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Abstract  67 

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of 68 

modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy 69 

(cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as 70 

targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with 71 

covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one 72 

models were submitted from 17 independent research groups, each with supporting workflow details. We 73 

found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual 74 

inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact 75 

scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model 76 

quality. These observations lead us to recommend best practices for assessing cryo-EM structures of 77 

liganded macromolecules reported at near-atomic resolution.   78 
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Cryogenic electron microscopy (Cryo-EM) has rapidly emerged as a powerful method for determining 79 

structures of macromolecular complexes. It is complementary to macromolecular crystallography in its 80 

ability to visualize macromolecules, and complexes thereof, of varying sizes and extents of structural 81 

heterogeneity in 3D at near to full atomic resolution. The number of new structures determined by cryo-EM 82 

has been steadily increasing, and with improved resolution (Figure 1a). Macromolecular complexes may 83 

contain, in addition to larger components (i.e., proteins or nucleic acids), smaller components such as 84 

enzyme cofactors, substrates, analogs or inhibitors, medically relevant drug discovery candidates or 85 

approved drugs, glycans, lipids, ions, or water molecules. Accurate modeling of ligands within their 86 

macromolecular environment is important, as they can substantially influence larger-scale structure and 87 

functions. As the number of novel ligands in cryo-EM-derived structures continues to increase rapidly 88 

(Figure 1b), it becomes important to investigate how best to validate them to ensure optimal modeled ligand 89 

quality using various measures such as fit of model-to-map, geometry scores of the ligand, and local 90 

interactions with ions, waters, protein or nucleic acid components. 91 

An international workshop on validation of ligands in crystallographic PDB depositions1 held in 2015 92 

identified several common problems, including weak experimental density, ligand atoms poorly placed, 93 

incorrectly defined or misinterpreted chemical species, and inclusion of atoms not directly supported by 94 

experimental evidence. The main outcome was a set of best practice recommendations for PDB depositors 95 

and for the PDB archive. For PDB depositors, recommendations included providing unambiguous chemical 96 

definitions for all ligands present in a structure, including hydrogen atoms, providing ligand geometry and 97 

refinement restraints, clearly identifying atoms not supported by experimental evidence, providing the 98 

experimental map used for modeling, and including comments explaining outliers. Recommendations for 99 

PDB validation included providing informative images of ligands in their density; providing stick figure 100 

diagrams indicating geometry outliers; identifying atoms not supported by experimental evidence; providing 101 

quality assessment metrics for each identified ligand; and identifying possible protonation states. Most of 102 

the workshop validation recommendations have been implemented in PDB validation reports, with ligand 103 

geometric assessments implemented for all experimental methods2–4.  104 

Since 2010, EMDataResource (EMDR) has organized multiple Challenge activities 105 

(https://challenges.emdataresource.org) with the aim of bringing the cryo-EM community together to 106 

address important questions regarding the reconstruction and interpretation of maps and map-derived 107 

atomic coordinate models5. For each Challenge, a committee consisting of prominent experts is invited to 108 

recommend targets and set goals. Each event has been conducted with the operational principles of 109 

fairness, transparency, and openness, using modeler-blind assessments and open results, with a major 110 

goal of promoting innovation. 111 

In 2016, paired Map and Model Challenges invited participants to apply their novel algorithms/software to 112 

reconstruct maps and to evaluate models at resolutions of 2.9-4.5 Å. The results were published in a 19-113 

article special journal issue6. By 2018, most participating groups had improved their pipelines, eliminating 114 
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many identified mistakes. The unique EMRinger map metric for sidechain-mainchain consistency7 was first 115 

tested systematically in the 2016 Challenge and is now standard. 116 

The 2019 Model Metrics Challenge evaluated models, while also evaluating the effectiveness of many 117 

different coordinate-only and map-model fit metrics for 4 targets at 1.7-3.3 Å resolution. The results were 118 

published in a single joint paper8. To streamline the challenge process, input of data from participants and 119 

initial assessment pipelines were automated, and comprehensive statistics, visualizations of scores and 120 

comparisons were made available. The CaBLAM multi-residue mainchain metric9, introduced in 2016, was 121 

shown in the 2019 Challenge to be the score most highly correlated with measures of match-to-target. The 122 

Q score10, inspired and introduced by the 2019 Challenge, has now been adopted by the wwPDB Validation 123 

System used at deposition as well as in the detailed validation report11. 124 

The 2021 Ligand Model challenge brought together research and industry groups to evaluate and discuss 125 

available measures and tools for ligand quality assessment. Many of the issues identified for 126 

crystallographic structures in the 2015 ligand workshop were also expected to occur in cryo-EM structures 127 

with modeled ligands, but with additional considerations unique to cryo-EM. Targets were chosen from 128 

publicly available maps with sufficient resolution to theoretically allow de-novo ligand modeling, include 129 

diverse components such as protein and RNA, and have current interest and relevance. The objectives set 130 

out were to identify 1) methods for modeling such ligands and 2) metrics to evaluate map-model fit, 131 

stereochemical geometry, and chemically sensible interactions between the ligand and protein or RNA 132 

component. We describe here the overall design and outcomes of the EMDR Ligand Challenge, 133 

recommendations for the cryo-EM community based on currently available assessment methods, and what 134 

is needed for the future. 135 

Results 136 

Challenge Design 137 

Three Cryo-EM map targets were chosen based on the following criteria: recently published with resolution 138 

better than 3 Å, maps released in the Electron Microscopy Databank (EMDB), associated coordinates in 139 

the Protein Data Bank (PDB), small molecules present (ligands, water, metal ions, detergent, and/or lipid), 140 

and having current topical relevance (Figure 2 panels A-C): 141 

● Target 1: 1.9 Å E. coli β-Galactosidase (β-Gal) in complex with inhibitor 2-phenylethyl 1-thio-beta-142 

D-galactopyranoside (PETG) with PDB Chemical Composition Dictionary (CCD) id PTQ, EMDB 143 

map entry EMD-7770, PDB reference model 6CVM12 144 

● Target 2: 2.5 Å SARS-CoV-2 RNA-dependent RNA polymerase (RNAP) with the 145 

pharmacologically active, nucleotide form of the prodrug remdesivir (CCD id F86) covalently-bound 146 

to RNA, EMD-30210, PDB reference model 7BV213 14 147 
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● Target 3: 2.1 Å SARS-CoV-2 Open Reading Frame 3a (ORF3a) putative ion channel in complex 148 

with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine phospholipid (CCD id PEE), EMD-22898, 149 

PDB reference model 7KJR15 150 

Next, modeling teams were solicited via emails to multiple bulletin board lists and were asked to register, 151 

generate and upload optimized models for each Target, following provided guidelines (see Online 152 

Methods). A total of 61 independently determined models were contributed by seventeen teams from 153 

different institutions (ids EM001-EM017), with workflow details collected for each (see summary in Table 1 154 

and Supplementary Data S1, S2 for details). 155 

Model Assessments 156 

Submitted and PDB reference models for each target were evaluated by passing them through the EMDR 157 

Model Challenge validation pipeline8,16. Individual scores were obtained for many different sets of metrics, 158 

with a new Ligand analysis track added to the existing Fit-to-Map, Coordinates-only, Comparison-to-159 

Reference, and Comparison-among-Models tracks.  160 

Global Fit-to-Map metrics included Map-Model Fourier shell correlation (FSC)17, Atom Inclusion18, 161 

EMRinger7, density-based correlation scores from TEMPy19, Phenix20 and Q-score10. 162 

Overall Coordinates-only quality was evaluated using Clashscore, Rotamer outliers, Ramachandran 163 

outliers, and CaBLAM from MolProbity9,21, as well as standard geometry measures (e.g., bond, chirality, 164 

planarity) from Phenix22. Davis-QA, a measure used in critical assessment of protein structure prediction 165 

(CASP) competitions, was used to assess similarity among submitted models23. 166 

Assessment teams contributed a wide variety of ligand-specific assessments (Table 2, ids AT01-AT07) 167 

including ligand, ligand environment, solvent, and RNA-specific analyses. AT01 used Mogul24 to evaluate 168 

ligand covalent geometry as implemented in the wwPDB validation process2,4, with inclusion of a novel 169 

composite ligand geometry ranking score25. AT02 evaluated model ligands using Coot26 and AceDRG27. 170 

AT03 evaluated RNA conformation with DNATCO28,29 and solvent atom placement around protein residues 171 

using water distributions30,31. AT04 analyzed ligand all-atom contacts with Molprobity Probescore9, and ion 172 

and water placements using UnDowser32. AT05 scored ligand placements using density fields derived from 173 

pharmacophore consensus field analysis33, a method utilized in computer-aided drug design to identify and 174 

extract possible interactions between a ligand–receptor complex based on steric and electronic features34. 175 

AT06 examined ligand strain energies using both molecular mechanics and neural net potential energy 176 

strategies35–37, where strain energy is the calculated difference in energy between the modeled 177 

conformation and the lowest energy conformation in solution. AT07 prepared Q-score analyses10 for model-178 

fit-to-map of whole models, protein, ligands, and water, as well as ligand plus protein and/or nucleic acid 179 

polymer atoms in the immediate vicinity of the ligand (LIVQ). Assessor scores are available online at model-180 

compare.emdataresource.org; results are briefly outlined below. 181 
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Outcomes 182 

The modeled ligands from each of the submissions are shown superimposed with their corresponding map 183 

density in Figure 2 panels D-F; selected ligand and whole-model score distributions are shown for all three 184 

targets in Figure 3. The full set of pipeline and assessment team scores and their definitions are provided 185 

in Supplementary Data S3. The superimposed views and score distributions demonstrate that the methods 186 

utilized by the modeling teams produced a range of ligand positions and conformations.  187 

Overall model scoring. With regards to overall Fit-to-Map evaluation, the majority of submitted models 188 

scored very similarly to PDB reference models for all targets, both in terms of the overall map-model FSC17 189 

and protein Q-score10 (Figure 3, rows 9 and 11). For Targets 2 and 3, several teams modestly improved 190 

upon EMRinger score7 (Figure 3, columns 2 and 3, row 10). With regards to overall Coordinates-only 191 

evaluation, many teams were able to improve upon PDB reference models for all targets in terms of 192 

Clashscore32 and CaBLAM32, metrics that identify steric clashes and evaluate protein backbone geometry, 193 

respectively (Figure 3, rows 6, 7). 194 

Ligand and ligand environment scoring. Ligand and ligand environment evaluation methods were 195 

challenged by missing atoms in some submissions, the covalently bound ligand (Target 2), and presence 196 

of charged ligands (Targets 2 and 3). In terms of ligand-specific Fit-to-Map (Ligand Q-score), many teams 197 

made improvements relative to the PDB reference model of Target 1, but scored similarly or worse than 198 

the PDB reference of Targets 2 and 3 (Figure 3, row 1). In terms of covalent geometry (Mogul)24,25, many 199 

ligands in the submitted models were improved relative to references for Targets 1 and 3, while results 200 

were mixed for Target 2 (Figure 3, row 5). With respect to calculated ligand strain energy and 201 

pharmacophore ligand environment modeling, many of the submitted models were improved relative to 202 

references for Targets 1 and 2, but some poses were less favorable (Figure 3, rows 3-4). Ligand strain 203 

energy qualitatively should be less than 3 kcal/mol with minor relaxation using the sampling and scoring as 204 

described in Online Methods. Only a subset of submitting groups carefully considered treatment of ions 205 

(Extended Data Figure 5).  206 

Nucleic Acid scoring. Target 2’s RNA (a typical A-form double helix, with two unpaired nucleotides at the 5՛ 207 

end of the template strand) had close to expected geometries for most submitted models as assessed by 208 

DNATCO nucleic acid Confal scores29 (Figure 3, row 8). Values of torsion angles in the dinucleotide units 209 

assigned to DNATCO NtC classes agreed with expected distributions including sugar ring torsions that 210 

define pucker. Note that prior to running this Challenge, Target 2’s reference model (PDB 7bv2) had been 211 

re-versioned by the deposition authors and re-released by the PDB with several corrections to sequence, 212 

RNA conformation, and CaBLAM outliers38, thus limiting scope for model improvement.  213 

Submitted Model rankings. To evaluate and rank quality of ligand Fit-to-Map within the context of the 214 

macromolecular complex, we developed a novel score, the Ligand + Immediate Vicinity Q-score (LIVQ), 215 

which averages Q-scores of non-hydrogen atoms of the ligand together with all non-hydrogen polymer 216 

atoms in the immediate vicinity of ligand. A distance cutoff of 5 Å was chosen to define the immediate 217 
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vicinity of the ligand for model ranking purposes (LIVQ5, Figure 4A-C); extension to 10 Å yielded similar 218 

results (LIVQ10, Extended Data Figure 2). The results of the analysis show that for each target there are 219 

several models that exhibit very good model-to-map fit comparable to that of reference PDB-deposited 220 

models (Figure 4A-C, blue bars). Nine, two and three submitted models respectively on Targets 1-3 score 221 

better than the corresponding deposited reference model.  222 

Group rankings. Overall ranking of participating groups (Figure 4D) employed a combination of LIVQ5 and 223 

MolProbity score, itself a weighted function of clashes, Ramachandran favored, and rotamer outliers9. 224 

LIVQ5 was weighted higher than stereochemical plausibility, similar to the approach customarily used in 225 

CASP39: 226 

𝑟𝑎𝑛𝑘 =& (0.8 ∗ 	𝑧. 𝐿𝐼𝑉𝑄5!"#$%! + 0.2 ∗ 	𝑧.𝑀𝑜𝑙𝑃𝑟𝑜𝑏𝑖𝑡𝑦!"#$%!)
!"#$%!&'…)

 227 

where z.metric is the number of standard deviations relative to the mean of the score distribution for all 228 

models from each group on the selected target according to the selected metric. Overall, group EM003 229 

(DiMaio) had the best relative performance by this ranking criterion, being the only group that outscored all 230 

deposited reference PDB models (Figure 4A-C).  231 

Alternate group rankings. The model-compare website Group Ranking calculator enables users to explore 232 

other possible ranking formulas: z-scores of up to 40 different individual metrics can be selected for 233 

inclusion with adjustable weighting. Extended Data Figure 3 illustrates an alternate ranking method based 234 

upon thirteen different metrics including ligand, ligand+environment, full model coordinates-only and full 235 

model fit-to-map. By this alternate method, five groups ranked higher than PDB reference models: EM010 236 

(Chojnowski), EM008 (Emsley), EM012 (Palmer), EM003 (DiMaio), and EM009 (Moriarty), and one 237 

performed very close to reference, EM011 (Igaev). 238 

Ligand Quality. The ligand environment for the reference models and the best submitted models is 239 

compared for each target in Figure 5.  240 

For Target 1 (β-Gal, Fig 5 A,D), the PTQ ligand O5 atom connected to the sugar ring is situated at the 241 

bottom of the binding pocket in the reference model and in eight submitted models, whereas in the top-242 

scoring model, as well as five other submitted models, the sugar ring is flipped with oxygen O5 situated at 243 

the top. The flipped ligand fits the density better and has more optimal interatomic distances to water and 244 

protein atoms for hydrogen-bonding, with O5 H-bonded to a coordinated water of the nearby magnesium 245 

ion (see Supplemental section S5). The density shape does not preclude the possibility that both original 246 

and flipped conformations are present, each with partial occupancy, and probescores for the two states are 247 

nearly identical (Extended Data Fig 4A). 248 

For Target 2 (RNAP; Fig 5 B,E), the F86 ligand is very similar for the deposited and top-scoring model, 249 

though distances to base-paired U10 are slightly different. F86 probescores varied greatly across models, 250 

with the reference at 10.1, model EM008_1 at 39.9, and the worst model at -106.9 (Extended Data Figure 251 
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4). Many models did not correctly create the RNA polymer – F86 (remdesivir) covalent bond. In addition, 252 

only five models indicated partial occupancy for F86, yet the map density for F86 and its paired base is 253 

almost exactly half that of adjacent base pairs (Extended Data Fig 4B), indicating 50% occupancy. 254 

In the case of Target 3 (ORF3 ion channel; Fig 5 C,F), the PEE ligand has similar interactions to nearby 255 

atoms and placed water molecules, though with slightly different interatomic distances. The head-group 256 

amino N atom (which has no close contacts within 4Å) points up in the deposited model but away from the 257 

camera view in the top-scoring model (Fig 5F). The long lipid tails of PEE have lower density, with 258 

confusingly interlaced and gapped connectivity that indicates disorder; the ensemble of all PEE ligand 259 

models shown in Fig 2F may be a more meaningful representation than any one individual model. 260 

Discussion  261 

The selected targets for the Ligand Challenge are some of the first structures deposited and released into 262 

PDB that contain ligands modeled into cryo-EM maps with resolution of 3 Å or better. Our Challenge results 263 

revealed that a deposited PDB model’s ligand and local ligand environment may not be fully optimal in 264 

terms of concurrent Fit-to-Map and Coordinates-only measures. For all three targets and especially for 265 

Target 1, adjustments in the ligand and/or ligand environment could be made to the deposited reference 266 

model that improved one or more validation criteria, as demonstrated by several modeler groups. Most of 267 

the submitted models were in the “better” range, where tiny differences in measured scores become 268 

inconsequential. In our previous Challenge, we showed that overall Fit-to-Map and Coordinates-only 269 

metrics are orthogonal measures8; here we see that at a local level, ligand/ligand-environment Fit-to-Map 270 

and Coordinates-only metrics are similarly independent (Figure 3, Extended Data Figure 3B, 271 

Supplementary Data S3). In other words, ligands that fit quite well into density may not be optimized with 272 

respect to ligand coordinates-only validation criteria, and vice versa. 273 

Based on our analyses and experiences running the Challenge, we make the following recommendations. 274 

Recommendation 1, regarding validation of the macromolecular models: For ligand-macromolecular 275 

complexes, the macromolecular model should be subject to standard geometric checks as done for X-ray 276 

crystallographic based models1. These include standard covalent geometry checks and MolProbity 277 

evaluation, including CaBLAM, clashscore9,21,32. Sugar pucker and DNATCO conformational analysis28,29 278 

should be checked for nucleic acid components. The macromolecular model-map fit should be evaluated 279 

by EM Ringer7, Q score10, and FSC17. Serious local outliers (which usually indicate an incorrect local 280 

conformation) should be emphasized, rather than overall average scores. 281 

The individual MolProbity scores, CaBLAM and clashscore have more utility for validation of protein 282 

conformation than overall MolProbity score which incorporates Ramachandran and side-chain rotamer 283 

quality, since cryo-EM model refinement includes these as restraints. 284 

Recommendation 2, regarding validation of ligand models: Ligands in macromolecular complexes 285 

should conform to standard covalent geometry measures (bond lengths, angles, planarity, chirality) as 286 
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recommended by the wwPDB validation report2,4. Additional checks that should be applied to ligands 287 

include fit to density using methods applicable to cryo-EM such as Q-score, occupancy (density strength, 288 

both absolute and relative to surroundings), and identification of missing atoms, including any surrounding 289 

ions.  290 

Ligand energetics should also be examined. Ligand models should be assessed for their strain energy (the 291 

calculated difference in energy between the modeled conformation and the lowest energy conformation in 292 

solution) to identify improbable model geometries and lower energy alternatives35,36. Other methods can be 293 

used but may have different thresholds due to variation in absolute energy values. Strain energy 294 

calculations using neural net potentials offer speed close to force fields with the accuracy of QM calculations 295 

and are predicted to play a primary role in identifying accurate strain energies in the future. More research 296 

is needed to evaluate the overall utility of these deep learning novel methods. 297 

Recommendation 3, regarding validation of ligand environment: The detailed interaction of the ligand 298 

with its binding site is of great importance and should be assessed by several independent metrics. 299 

Pharmacophore modeling33 is an optimized and time-tested energetic measure for how well the site would 300 

bind the specific ligand. LIVQ scores, introduced here, measure the density fit of the surrounding residues 301 

as well as the ligand itself. Probescore32 both quantifies and identifies specific all-atom contacts of H-bond, 302 

clash, and van der Waals interactions. All three types of measures should be taken into account. If the 303 

ligand model shows only weak interaction with its environment, the model is not right. 304 

During the virtual wrap-up workshop, modelers and assessors shared their experiences and strategies to 305 

identify/assess the correct pose for the ligand based on the cryo-EM density maps. It was noted that the 306 

local map resolution for a ligand can be worse than the overall map resolution. As one objective measure, 307 

Q-scores were found to be lower for ligands in the best submitted models than for the nearby environment 308 

(Table 3). Factors that may affect resolvability of local ligand map features include incomplete occupancy, 309 

multiple conformations/poses present, regions of ligand flexibility or disorder, chemical modifications, and 310 

radiation damage. 311 

Recommendation 4, regarding organization of future Challenges: Future cryo-EM Model Challenges 312 

should be organized similarly to the well-established CASP and CAPRI challenge events of the X-ray 313 

crystallography and prediction communities23, with incorporation of automated checks and immediate 314 

author feedback on all model submissions.  315 

Recommendation 5, regarding topics for future Challenges: For future Challenge topics, consider 316 

validation of RNA models, including identification of RNA-associated ions, owing to the rapidly rising 317 

numbers of RNA-containing cryo-EM structures40–42. We also recommend maps determined in the 3.5-to-318 

10 Å resolution range be considered as future targets to reflect the rapid rise in depositions of maps from 319 

subtomogram averaging of components in cell tomograms43–45. There are very few validation tools for that 320 

resolution range. 321 
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Online Methods 322 

Challenge process and organization 323 

The Ligand Model Challenge process closely followed the streamlined procedure adopted in the previous 324 

Model Metrics Challenge8. In the fall of 2020, a panel of advisors with expertise in cryo-EM methods, ligand 325 

modeling and/or ligand model assessment was recruited (J. Černý, P. Emsley, A. Joachimiak, J. 326 

Richardson, R. Read, A. Rohou, B. Schneider). The panel worked with EMDR team members to develop 327 

the challenge goals and guidelines, to identify suitable ligand-containing reference models from the PDB 328 

with cryo-EM map targets from EMDB, and to recommend metrics to be calculated for each submitted 329 

model. 330 

The main stated goal was to identify metrics most suitable for evaluating and comparing fit of ligands in 331 

atomic coordinate models into cryo-EM maps with 3.0 Å or better reported overall resolution. The specific 332 

focus areas for assessor teams suggested by the expert panel were: (1) Geometry and fit to map of small 333 

molecules including ligands, water, metal ions, detergent, lipid, nanodiscs. (2) Model geometry (including 334 

backbone and side-chain conformations, clashes) in the neighborhood surrounding the small molecules. 335 

(3) Local model Fit-to-Map density per residue and per atom. (4) Resolvability at residue or atom-level. (5) 336 

Atomic Displacement parameters (B-factors) recommended optimization practice. A key question to be 337 

answered: How reliable are ligands/waters/ions built into cryo-EM maps? Can they be placed automatically 338 

or is manual intervention needed? 339 

Modeling teams were tasked with creating and uploading their optimized model for each Target Map. The 340 

challenge rules and guidance were as follows: (1) Submitted models should be as complete and as accurate 341 

as possible (i.e., close to publication-ready), with atomic coordinates and atomic displacement parameters 342 

for all model components. (2) Submitted models must use the deposited PDB Reference Model’s residue, 343 

ligand, and chain numbering/labeling for all shared model components. (3) Ligands should ideally be 344 

deleted and refitted independently. (4) Additional polymer residues should be labeled according to the 345 

Reference Model's sequence/residue numbering/chain ids. (5) If additional waters/ions/ligands are 346 

included, they should be labeled with unique chain ids. (6) If predicted hydrogen atom positions are part of 347 

the modeling process, hydrogens should be included in the submitted coordinates. (7) Models are expected 348 

to adhere to the reconstruction’s point symmetry (D2 for Target 1, C1 for Target 2, C2 for Target 3). 349 

Members of cryo-EM and modeling communities were invited to participate in February 2021 and details 350 

were posted at challenges.emdataresource.org. Models were submitted by participant teams between 351 

March 1 and April 15. For each submitted model, metadata describing the full modeling workflow were 352 

collected via a Drupal webform (see Supplementary Data S1, S2), and coordinates were uploaded and 353 

converted to PDBx/mmCIF format using PDBextract46. Model coordinates were then processed for 354 

atom/residue ordering and nomenclature consistency using PDB annotation software (Feng Z., https://sw-355 

tools.rcsb.org/apps/MAXIT) and additionally checked for sequence consistency, ligand atom naming, and 356 



 12 

correct position relative to the designated target map. Models were then evaluated as described below (see 357 

Model evaluation system). 358 

In mid-April 2021, models, workflows and initial calculated scores were made publicly available for 359 

evaluation, blinded to modeler team identity and software used. In the period mid-April to mid-May, 360 

evaluators discovered several problems with the submitted models that blocked assessment software from 361 

completing calculations. The primary issue identified was inconsistent ligand atom naming. Approximately 362 

half of all submitted models had to be revised to make atom names consistent with the deposited reference 363 

models (see Challenge rule (2) above). Corrected coordinate files were provided by the submitting modeler 364 

teams, which were then re-processed as described above and re-released to evaluators. 365 

A virtual 3-day (~4 hours/day) workshop was held in mid-July 2021 to review the Challenge results. All 366 

modeling participants were invited to attend remotely and present overviews of their modeling processes 367 

and/or assessment strategies. Recommendations were made for additional evaluations of the submitted 368 

models as well as for future challenges. Modeler teams, workflows and software were unblinded during the 369 

workshop.  370 

Data sources and Modeling 371 

Target maps were obtained from EM Data Bank47. Target 1 E. coli β-Galactosidase/PETG12: EMD-7770, 372 

Target 2 SARS-CoV-2 RNA-dependent RNA polymerase/Remdesivir13: EMD-30210, Target 3 SARS-CoV-373 

2 ORF3a putative ion channel/phospholipid in nanodisc15: EMD-22898. 374 

Table 1 summarizes the approach and lists the software used by each modeling team. Further details for 375 

each model can be found in Supplement S2. Modeling teams categorized their polymer modeling type as 376 

either ab initio (followed by optimization), optimized, or not optimized. Non-ab initio approaches made use 377 

of polymer coordinates from the following PDB entries. Target 1: 6cvm, 1jz7, 6tte. Target 2: 7bv2, 7b3d, 378 

6x71, 3ovb. Target 3: 7kjr. 379 

Submitted models were further categorized by ligand modeling type, either independently refit or optimized. 380 

Initial ligand coordinates and restraints were obtained from the PDB Chemical Component Dictionary 381 

(CCD)48, Crystallography Open Database (COD)49, or from a PDB entry. Ligand restraint generation 382 

software included BUSTER Grade (Global Phasing Ltd., Cambridge, UK), Phenix eLBOW50, CCP4 383 

AceDRG51, PyRosetta52, AMBER Antechamber53, OpenBabel54, CHARMM CGenFF55, LigPrep 384 

(Schrödinger LLC, New York, USA), and CCP4 monomer library 56. Restraints were not applied by teams 385 

using MD-based approaches. 386 

Ab initio modeling software included ARP/wARP57, Mainmast58, Mainmastseg59, Pathwalker60, Rosetta61, 387 

Modeller62, and DeepTracer63,64. Model optimization software included CDMD65, Phenix22, REFMAC66, 388 

Servalcat67, ProSMART68, MDFF69, CryoFold70, Amber53, MELD71,72, Schrödinger (Schrödinger LLC, New 389 

York, USA). The program doubleHelix73 was used to assign RNA sequence and refinement restraints. 390 
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Atomic displacement parameters (B-factors) were optimized for 32 of 61 models, with 23 applying individual 391 

atomic B-factors. 392 

Participants made use of VMD74, Chimera75, ChimeraX76, Coot26, ISOLDE77, EMDA78 and PyMOL for visual 393 

evaluation and/or manual model improvement of map-model fit. Manipulation of map densities was carried 394 

out using CCP-EM79, EMDA, and LAFTER80.  395 

Model evaluation system 396 

The evaluation pipeline for the 2021 challenge (model-compare.emdataresource.org) was built upon the 397 

basis of the 2019 Model Challenge pipeline8,16. Submitted models were evaluated for >70 individual metrics 398 

in four established tracks: Fit-to-Map, Coordinates-only, Comparison-to-Reference and Comparison-399 

among-Models, plus a new Ligand track, created for comparison of ligand-specific scores (See 400 

Supplementary Data S3). Ligand and Nucleic-acid specific scores provided by Assessor teams (Table 2) 401 

were integrated into data tables alongside scores from the evaluation pipeline to enable comparisons and 402 

composite score generation.  403 

Pharmacophore Modeling 404 

The Molecular Operating Environment platform (MOE) was used to score the placement of ligands. Starting 405 

from the model coordinates submitted by each group, the MOE QuickPrep application was used to prepare 406 

all-atom structures with hydrogens and atomic partial charges. For each target, an ensemble of structures 407 

consisting of all submitted models was input into the db_AutoPH4 application to produce pharmacophore 408 

consensus fields based on the ensemble. The pharmacophore consensus fields were then used to score 409 

the ligand poses of each submission. Additional details are provided in Supplementary Data S4. 410 

Strain energy calculations 411 

Preparation: ligands were extracted from model files. For the T2 F86 ligand, strain energy was measured 412 

after deleting the covalent bond to the RNA polymer 413 

(SMILES:Nc(ncn1)c2n1c([C@]3(C#N)O[C@@H]([C@H]([C@H]3O)O)COP([O-])([O-])=O)cc2). For the T3 PEE ligand, all 414 

models were truncated to just the head group (SMILES:CCC(OC[C@@H](OC(CC)=O)CO[P@]([O-415 

])(OCC[NH3+])=O)=O). Hydrogens were added using MOE/Protonate3D from the Chemical Computing Group. 416 

Molecular Mechanics (MM) Forcefield Strain Energy: predicted ligand energy was calculated by minimizing 417 

each ligand structure using OpenEye/SZYBKI (MMFF94S with Sheffield solvation model) with a maximum 418 

RMSD of 0.6 Angstroms. Predicted global minimum energy was identified by sampling conformations using 419 

OpenEye/Omega and then minimizing each conformer structure using OpenEye/SZYBKI (MMFF94S with 420 

Sheffield solvation model) with no restraints, then selecting the conformer with the lowest minimized energy. 421 

Neural Net Potential (NNP) Energy: predicted ligand energy was calculated by minimizing each ligand 422 

structure in an in-house implementation of the ANI neural net potential37 with a maximum RMSD of 0.6 423 

Ångstroms. Predicted global minimum energy was identified by sampling conformations using 424 
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OpenEye/Omega and then minimizing each conformer structure using the same in-house implementation 425 

of the ANI neural net potential with no restraints. 426 

Reported scores are predicted strain energy as (predicted ligand energy - global minimum energy) in 427 

kcal/mol. NNP was only calculated for the T1 ligand as the method currently does not support atomic 428 

charges. 429 

Molecular Graphics 430 

Molecular graphics images were generated using UCSF Chimera (Figures 2, 5, Extended Data Figure 1). 431 

Classification of unique ligands in PDB introduced by Cryo-EM 432 

Search of the Protein Data Bank via RCSB PDB’s data API81 identified 981 unique non polymer 433 

ligands/PDB Chemical Component Dictionary (CCD) ids in EM-derived PDB structures released through 434 

December 2021. Next, for each ligand, the PDB entry that first introduced the ligand/CCD id was identified. 435 

The 403 unique non-polymer ligands that were found to be introduced in structures determined by cryo-EM 436 

were then manually classified as enzyme modulators (substrates, inhibitors, agonists, co-factors), medically 437 

relevant drugs, lipids, photochemicals (e.g. carotenoids), peptides (amino-acid-based), reagents (buffers 438 

or labels), nucleotides, or steroids (fused rings). 439 
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 474 

Figure 1. Growth of cryo-EM structures and novel ligands derived from them. (A) Cryo-EM maps released 475 

into the EM Data Bank (EMDB) archive by year and resolution range (source: www.emdataresource.org) 476 

up to the end of 2023. (B) Novel non-polymer ligands included in cryo-EM structures by year of release into 477 

the Protein Data Bank (PDB) through 2023. Inset: major categories of novel ligands found in cryo-EM-478 

derived models (through 2021). See Online Methods for details. 479 
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 480 

Figure 2. Ligand Challenge targets and ligands from submitted models. In (A-C), Targets 1-3 are 481 

shown, with each polymer/nucleic acid chain rendered as a separate surface with a different color, in some 482 

cases semi-transparent. Target ligands are shown in red. In (D-F), segmented density representing each 483 

target ligand is shown with a semi-transparent surface, with submitted ligand models overlaid. Map contour 484 

levels are 0.35 (2.3σ), 0.036 (2.6σ), 0.25 (3.7σ) respectively (sigma values were calculated from the full 485 

unmasked map to capture variation in background noise). (G-I) Chemical sketches for each of the target 486 

ligands (source: PDB). Selected individual ligand poses from submitted models superimposed on target 487 

map densities are shown in Extended Data Figure 1.  488 
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 489 

Figure 3 Model score distributions of selected assessments for Targets 1-3. Top 5 rows: ligand and 490 

solvent scores, bottom 6 rows: overall and protein-specific scores. Fit-to-Map based metrics have red 491 

labels; Coordinates-only metrics have black labels. Diamonds indicate individual scores of submitted 492 

models; red triangles (with supporting black arrows) indicate the scores of the reference models; in a few 493 

cases no score is available for the reference model. Each score distribution is plotted against an 494 

orange(left)-white-green(right) color gradient with orange indicating poorer scores, and green indicating 495 

better scores8. 496 
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 497 

Figure 4. Model and modeling group rankings. (A-C) LIVQ5 (Ligand + Immediate Vicinity Q-score 498 

≤5Å) is plotted according to rank for each submitted model (labeled as participant group id, see Table 1, 499 

followed by model number) and for each reference model (labeled as PDB id). Models with good overall 500 

MolProbity (MP) scores (<3.0) are shaded green; those with poor MP scores (>3.0) are shaded red and 501 

starred; reference models are shaded blue and labeled in bold. Immediate vicinity includes all non-hydrogen 502 

model atoms ≤5Å from any ligand non-hydrogen atom. Model rankings with extended vicinity (LIVQ10) are 503 

provided in Extended Data Figure 2. (D) Ranking of Challenge participant groups based on the Fit-to-Map 504 

accuracy of ligands as shown in (A-C), and stereochemical plausibility, as described in the main text. 505 

Overall rank is calculated as the all-target sum of weighted z-scores for the best per-target models from the 506 

group (see equation in main text). 507 
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 508 

Figure 5. Visualization of ligands and surrounding atoms in deposited reference models and best-509 

scoring submitted models (A,B,C) deposited reference models for Targets 1-3 as described in the main 510 

text. (D,E,F) best-scoring submitted models for each target. Modeled solvent atoms are shown as red 511 

spheres; a modeled ion in panels A,D is shown as a dark blue sphere. Numerical labels with dashed lines 512 

indicate atom-to-atom distances in Ångstroms.  513 
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Table 1. Modeling teams with number of models per target, approaches and software used. 514 

ID Modeling Team T1 T2 T3 
Polymer 

Modeling 
Ligand 

Modeling 

Ligand 
Restraints 
Software 

Automati
on level 

Modeling Software 

EM001 
D. Kihara, G. Terashi, D. 

Sarkar, J. Verburgt 
3 2 3 

ab initio or 
optimized 

refit or 
optimized 

MD Force Field partial 

Mainmast, Mainmastseg, 
Rosetta PyMOL, 

Schrodinger, VMD, 
Chimera, MDFF 

EM002 
D. Si, S. Lin, M. Zhao, R. 

Cao, J. Hou 
3 2 3 

ab initio or 
none 

refit Phenix eLBOW full DeepTracer, Phenix 

EM003 A. Muenks, F. DiMaio 3 2 2 optimized refit 
Phenix eLBOW, 

Open Babel 
partial Rosetta, Chimera 

EM004 J. Cheng, N. Giri 2 2 2 ab initio refit PyRosetta partial 
Rosetta, Chimera, 

DeepTracer 

EM005 
G. Pintilie, M. Schmid, W. 

Chiu 
2 1 1 none refit Phenix eLBOW partial Chimera 

EM006 M. Baker, C. Hryc 1 1 1 ab initio refit Phenix eLBOW partial Pathwalker, Phenix 

EM007 
A. Perez, A. Mondal, R. 

Esmaeeli, L. Lang 
1 1 1 optimized optimized 

PyRosetta, 
Antechamber, 

MD Force Field 
partial MELD, Amber, VMD 

EM008 P. Emsley 1 1 1 optimized refit CCP4 AceDRG partial Coot, REFMAC 

EM009 
N.W. Moriarty, P. V. 

Afonine, C.J. Schlicksup, 
O.V. Sobolev 

1 1 1 optimized refit Phenix eLBOW partial 
Coot, Chimera, 

ChimeraX, Phenix 

EM010 G. Chojnowski 1 1 1 ab initio refit CCP4 mon lib partial 
ARP/wARP, ChimeraX, 
Coot, Isolde, Phenix, 

doubleHelix 

EM011 
M. Igaev, H. Grubmüller, . 

Pohjolainen, A. Vaiana 
1 1 1 ab initio optimized MD Force Field partial 

Chimera, Modeller, VMD, 
CDMD 

EM012 

C. Palmer, R. Nicholls, R. 
Warshamanage, K. 

Yamashita, G. Murshudov, 
P. Bond, S. Hoh, M. Olek, 
K. Cowtan, A. Joseph, T. 

Burnley, M. Winn 

1 1 1 optimized 
refit or 

optimized 
CCP4 AceDRG partial 

CCP-EM, Coot, EMDA, 
LAFTER, ProSMART, 
REFMAC, Servalcat 

EM013 

A. Singharoy, S. Mittal, A. 
Perez, D. Kihara, M. 

Shekhar, D. Sarkar, G. 
Terashi, C. Rowley, R. 
Esmaeeli, L. Lang, A. 
Mondal, A. Campbell 

1 1 
 
 

optimized 
refit or 

optimized 
CGENFF partial MDFF, CryoFold, MELD 

EM014 W.-C. Kao, C. Hunte 1  1 optimized refit 
Grade (BUSTER), 
Phenix eLBOW 

manual 
ChimeraX, Coot, Isolde, 

Phenix 

EM015 
G. Schröder, L. Schäfer, K. 

Pothula 
1   optimized refit MD Force Field partial CDMD 
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EM016 D. Kumar   1 optimized refit Phenix eLBOW partial Coot, Phenix 

EM017 
S. Weyand, S.C. Vedithi, T. 

Blundell, S. Brohawn 
  1 optimized refit 

Schrödinger 
Ligprep 

full Schrödinger 

Totals  23 17 21      

  515 
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Table 2. Ligand assessment teams and methods 516 

Assessment Team ID Team members Assessment method 

AT01 C. Shao wwPDB validation report pipeline (Mogul) 

AT02 P. Emsley Coot Tools 

AT03 B. Schneider, J. Černý Nucleic acid conformations, protein hydration analysis 

AT04 J.S. Richardson, C.J. Williams, V. Chen, 

D. Richardson 

Contact analysis, probescore, occupancy, UnDowser, 

CaBLAM, visual examination 

AT05 C.I. Williams, Chemical Computing 

Group Support Team 

Pharmacophore density fields (PH4) 

AT06 B. Sellers, A. Gobbi, S. Noreng, Y. Yang, 

A. Rohou 

Molecular Mechanics Force Field Strain Energy (MM),  

Neural Net Potential Energy (NNP) 

AT07 G. Pintilie, M. Schmid, W. Chiu  Q-score analysis 

  517 
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Table 3. Ligand and Ligand+environment Q-scores for submitted models with highest ligand Q-scores. 518 

Expected_Q is the expected Q-score for well-fitted models in maps at similar resolutions, based on 519 

analysis of a subset of publicly archived maps and models82. Q-scores well below the expected value 520 

indicate either that the map is not as well resolved as other maps at similar resolution, e.g. due to 521 

heterogeneity, or that the model is not optimally fitted to the map. 522 

Target Map 

(Reported 

Resolution) 

Model with 

highest ligand 

Q-score 

Q_ligand 

(ligand atoms) 

Q_near 

(atoms ≤5Å of 

ligand) 

LIVQ5 

(ligand +atoms 

≤5Å of ligand)  

Expected_Q at 

reported map 

resolution 

T1 β-gal (1.9Å) EM005_2 0.809 0.849 0.845 0.846 

T2 RNAP (2.5Å) EM009_1 0.707 0.735 0.731 0.690 

T3 ORF3a (2.1Å) EM016_1 0.767 0.819 0.812 0.791 

 523 

  524 
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 525 

 526 

Extended Data Figure 1. Selected submitted ligand models for each of the Challenge targets, labeled by 527 

team ID and model # (see Table 1), in order of decreasing ligand Q-scores (see Figure 3, row 1) from top 528 

to bottom. The portion of the map corresponding to the ligand is shown as a semi-transparent surface, 529 

along with the model of the ligand. Ligand Q-score is the average Q-score of all non-H atoms in the ligand. 530 

For each atom, the Q-score is measured by correlation of map density to the expected gaussian function, 531 

at points within 2 Å of the atom and closer to the atom than any other non-H atom in the model 10. Higher-532 

scoring ligand models fit better in the cryo-EM density than lower-scoring models.  533 
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 534 

Extended Data Figure 2. Q-score rankings for ligand + extended vicinity and for full models. (A-C) LIVQ10 535 

(Ligand + extended vicinity ≤10 Å) Q-scores (black bars) and full model Q-scores (gray bars) are plotted 536 

for each submitted model and each reference model, with order according to ligand + extended vicinity 537 

rank. Reference model positions are highlighted with red arrows. Target/reference labels are as defined in 538 

the Figure 4 legend.  539 
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 540 

Extended Data Figure 3. Alternative Group Ranking by sum of Ligand, Ligand+Environment, Full Model 541 

Coordinates-only, Full Model Fit-to-Map composite scores. (A) Group ranking (left-to-right) according to the 542 

sum of four composite z-scores, as described below. Only groups that submitted models for all 3 targets 543 

and have rank similar to or better than PDB reference models are shown. (B) Correlation table (n=64) of 544 

scores used to create z-scores and rankings in panel (A) and/or Figure 4. Group composite scores were 545 

calculated per team as follows. For each submitted model, and for each score type, a composite z-score 546 

was calculated. For each target (T1, T2, T3), the model submitted by that group with maximum composite 547 

z-score was selected for inclusion in the final average score over all targets. 548 

Ligand: z=(0.33*z.MogulComposite + 0.33*z.StrainEnergyMM + 0.33*z.Q-ligand)  549 

Ligand+environment: z=(0.33*z.Pharmacore + 0.33*z.Probescore + 0.33*z.LIVQ5)  550 

Full model coordinates-only: z=(0.25*z.Clash + 0.5*z.CablamConf + 0.25*z.CablamCa) 551 

Full model fit-to-map: z=(0.25*z.EMRinger + 0.25*z.Q-Protein + 0.25*z.TEMPySMOC + 0.25*z.PhenixFCS05) 552 



 28 

 553 

 554 

Extended Data Figure 4. Ligand/Ligand Environment Probescores. (A) Molprobity Probescore32 555 

distributions for ligands in Targets 1-3 (reference models: red triangles; submitted model scores are plotted 556 

as gray circles with following exceptions: Target 1, yellow boxes if PTQ sugar ring position was flipped 557 

relative to reference; Target 2, asterisk if F86 was set to half-occupancy; Target 3, blue diamonds if PEE 558 

was modeled as head-group+tails). Scores are plotted in horizontal axis lanes with small random vertical 559 

shifts to visually separate clustered points. Notably, score distributions have wide spreads independent of 560 

noted model features: PTQ sugar orientation, F86 occupancy, or PEE inclusion of tails–although for PEE 561 

the score distribution is noticeably broader when the larger and more variable tails are included. (B) T2 562 

density map with reference model in the region of the F86 ligand38, showing half-strength density for the 563 

remdesivir ligand, implying that only half the molecules have covalently bound inhibitor. (C-E) T2 F86 + 564 

pyrophosphate ligand environments for the reference model (PDBid 7BV2), model EM004_2, and model 565 

EM008_1, respectively. All-atom contact dots are from Probescore, with all-atom clashes in hot pink and 566 

favorable H-bonds and vdW contacts in green and blue. Molecular graphics are shown in KiNG83. 567 

 568 
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 569 

Extended Data Figure 5: Evaluation of ions in submitted models (stereo images). (A) Target 1 6cvm 570 

reference model Mg A2002 (gray sphere) with water ligands (orange spheres), located near the PETG 571 

ligand, with density for classic octahedral coordination. Only six of 23 submitted Target 1 models included 572 

the Mg2+ and all three coordinating waters. Others had either only Mg2+, Mg2+ plus one or two waters, Mg2+ 573 

plus waters with zero occupancy, no atoms modeled, or atoms significantly displaced. (B) Some groups 574 

placed metal ions with weak justification, as exemplified by the Na+ (grey sphere) shown here in model 575 

EM005_1 for Target 3. 576 

  577 
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Supplementary Information 578 

S1: Ligand Challenge Model Submission Statistics and Form (.pdf) 579 

S2: Ligand Challenge Submitted Model Metadata (.xlsx) 580 

S3: Ligand Challenge Scores (.xlsx)  581 

S4: MOE Pharmacore Assessment Summary (.pdf)  582 
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