prediction,	 we	 constructed	 dual-	AAV	
ABE	vectors	expressing	sgRNA1,	sgRNA2,	or	sgRNA3.	This	system	
used	 the	 constitutively	 active	 promoters	 CMV	 and	CASI	 to	 sepa-
rately	express	 two	parts	of	 the	TadA7.10-	SpG	protein	 (Figure 1E),	
which	 fuse	 into	 a	 full-	length	 ABE	 protein	 via	 intein-	based	 trans-	
splicing.13	TadA7.10	is	the	prototypic	TadA	mutant	in	ABE1 while the 
SpG	protein	is	a	mutant	SpCas9	with	an	NGN	PAM.14

We	 subcutaneously	 injected	 2 × 1011	 vg/g	 (vector	 genome	 per	
gram	bodyweight)	AAV	into	postnatal	day	1	(P1)	LmnaRC/RC mice and 
collected	 tissues	 at	P7	 to	 assess	 genome	editing	 results.	 Targeted	
amplicon	sequencing	revealed	that	sgRNA2	and	sgRNA3	mediated	
up	to	20%	editing	at	the	c.1619 T	site	but	less	than	2%	at	the	c.1621 T	
site.	By	 contrast,	 sgRNA1	preferentially	 triggered	 c.1621 T	 editing	
(Figure 1F).	 A	 robust	 correlation	was	 observed	 between	 the	 pre-
dicted	and	experimental	results	(Figure 1G),	justifying	DeepABE	as	
an	accountable	tool	to	predict	ABE	outcomes	in	the	heart.

As an orthogonal validation, we newly designed an array of sgR-
NAs targeting Camk2d	 (Figure S1),	a	well-	established	 therapeutic	
target	for	heart	diseases	including	DCM.	We	designed	the	sgRNAs	
to	target	the	Ts	in	start	codon	(ATG)	or	exon-	intron	boundaries	(the	
GT	motif)	 so	Camk2d	 could	be	 silenced	by	ABE	due	 to	disrupted	
open	reading	frames.	We	predicted	ABE	editing	by	these	sgRNAs	
using	DeepABE	and	experimentally	measured	the	actual	editing	ef-
ficiency	in	Neuro2a	cells.	We	also	packaged	AAVs	expressing	two	
of these sgRNAs and measured editing outcomes in murine hearts. 
In	both	experiments,	 the	predicted	and	experimental	data	exhib-
ited	high	correlation	 (Figure S1B–D).	Together,	 these	data	 testing	
extra sgRNAs in vitro and in vivo consolidated the conclusion that 
DeepABE	is	a	reliable	tool	to	predict	ABE	editing	outcomes	in	the	
hearts.

It	is	critical	to	note	from	the	above	experiments	that	DeepABE	
does	not	adjust	 its	prediction	according	to	AAV	dosage.	The	pres-
ence	 of	 difficult-	to-	transduce	 cell	 types	 such	 as	 fibroblasts	 in	 the	
heart	also	undermines	the	detectable	ABE	editing	rates.	Thus,	the	
experimentally	measured	ABE	editing	rates	in	the	heart	are	always	
lower	 than	 the	 predicted	 values	 by	 DeepABE.	 Therefore,	 a	 main	
value	of	DeepABE	is	to	help	us	assess	the	relative	editing	rates	of	



    |  3 of 6YANG et al.

F I G U R E  1 DeepABE-	based	prediction	of	cardiac	base	editing	in	mice.	(A)	A	diagram	showing	adenines	that	were	edited	by	ABE	in	the	
heart in published studies. Adenines were numbered according to their relative distances to the 5′	end	of	sgRNA.	PAM	sequences	in	black	
boxes.	(B)	A	plot	showing	predicted	versus	measured	editing	rates	of	each	adenine	by	ABE	in	(A).	Pearson	correlation	analysis.	(C)	A	diagram	
showing the genomic locus harbouring the Lmna	c.1621C > T	mutation.	Target	adenine	in	green.	Bystander	adenine	in	red.	(D)	DeepABE-	
based prediction of editing outcomes for each candidate sgRNA targeting the Lmna	c.1621C > T	mutation.	(E)	The	design	and	workflow	
of	dual-	AAV-	delivered	ABE	editing.	(F)	Amplicon	sequencing-	based	measurement	of	ABE	editing	rates	for	sgRNA1-	3.	(G)	A	plot	showing	
predicted	versus	measured	ABE	editing	rates.	Pearson	correlation	analysis.	In	(B)	and	(G),	n	numbers	in	parenthesis	indicate	numbers	of	
replicated animals.

(A)

(C)
(D)

(E)

(F) (G)

(B)
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multiple	adenines	in	the	same	editing	window,	nominating	easy-	to-	
edit sites while reducing the risk of bystander effects.

Among all the sgRNAs targeting the Lmna	c.1621 T	site,	sgRNA1	
exhibited	 the	best	 ratio	of	c.1621 T	versus	c.1619 T	editing,	 there-
fore	the	lowest	bystander	effect	(Figure S2).	Based	on	the	sgRNA1	
system, we next attempted to enhance the editing rate in the heart 
by	modifying	TadA.	TadA	naturally	operates	as	a	homodimer.	In	the	
original	 ABE7.10	 system,1	 one	 wild-	type	 TadA	 was	 fused	 to	 one	
engineered TadA7.10 in tandem to enhance TadA dimerization and 
therefore	 the	ABE	activity.	However,	when	TadA7.10	was	evolved	
into TadA8e15	in	the	following	studies,	the	new	TadA8e-	based	ABE	
no	longer	required	two	TadAs	to	fulfill	its	full	capacity.	Due	to	this	
reason,	we	next	compared	an	ABE7.10	vector,	which	includes	both	a	
wild-	type	TadA	and	an	engineered	TadA7.10,	versus	an	ABE8e	vec-
tor	that	only	included	a	single	TadA8e	(Figure 2A).

We	 injected	 the	 same	 amount	 of	 ABE7.10	 or	 ABE8e	 vectors	
into LmnaRC/RC mice and collected hearts and livers for amplicon se-
quencing	analysis.	Interestingly,	ABE8e	enhanced	the	editing	rate	by	
about	4.9-	fold	on	the	Lmna	c.1621 T	site	but	not	on	the	c.1619 T	site	
(Figure 2B).	We	measured	the	amount	of	AAV	genome	in	the	tissues	
and	 observed	 less	AAV	 genome	 in	 the	ABE8e	 group	 by	 quantita-
tive	real-	time	PCR	(qPCR),	probably	due	to	the	variable	batch	effect	
of	producing	different	AAV	vectors	(Figure S3A).	This	data	showed	
that	ABE8e	intrinsically	exhibited	higher	editing	rate	than	ABE7.10	
on the Lmna	c.1621 T	site.

Next,	we	compared	SpG	and	NG	to	determine	if	changing	Cas9	
homologues	could	also	modify	 the	gene	editing	 rate	by	ABE.	SpG	
and	NG	 are	 two	 independently	 developed	 SpCas9	mutants	 using	
the	same	NGN	PAM	(Figure 2C).14,16 They differ in only seven amino 
acids,	which	all	locate	in	the	C-	terminal	AAV	vectors.	Thus,	we	used	

F I G U R E  2 The	impact	of	ABE	components	and	AAV	number	on	editing	efficiency.	(A)	A	diagram	showing	amino	acid	differences	between	
TadAwt	(wildtype),	TadA7.10	and	TadA8e	and	the	different	AAV	vectors	to	deliver	TadA7.10-	SpG	versus	TadA8e-	SpG.	(B)	The	impact	of	
TadA	mutants	on	ABE	editing	efficiency.	(C)	A	diagram	showing	amino	acid	differences	between	wildtype,	NG	and	SpG	versions	of	SpCas9	
and	the	distinct	AAV	vectors	to	deliver	TadA8e-	SpG	versus	TadA8e-	NG.	(D)	The	impact	of	SpCas9	mutants	on	ABE	editing	efficiency.	(E)	
A	diagram	showing	the	design	of	an	all-	in-	one	AAV	vector	for	ABE-	based	correction	of	the	Lmna	c.1621C > T	mutation.	(F)	Measurement	of	
ABE	editing	rates	using	the	all-	in-	one	vector.	In	(B)	and	(D),	student's	t-	test:	*p < 0.05;	**p < 0.01;	non-	significant	p values in parentheses.

(A)

(C)

(E) (F)

(D)

(B)
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the	 same	 N-	terminus	 ABE	 vector	 in	 combination	 with	 distinct	 C-	
terminus	ABE	vectors	 to	compare	SpG	versus	NG.	We	 found	 that	
the	NG-	based	ABE	editing	on	the	c.1621 T	site	was	2.5-	fold	of	the	
SpG-	based	ABE	in	the	heart	(Figure 2D).	We	carefully	titrated	AAV	
dosage	to	ensure	the	same	quantity	of	AAV	genome	was	transduced	
into	the	heart	(Figure S3B)	and	further	confirmed	the	higher	editing	
rate	by	NG-	based	ABE	than	SpG-	based	ABE	(Figure S3C).	Together,	
the	 new	 TadA8e-	NG	 combination	 increased	 the	 editing	 rate	 on	
c.1621 T	to	about	8%	in	the	heart	while	leaving	the	bystander	effect	
on	c.1619 T	at	less	than	2%.

The	dual-	AAV	system	is	unfavored	from	the	standpoint	of	dos-
age, side effects, cost and complexity in design. To solve these prob-
lems,	we	next	attempted	to	realize	cardiac	ABE	editing	by	a	single	
all-	in-	one	 vector.	We	 examined	 an	 array	 of	 compact	 Cas9	 homo-
logues and identified the miniature Staphylococcus auricularis	Cas9	
(SauriCas9)17	as	an	ideal	tool	to	construct	the	all-	in-	one	ABE	vector.	
To	 further	 reduce	 the	vector	 size,	 a	 small	EFS	promoter	was	used	
to	 drive	 SauriABE	 expression.	 Conveniently,	 because	 the	 PAM	 of	
SauriCas9	(NNGG)	is	very	similar	to	SpCas9	(NGG),	the	sgRNAs	orig-
inally	designed	for	SpCas9	could	be	directly	adopted	 in	SauriCas9	
applications	(Figure 2E).

We	 injected	 2 × 1011vg/g	 TadA8e-	SauriCas9	 vectors,	 a	 dose	
comparable	 to	 the	 ones	 used	 in	 the	 previous	 dual-	AAV	 exper-
iments, into the LmnaRC	mice.	 In	 the	 heart,	we	 found	 this	 all-	in-	
one	vector	 resulted	 in	about	2.5%	editing	 rate	on	c.1621 T	alone	
and	 about	 5%	 editing	 rate	 on	 c.1621 T	 and	 c.1619 T	 combined	
(Figure 2F).	Thus,	 the	all-	in-	one	AAV	retained	a ~ 8%	editing	 rate	
(blue	bars	in	Figure 2F)	on	c.1621 T	similar	to	the	dual-	AAV	system,	
but lost the capacity of sgRNA1 to reduce the bystander effect on 
c.1619 T	(Figure 2F).	Overall,	 it	 is	feasible	to	achieve	cardiac	ABE	
editing	using	an	all-	in-	one	AAV	vector,	but	the	intrinsic	properties	
of	the	new	compact	ABE	tools	might	be	distinct	from	the	conven-
tional	ABE	systems,	which	demands	more	extensive	investigation	
in the future.
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