Skip to main content
. 2023 Dec 22;21(2):864–872. doi: 10.1021/acs.molpharmaceut.3c00964

Table 1. Optimized Parameters for Each Algorithm.

algorithm optimized parameters unbalanced TS equal size models
RF split criterion gini index  
attribute sampling square root
set of attributes for each tree different
number of trees 423
tree depth 6
equal size sampling yes
kNN number of neighbors to consider 5 7
weight neighbors by distance yes no
GB number of trees 280 100
learning rate 0.98 1
attribute sampling square root  
set of attributes for each tree same
maximum tree depth 8
XGB eta 0.589 0.28
boosting rounds 253 100
gamma 0.182  
lamba 4.842
alpha 0.211
maximum depth 6