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Abstract
Background: The infiltrative nature of human gliomas renders complete surgical re-
moval of tumors futile. Thus, illuminating mechanisms of their infiltrative properties 
may improve therapies and outcomes of glioma patients.
Methods: Comprehensive bioinformatic analyses of PRSS family were undertaken. 
Transfection of HTRA1 siRNAs was used to suppress HTRA1 expression. CCK-8, EdU, 
and colony formation assay were employed to assess cell viability, and cell migration/
invasion was detected by transwell, wound healing, and 3D tumor spheroid invasion 
assays. Immunoprecipitation was applied to study the mechanism that HTRA1 af-
fected cell migration. In addition, in  situ xenograft tumor model was employed to 
explore the role of HTRA1 in glioma growth in vivo.
Results: HTRA1 knockdown could lead to suppression of cell viability, migration and 
invasion, as well as increased apoptosis. Immunoprecipitation results indicates HTRA1 
might facilitate combination between HDAC6 and α-tubulin to enhance cell migration 
by decreasing α-tubulin acetylation. Besides, HTRA1 knockdown inhibited the growth 
of xenografts derived from orthotopic implantation of GBM cells and prolonged the 
survival time of tumor-bearing mice.
Conclusion: Our results indicate that HTRA1 promotes the proliferation and migra-
tion of GBM cells in vitro and in vivo, and thus may be a potential target for treatment 
in gliomas.
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1  |  INTRODUC TION

Human glioma is the most common and lethal intracranial tu-
mors and account for up to 80% of primary human brain tu-
mors. To date, glioma remain one of the most refractory human 
tumor types due to the scarcity of approaches to manage gli-
oma. One of the most intriguing features of glioma is the fre-
quent intracranial infiltration while extracranial metastasis is 
rare. In addition, intracranial recurrence after surgery mainly 
arises from the infiltrative nature of human glioma. Therefore, 
the study of the mechanisms underlying glioma invasion and 
infiltration may be beneficial to the development of therapies 
with improved efficacy in the treatment of this deadly tumor 
type.

High-temperature requirement-A1 serine protease (HTRA1), 
also named as serine protease 11 (PRSS11), is one of the proteins 
participating in tumor invasion and migration.1 As a member of 
the serine protease superfamily, HTRA1 is a highly conserved 
protein expressed in different organisms, including bacteria,2 
plants, fungi, and human being.3,4 HTRA1 is widely expressed 
in various tissues and organs of human, mostly in the brain, ma-
ture epidermis and placenta.5 HTRA1 is a 50-kDa protease with 
protease and PDZ domains at the C-terminus.6,7 The protein is 
secreted by cells and involved in extracellular matrix degrada-
tion.8 It is also reported that HTRA1 could participate intracel-
lularly in cell apoptosis, migration, and invasion in tumor cells 
through EGFR pathways.9,10 Other signaling pathways, including 
the Wnt,11 Notch,7 NF-κB12 and TGF-β13–15 pathways can also 
be modulated by HTRA1. On the one hand, HTRA1 is primar-
ily viewed as a tumor suppressor protein in cancer, including 
ovarian cancer,16,17 melanoma,3 endometrial cancer18,19 and 
thyroid tumors.20 On the other hand, it has also been reported 
to function as an oncogenic protein facilitating angiogenesis,7 
tumor proliferation, and metastasis.21 In addition, high HTRA1 
expression has been associated with poor prognosis in gastric 
cancer patients.12 However, to the best of our knowledge, no 
other studies to date have illuminated the function of HTRA1 in 
human glioma.

In this study, we analyzed publicly available databases to ex-
plore the expression pattern of HTRA1 in glioma tissues and the 
correlation between HTRA1 expression levels and the prognosis 
of glioma patients. We also investigated the function of HTRA1 
in glioblastoma (GBM) cells in vitro and in vivo, and found that 
HTRA1 promoted tumor progression by enhancing proliferation, 
invasion, and migration. The prometastatic effect of HTRA1 
might be mediated by the HDAC6/Ac-α-tubulin pathway. In vivo 
experiments with isogenic HTRA1 knockdown cells indicated 
that HTRA1 facilitated the infiltration of glioma and shortened 
the survival period of nude mice. In summary, our findings sug-
gested that HTRA1 functioned as an oncogene in glioma and 
might be a potential prognostic marker and therapeutic target 
for gliomas.

2  |  MATERIAL S AND METHODS

2.1  |  Clinical specimens and databases

Paraffin-embedded WHO grade II (n = 4), III (n = 4), and IV (n = 4) 
glioma tissues were obtained from the Neurosurgery Department 
of Qilu Hospital (Jinan, China). Normal brain tissues (n = 4) were ob-
tained during decompression surgery performed on patients who 
had sustained severe head trauma. Written informed consent was 
obtained from patients for research purposes, and all procedures ap-
proved by the Ethics Committee of Qilu Hospital. The transcriptome 
data and patient survival were obtained from TCGA, Rembrandt, 
and GEPIA222 databases. TCGA and Rembrandt databases were dis-
played in GlioVis.23

2.2  |  Survival analysis and risk score model 
establishment

The schematic illustration of this process is displayed in Figure S1A. 
After the 52 members of PRSS family genes were included, sur-
vival analysis was used to find PRSS genes whose expression was 
significantly correlated with prognosis of glioma patients. Then 
the obtained genes were applied to least absolute shrinkage and 
selection operator (LASSO) regression to select major PRSS genes 
contributing to the risk score together with their corresponding 
coefficients. Then the “predict” function of “glmnet” package in R 
was employed to calculate the risk score of each sample in TCGA 
glioma or GBM cohort based on each major genes' expression level 
and corresponding coefficients.24 Basically, it was calculated by 
the following formula:

The patients with a risk score higher than the median number of 
risk scores were regarded as “high risk”, and the others were consid-
ered as “low risk”.

The test and train data were composed of samples randomly se-
lected from all glioma or GBM samples and the test or train data had 
50% of all data. Risk scores of each sample were calculated with the 
major genes' coefficients and their expression level. The prognos-
tic effect of risk models was inspected with survival curve or ROC 
curve.

2.3  |  Implantation and in vivo imaging of 
in situ tumors

All animal procedures were approved by the Institutional Animal Care 
and Use Committee of Shandong University (ID: DWLL-2021-101). 
Cells (1 × 106) expressing luciferase and infected with Lenti-Control 
or Lenti-shHTRA1 were implanted into the cortex of the brains of 
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nude mice. The precise position was 2 mm lateral, 1 mm posterior to 
the bregma at a depth of 1.5 mm. In vivo imaging was conducted as 
previously described25 with a bioluminescence imaging system (IVIS 
Lumina Series III; PerkinElmer; MA, USA) at 3, 7, 14, 21, and 28 days 
after implantation.

2.4  |  Statistical analysis

The Shapiro–Wilk test was used to assess the normality of the data. 
For comparison of two groups of data, Student's t-test was used for 
data that passed the normality test, while the Mann–Whitney test 
was applied to data that did not pass the normality test. The one-
way ANOVA test was applied to the comparison of three or more 
groups, and Kruskal-Wallis test was employed when data did not 
pass normality test. Relationships between variables were analyzed 
via Pearson's correlation analysis. The results of the CCK-8 prolif-
eration assay were assessed with two-way ANOVA, and Dunnett's 
multiple comparisons test was used for the post hoc test. Survival 
analysis was conducted by log-rank test. All values are presented 
as the means ± SEM. All statistical analyses were performed in 
GraphPad Prism (version 8.3.0) or R (version 4.1.3).

Detailed Methods are available in Data S1.

3  |  RESULTS

3.1  |  High HTRA1 expression is correlated with 
increasing grade of glioma

PRSS family members showed highly various functions modulating 
immunity, carcinogenesis, and cancer progression.26,27 The mem-
bers in this family have been reported to show pro-tumor effects 
in prostate cancer,28 diffuse large B-cell lymphoma,27 pancreatic 
cancer,29 colorectal cancer30 and gastric cancer.31 Considering 
there was no other studies reporting their function in glioma to 
the best of our knowledge, we tried to study the effect of PRSS 
family in glioma via bioinformatic tools. All 52 PRSS family genes 
in TCGA database were included. A risk score was established by 
applying lasso regression to the PRSS family genes as described in 
section  2.2 and Figure S1A. The results suggested that patients 
with high risk scores showed more death and worse prognosis 
both in all glioma (Figure  S1) as well as GBM data (Figure  S2). 
These analyses indicated that PRSS genes' expression might be a 
prognostic factor in glioma patients. Then we found the expres-
sion level of HTRA1 was the highest among 52 serine proteases 
and expression level of HTRA1 in gliomas was significantly higher 
than in normal tissues, and high HTRA1 expression predicted poor 
prognosis of glioma patients (Figure  S3). Besides, high HTRA1 
expression was found to be associated with low M1 macrophage 
infiltration (Figure  S4A), low immune reactivity and high tumor 
purity (Figure  S4B,C) in TCGA glioma samples. This suggested 

high HTRA1 expression might be correlated with suppressed anti-
tumor immunity.

To explore the role of HTRA1 in glioma, analysis was performed 
on publicly available databases to determine the expression levels 
of HTRA1 in human gliomas. Analysis was first performed in the 
GlioVis data portal23 to determine the expression levels of HTRA1 
and the possible correlation of overall survival with glioma patients 
(Figure  1A–C). The average HTRA1 expression level was slightly 
higher in GBM samples than in nontumor samples in the TCGA 
(Figure 1A, left) and Rembrandt datasets (Figure 1A, right). HTRA1 
expression levels were also significantly higher in classical and 
mesenchymal subtypes than in the proneural subtype in the TCGA 
(Figure 1B, left) and Rembrandt datasets (Figure 1B, right). Both clas-
sical and mesenchymal subtypes are regarded as more aggressive 
than the proneural subtype.32 High HTRA1 expression was also sig-
nificantly correlated with worse prognosis in glioma patients in the 
TCGA cohort (Figure 1C). In the Rembrandt cohort, the patients with 
high HTRA1 expression also showed a slightly shorter median overall 
survival than patients in the low expression group (Figure 1C, right). 
HTRA1 also showed increased expression in low-grade glioma (LGG) 
and GBM compared to normal brain tissue samples in another pub-
lic database, GEPIA2 (Figure 1D, left). In this dataset, patients with 
tumors with high HTRA1 expression exhibited worse prognosis than 
patients with tumors of low HTRA1 expression (Figure 1D, right).

Immunohistochemistry furthermore showed that HTRA1 pro-
tein levels in GBM were significantly higher than in adjacent normal 
tissue and thus paralleled the RNA analysis (Figure 1E–G). Overall, 
we demonstrated that HTRA1 expression levels were significantly 
increased in higher grade gliomas and that high expression was cor-
related with worse prognosis in glioma patients.

3.2  |  Gene enrichment analysis of HTRA1 and 
coregulated genes

Enrichment analysis was performed for genes with expression lev-
els that were significantly correlated with HTRA1 (r > 0.3 or r < −0.3) 
to identify potential signaling pathways and biological processes 
involving the gene. GO (Figure 2A) and KEGG (Figure 2B) analyses 
and GSEA (Figure 2C) yielded enriched pathways related to the cell 
cycle, cell adhesion and microtubule-based processes in. These re-
sults indicated that HTRA1 might participate in cell proliferation and 
cell adhesion processes. We also performed RNA-seq analysis of 
GBM#P3-shNC and -shHTRA1 cells to identify putative genes regu-
lated by HTRA1. Differentially expressed genes included 400 up-
regulated and 370 downregulated genes in the GBM#P3-shHTRA1 
cells compared with GBM#P3-shNC cells (Figure  2D). In GO and 
KEGG enrichment analyses of the differentially expressed genes, 
cell adhesion-related pathways were among the top 10 identified 
pathways (Figure 2E,F). This result was in agreement with the pre-
vious analysis. In addition, pathways related to PI3K-Akt, Wnt and 
TGF-β signaling pathways were also identified, and PI3K-Akt-related 
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F I G U R E  1 Increased expression of HTRA1 is associated with high grade gliomas and worse prognosis in patients. (A, B) Expression levels 
of HTRA1 based on analysis of TCGA (n = 667) and Rembrandt (n = 537) databases displayed by (A) histology or (B) molecular subtype. (C) 
Survival rate of GBM patients with high or low HTRA1 expression levels based on analysis of the TCGA (left, n = 152) or Rembrandt (right, 
n = 181) database. (D) Expression levels of HTRA1 (GBM, n = 163; LGG, n = 518) and survival rate of GBM patients (n = 162) with high or 
low HTRA1 expression levels in GEPIA2 database. (E, F) Representative images of immunohistochemistry detecting HTRA1 in different 
grades of glioma and normal brain tissue. Bar graph of the percent of cells expressing HTRA1. Bar = 100 μm. (G) Representative images of 
immunohistochemistry detecting HTRA1 in glioblastoma and adjacent brain tissues. Bar = 100 μm. (A, B and F), one-way ANOVA, post hoc 
Dunnett's test; (C) and survival analysis in (D), log-rank test; Expression analysis in (D), Student's t-test. *P < 0.05; ***P < 0.001.
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pathways were found both in top 10 of GO and KEGG enrichment 
analysis. However, cell cycle-related pathways were not among the 
top 20 pathways. Overall, we concluded that HTRA1 and coregu-
lated genes might be involved in the regulation of cell migration and 
microtubule-based processes.

3.3  |  HTRA1 knockdown suppresses 
proliferation and causes apoptosis in GBM cells

The results of the enrichment analysis indicated that HTRA1 and 
co-expressed genes are involved in the cell cycle, which is tightly 

F I G U R E  2 Gene enrichment analysis of HTRA1 coregulated genes. (A–C) Gene enrichment analysis of expression-correlated genes of 
HTRA1 by (A) GO, (B) KEGG, and (C) GSEA enrichment analysis. (D) Volcano plot showing the DEGs derived from RNA-seq analysis. (E) GO 
and (F) KEGG enrichment analysis of DEGs derived from RNA-seq analysis.
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correlated with cell proliferation. Therefore, we examined the pro-
liferation of GBM cells with siRNA knockdown of HTRA1 via CCK8 
assay. Loss of HTRA1 induced a statistically significant reduction in 
relative cell proliferation values after 48 h in LN229, U251MG and 
GBM#P3 cells (Figure 3A). In colony formation assays, the number 
of colonies was reduced in cells transfected with HTRA1 siRNA 
(Figure 3B). LN229, U251MG and GBM#P3 cells also exhibited de-
creased EdU-positive ratios after HTRA1 knockdown, which sug-
gested a reduced proliferative cell ratio (Figure 3C,D). Furthermore, 
the cell proliferation marker PCNA33 was also decreased, as assessed 
on western blots, and the results suggested that the PCNA levels 
significantly decreased after downregulating HTRA1 in LN229, 
U251MG and GBM#P3 cells (Figure 3E). Besides, according to the 
enrichment analyses mentioned above (Figure  2E,F), we analyzed 
PI3K-Akt pathway in GBM cells with HTRA1 knockdown, which 
was tightly associated with cell proliferation.34 The results showed 
that the levels of activated forms of PI3K and Akt decreased sig-
nificantly after HTRA1 knockdown (Figure 3E). The effect of HTRA1 
on cell cycle was also examined via flow cytometry. And the results 
indicated HTRA1 knockdown could lead to an increase in the pro-
portion of cells in G0/G1 phase, and the decreases in G2/M pro-
portion suggested that cell proliferation and division was inhibited 
(Figure S5). These data suggested that HTRA1 might promote GBM 
cell proliferation.

Under evaluation with microscopy, we frequently found more 
apoptotic cells after HTRA1 knockdown. We, therefore, determined 
the ratio of apoptotic cells with flow cytometry. The ratios of apop-
totic cells in LN229, U251MG and GBM#P3 transfected with HTRA1 
siRNA significantly increased compared with cells transfected with 
siNC (Figure  4A). Moreover, we found protein levels of apopto-
sis markers cleaved PARP and BAX35 increased while an apoptosis 
inhibitor BCL2 decreased35 in LN229, U251MG and GBM#P3 with 
knockdown of HTRA1 (Figure 4B,C). Overall, we found that HTRA1 
might be involved in promoting proliferation and inhibiting apoptosis 
in GBM cell lines.

3.4  |  HTRA1 knockdown inhibits the migration and 
invasion of GBM cells

The enrichment analysis indicated a putative role for HTRA1 in 
cell adhesion processes. We, therefore, investigated whether 
HTRA1 was involved in the migration and invasion of GBM cells. 
First, transwell assays revealed a significant decrease in the 
number of migrated cells per view after knockdown of HTRA1 
in LN229 and U251MG cells (Figure  5A,B). Second, LN229 and 
U251MG cells transfected with HTRA1 siRNA also showed a de-
creased migration rate in the wound healing assay (Figure 5C,D). 
These results indicated that the migration ability of GBM cells de-
creased after HTRA1 knockdown. Finally, in the 3D spheroid in-
vasion assay, we found that the U251MG and GBM#P3 spheroids 
with loss of HTRA1 exhibited a significantly decreased invasion 
area compared to the siNC spheroid controls (Figure 5E,F). These 

indicated that HTRA1 knockdown decreased the invasion ability 
of GBM cells.

It is well-known that epithelial-mesenchymal transition (EMT) 
plays a crucial role in the migration and invasion of tumor cells.36,37 
We, therefore, investigated whether HTRA1 was involved in EMT 
of GBM cells. We found that expression of mesenchymal markers, 
including N-cadherin, fibronectin, SMAD4 and vimentin, as did that 
of the upstream transcription factor ZEB1, significantly decreased 
with HTRA1 knockdown (Figure 5G,H). In contrast, the expression 
of the epithelial marker E-cadherin increased with HTRA1 knock-
down (Figure 5G,H). These results indicated that HTRA1 promoted 
EMT in GBM cells.

3.5  |  HTRA1 facilitates the formation of  
invadopodia and destabilizes microtubules via 
HDAC6-mediated deacetylation

To further investigate whether HTRA1 promoted invasion and mi-
gration, we evaluated cytoskeleton-  and microtubule-based pro-
cesses in GBM cells transfected with HTRA1 siRNA. We first used 
phalloidin detection of F-actin, a protein involved in the formation 
of invadopodia and cell migration.38 With knockdown of HTRA1, 
the percentage of LN229 and U251MG cells with invadopodia 
significantly decreased (Figure  6A,B). And the expression levels 
of cortactin, a marker of invadopodia formation,39 declined after 
HTRA1 knockdown (Figure  6C,D). These results were consistent 
with the decreased migration ability observed in wound healing 
assays (Figure 5C,D). Second, the formation of invadopodia is also 
previously reported to be correlated with cytoskeleton formation 
regulated by HDAC6, a deacetylase that causes the deacetylation of 
α-tubulin.40 The increase in ac-α-tubulin levels has also been reported 
to be associated with inhibition of migration and invasion.41 Our 
results showed that the protein levels of HDAC6 were decreased, 
while the protein levels of ac-α-tubulin were significantly increased 
in GBM cells with HTRA1 knockdown (Figure 6C,D). Third, HTRA1 
and HDAC6 mRNA levels were positively correlated in the TCGA 
and CGGA databases (Figure  6E). Besides, immunoprecipitations 
performed on lysates prepared from LN229-siHTRA1 cells demon-
strated that the interaction between HDAC6 and α-tubulin was de-
creased with the knockdown of HTRA1 in GBM cells, and samples 
with HTRA1 overexpression exhibited reverse results (Figure  6F). 
Last but not the least, the immunofluorescence detection indicated 
that the co-localization of HDAC6 and α-tubulin was suppressed 
after downregulation of HTRA1 in GBM cells, and overexpression of 
HTRA1 enhanced the HDAC6/α-tubulin co-localization (Figure 6G).

These results suggested that HTRA1 promoted cell migration by 
decreasing ac-α-tubulin levels. Thus, increased HTRA1 expression 
was associated with increased HDAC6 expression, and the HDAC6-
α-tubulin interaction was enhanced with overexpression of HTRA1. 
These results were consistent with the presence of an HDAC6/ac-α-
tubulin axis in GBM cells.
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F I G U R E  3 Downregulation of HTRA1 suppresses the growth of GBM cells. (A) CCK-8 assays detecting the cell viabilities of LN229, 
U251MG and GBM#P3 cells transfected with siNC, siHTRA1#1 and siHTRA1#2. (B) Representative images of colony formation assay and 
colony number counts of LN229 and U251MG cells treated with HTRA1 siRNA. (C) Representative images and (D) positive ratios for EdU 
assays performed on LN229, U251MG and GBM#P3 cells with knockdown of HTRA1. Bar = 100 μm. (E) Western blots showing knockdown 
efficiency of HTRA1 siRNAs and levels of PI3K-Akt pathway proteins (p-PI3K, PI3K, p-Akt, Akt), as well as proliferation marker (PCNA) in 
LN229, U251MG and GBM#P3 cells. GAPDH was used as the control for loading. (A), two-way ANOVA, post hoc Dunnett's test; (B, D and 
E), one-way ANOVA, post hoc Dunnett's test. *P < 0.05; **P < 0.01; ***P < 0.001.
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3.6  |  Knockdown of HTRA1 inhibits GBM cell 
growth in vivo and prolongs overall survival of 
tumor-bearing mice

To study the effect of HTRA1 on in vivo tumor growth, we sta-
bly knocked down HTRA1 in LN229 and GBM#P3 cells expressing 

luciferase. LN229 and GBM#P3 cells expressing luciferase were 
transduced with lentivirus containing siRNA sequences, and the 
knockdown efficiency was assessed on western blot (Figure 7A). 
The results indicated that only shHTRA1#2 efficiently knocked 
down HTRA1 in both LN229 and GBM#P3 cells. LN229luc- 
and GBM#P3luc-shHTRA1#2 cells (and controls, -shNC) were 

F I G U R E  4 HTRA1 knockdown promotes apoptosis of GBM cells. (A) Flow cytometry analysis detecting percentage apoptosis of LN229, 
U251MG and GBM#P3 cells transfected with siNC, siHTRA1#1 and siHTRA1#2. (B) Representative images of western blots and (C) relative 
protein levels of apoptosis-related proteins in lysates prepared from LN229, U251MG and GBM#P3 cells with HTRA1 knockdown. (A, C), 
one-way ANOVA, post hoc Dunnett's test. *P < 0.05; **P < 0.01; ***P < 0.001.

F I G U R E  5 HTRA1 knockdown inhibits cell migration and proliferation of GBM cells in vitro. (A, B) Representative images of transwell 
assays and cell counting results for LN229 and U251MG cells transfected with HTRA1 siRNAs. Bar = 200 μm. (C, D) Representative images of 
wound healing assay and migration rates for LN229 and U251MG cells transfected with HTRA1 siRNAs. Bar = 200 μm. (E, F) Representative 
images of 3D invasion assays and invasion rates for U251MG and GBM#P3 cells transfected with HTRA1 siRNAs. Bar = 100 μm. (G, H) 
Representative images of western blots and relative expression levels of EMT-related proteins in lysates prepared from LN229, U251MG and 
GBM#P3 cells transfected with HTRA1 siRNA. (B, D, F and H), one-way ANOVA, post hoc Dunnett's test. *P < 0.05; **P < 0.01; ***P < 0.001.
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implanted into the cortex of nude mice brains, and the tumor 
size was assessed through measurement in vivo bioluminescence 
at 3, 7, 14, 21 and 28 days after orthotopic implantation. The 

bioluminescence of both LN229luc-  and GBM#P3luc-shHTRA1#2 
intracranial tumors was significantly reduced at 21 to 28 days 
after implantation relative to controls (Figure 7B). In addition, the 
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overall survival of tumor-bearing animals was significantly longer 
for the shHTRA1 group than for the shNC group (Figure 7C). In 
terms of histology, the results of HE staining showed suppressed 
invasion ability at the margin of xenograft tumor in LN229luc- 
and GBM#P3luc-shHTRA1#2 group (Figure  8A). IHC revealed 
decreased expression of mesenchymal markers, including N-
cadherin and fibronectin, as well as cell proliferation marker Ki-67, 
in LN229luc-  and GBM#P3luc-shHTRA1#2 xenografts relative to 
shNC controls (Figure 8B,C). In contrast, the number of cells posi-
tive for ac-α-tubulin was significantly increased in LN229luc- and 

GBM#P3luc-shHTRA1#2 xenografts relative to shNC controls. 
These in vivo results confirmed our in vitro results. Taken together, 
the downregulation of HTRA1 in vivo resulted in suppressed GBM 
cell proliferation, but increased ac-α-tubulin levels.

4  |  DISCUSSION

In this study, we found increased HTRA1 expression in gliomas 
relative to nontumor brain tissue. High HTRA1 expression was 

F I G U R E  6 Knockdown of HTRA1 inhibits formation of invadopodia in glioma cells via the HDAC6/Ac-α-tubulin pathway. (A, B) 
Representative fluorescence images of staining of invadopodia and formation rates in LN229 and U251MG cells transfected with HTRA1 
siRNAs. Bar = 100 μm. (C, D) Western blots for the detection of Cortactin, HDAC6, α-tubulin and ac-α-tubulin in LN229, U251MG and 
GBM#P3 cells transfected with HTRA1 siRNA. (E) Correlation analyses for mRNA expression levels of HTRA1 and HDAC6 based on TCGA 
and CGGA databases. (F) Western blots of lysates prepared from LN229-siHTRA1 or oeHTRA1 cells (left panel) and immunoprecipitations 
(right panels) performed with anti-HDAC6 antibody showing binding of HDAC6 to α-tubulin in the presence of increased HTRA1. (G) 
Representative images of immunofluorescence detecting co-localization between HDAC6 and α-tubulin in LN229 and U251MG cells 
transfected with HTRA1 siRNAs or HTRA1 overexpression plasmids. Bar = 25 μm. (B, D), one-way ANOVA, post hoc Dunnett's test; for ac-α-
tubulin of LN229 and HDAC6 of GBM#P3 in (D), Kruskal-Wallis, post hoc Dunn's test. *P < 0.05; **P < 0.01; ***P < 0.001.

F I G U R E  7 Downregulation of HTRA1 inhibits GBM cell growth in vivo. (A) Western blot results indicating that shHTRA1#2 works well 
in both LN229 and GBM#P3 cells. (B) Representative images of in vivo tumor imaging and total bioluminescence from day 3 to day 28. (C) 
Survival rates of LN229- and GBM#P3-shHTRA1 tumor-bearing mice. (A), one-way ANOVA, post hoc Dunnett's test; (B), two-way ANOVA, 
post hoc Dunnett's test; (C), log-rank test. *P < 0.05; **P < 0.01; ***P < 0.001.
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F I G U R E  8 Histologic results showing knockdown of HTRA1 downregulates GBM cell invasion and growth in vivo. (A) Representative 
images of HE staining showing the margins between xenografts and normal brain. Bar = 100 μm. (B, C) Representative images of 
immunohistochemistry detecting N-cadherin, fibronectin, ac-α-tubulin and Ki-67 in LN229- and GBM#P3-shHTRA1 xenografts and the 
percent of expression of these four proteins. (C), Student's t-test. *P < 0.05; **P < 0.01. Bar = 100 μm.
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associated with the more aggressive glioma molecular subtypes, 
mesenchymal and classical subtypes. GO and KEGG analysis of 
HTRA1 coregulated genes revealed enrichment of several pathways 
related to cell migration and invasion, and knockdown of HTRA1 
with siRNA led to reduced migration, invasion and invadopodia for-
mation in GBM cells. HTRA1 knockdown also reduced proliferation 
but increased apoptosis in cells. Analysis of transcriptome sequenc-
ing data from LN229- and GBM#P3-shHTRA1#2 revealed that dif-
ferentially expressed genes were enriched in pathways related to 
cell adhesion and migration. In addition, transcription factor analy-
sis demonstrated that the transcription factor SMAD4 might be in-
volved in these gene expression changes often associated with EMT 
in tumor cells.42 In vivo orthotopic implantation of modified GBM 
cells indicated that HTRA1 knockdown inhibited intracranial tumor 
growth and prolonged overall survival of nude mice.

Glioma is an intracranial tumor type resistant to the current stan-
dard of care, and invasion and migration are key properties contrib-
uting to this resistance. EMT is an essential and dynamic process 
driving the invasion and migration of tumor cells.43,44 Here, we re-
port that HTRA1 depletion significantly inhibited the migration and 
invasion abilities of GBM cells, and mesenchymal markers, including 
ZEB1, N-cadherin, vimentin, fibronectin and CD44, decreased, while 
the epithelial marker E-cadherin increased. Changes in the F-actin 
cytoskeleton was consistent with the suppression of the formation 
of invadopodia, which are protrusions of the cell membrane that 
are rich in F-actin and facilitate the dissemination of tumor cells.45 
Previous reports indicate that HDAC6 is involved in cytoskeletal or-
ganization as well as invadopodia formation through deacetylation 
of α-tubulin.40 HDAC6 is a member of the HDAC family that is mainly 
located in the cytoplasm and promotes tumor cell migration and in-
vasion through deacetylation of α-tubulin and cortactin, which de-
stabilizes the cytoskeleton.46 HDAC6 expression decreased in GBM 
cells with HTRA1 depletion, while ac-α-tubulin increased. These 
results indicated that HTRA1 depletion led to decreased migration 
and invasion by enhancing the stability of the cytoskeleton. We also 
observed an increase of interaction between HDAC6 and α-tubulin 
when HTRA1 was over expressed, but the activity of HTRA1 on 
HDAC6 requires further investigation.

HTRA1 has been reported to promote apoptosis in many types 
of tumor cells, such as esophageal squamous cell carcinoma47 and 
pancreatic cancer cells.48 Our study demonstrated that apoptosis 
was enhanced in GBM cells with depletion of HTRA1, and markers 
of apoptosis were also correspondingly regulated. These results in-
dicated that HTRA1 inhibited apoptosis in human GBM cells.

Our findings are consistent with a role for HTRA1 as an onco-
gene in GBM cells. These results support a previous study on gastric 
cancer,12 in which HTRA1 was reported to induce the transdifferen-
tiation of fibroblasts into cancer-associated fibroblasts by activating 
the NF-κB/bFGF pathway. In addition, HTRA1 was recently reported 
to promote tumor metastasis by binding to the pro-oncogenic pro-
tein PITPNC1.49 On the other hand, HTRA1 is widely regarded as a 
tumor suppressor. HTRA1 was shown to suppress the proliferation 
of tumor cells by inhibiting Wnt/β-catenin through complexing with 

β-catenin.11 Moreover, HTRA1 was reported to suppress angiogene-
sis in cancer stromal cells by activating the Notch pathway.7

A limitation of this study is that we did not-test any HTRA1 inhib-
itor in vivo to explore its translational utility. Most of the known in-
hibitors, such as galegenimab,50 6-boroV51 and NVP-LBG97652 were 
reported as peptide inhibitors so it would be hard for them to pass 
through brain–blood barrier. Thus, it is likely that small molecules 
that inhibit HTRA1 may be beneficial for glioma treatment in vivo 
and further studies are required for confirmation.

In summary, the role of HTRA1 as an oncogene or tumor sup-
pressor might be dependent on cellular context. Our work indicates 
that HTRA1 might promote the development of human glioma by 
enhancing cell migration and invasion. However, the molecular 
mechanisms underlying HTRA1 activity in glioma requires further 
investigation.

5  |  CONCLUSION

Our current research provides evidences that HTRA1 might be a 
carcinogenic gene in glioma cells. HTRA1 also promoted migration 
of glioma cells. This effect might be mediated via downregulating 
acetylated α-tubulin by facilitating HDAC6 expression. Our work 
explores the role of HTRA1 in glioma cells and also provides new 
insights for the infiltration of glioma cells.
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