Table 7. Nanoparticle Loaded MOFs and Their Utility in Catalysisa.
Sr. No. | MOF compound | Reactive site | Nanoparticle | Catalytic reaction | Ref |
---|---|---|---|---|---|
1 | Au@ZIF-8 | Zn2+/-Nim | Au | hydrogenation of n-hexene | (311) |
2 | nFe3O4@Pd/ZIF-8@ZIF-8 | Zn2+/-Nim | Fe3O4/Pd | hydrogenation of styrene | (312) |
3 | UiO-66-biguanidine/Pd | Zr4+/-NH2 | Pd | Suzuki–Miyaura coupling | (313) |
4 | Ag@UiO-66-SH | Zr4+/-NH2 | Ag | three-component A3 coupling | (314) |
5 | AgPd@MIL-125-NH2-PDA | Cr3+/-NH2 | Ag-Pd | Suzuki coupling reaction | (315) |
hydrogenation of aldehyde | |||||
6 | MOF-Pd NPs | Cu2+/-NH2 | Pd | aerobic oxidation of benzyl alcohol | (316) |
7 | Pt@UiO-66-NH2 | Zr4+/-NH2 | Pt | synthesis of nitrones | (173) |
8 | Au-NP/Ni-Cu MOF | Ni2+/Cu2+ | Au | chemical degradation of Rhodamine B | (317) |
9 | Au@Cu(II)-MOF | Cu2+/-N | Au | oxidation–condensation reactions | (198) |
10 | Co–MOF-74@Cu–MOF-74 | Co2+/Cu2+ | CoCu | 1, 4-diphenyl-1,3-butadiene from phenylacetylene | (209) |
11 | Pd(0)@UiO-68-AP | Zr4+/-N | Pd | oxidation–Knoevenagel condensation | (215) |
12 | Au/NH2–UiO-66 | Zr4+/-NH2 | Au | tandem reaction | (216) |
13 | Pd-Au@Mn(II)-MOF | Mn(II)/N | Pd-Au | alcohol to imines | (217) |
14 | Al-ITQ-SO3H/Pd | Al(III), SO3H | Pd | oxidation–acetalization | (219) |
15 | IY-SO3H/Rh@S-ZIF-8 | Zn(II)SO3H | Rh | Knoevenagel condensation–hydrogenation reaction | (221) |
16 | Pd@UiO-66(Hf) | Hf(IV) | Pd | Hantzsch reaction | (318) |
17 | Pd@NH2-UiO-66 | Zr(IV)/-NH2 | Pd | Suzuki coupling/asymmetric aldol condensation | (224) |
18 | Ni@ZrOF | Zr(IV)/ -NH2 | Ni | chemical fixation of CO2 | (319) |
19 | Au@[Zn14(L)6(O)2(H2O)3] | Zn(II) | Au | chemical fixation of CO2 | (249) |
20 | Ag(I)@MOF-NHC | Zn(II)/-N | Ag | chemical fixation of CO2 | (250) |
21 | Pt@MOF-5, Pt@UiO-66, Pt@UiO-66-NH2 | Zr(IV)/-NH2 | Pt | biomass valorization | (320) |
22 | [Zn(4-bpdh)]3DMF | -N | Pd | Sonogashira coupling reaction | (321) |
23 | Ag/UiO-66 | Zr4+ | Ag | 3,4-dihydropirimidin-2(1H)-one synthesis | (322) |
24 | Au/MOF-199 | Cu2+ | Au | A3-coupling reaction | (323) |
25 | metal/UiO-66 | Zr4+ | Pt, Pd, Ru | oxidation of volatile organic compound | (324) |
26 | Pd(0)@UiO-68-AP | Zr, -NH | Pd | oxidation–Knoevenagel cascade reaction | (215) |
27 | Au@NH2-UiO-66 | Zr, -NH2 | Au | oxidation–Knoevenagel cascade reaction | (216) |
28 | Pd-Au@Mn(II)-MOF | Mn, Npyr | Pd, Au | oxidation–imine/acetal formation cascade reaction | (217) |
29 | Pd@MIL-101 | Cr, N | Pd | oxidation–imine/acetal formation cascade reaction | (218) |
30 | Pd@Al-MOF | Al, −SO3H | Pd | oxidation–imine/acetal formation cascade reaction | (219) |
31 | Pd@PDEAEMA-g-UiO-66 | Zr, -NH2 | Pd | Knoevenagel condensation–hydrogenation | (220) |
32 | Pd/MIL-101-SO3H | -SO3H | Pd | hydrogenation esterification cascade reaction | (222) |
33 | Pd@UiO-66(Hf) | Zr | Pd | hydrogenation esterification cascade reaction | (223) |
OPNs = organic polymer networks; PDA = polydopamine; AP = aminopyridine; NHC = N-heterocyclic carbene; 4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene.