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Abstract 37 

The prevalence of knee osteoarthritis (OA) is widespread and the heterogeneous patient 38 

factors and clinical symptoms in OA patients impede developing personalized treatments for 39 

OA patients. In this study, we used unsupervised and supervised machine learning to organize 40 

the heterogeneity in knee OA patients and predict disease progression in individuals from the 41 

Osteoarthritis Initiative (OAI) dataset. We identified four distinct knee OA phenotypes using 42 

unsupervised learning that were defined by nutrition, disability, stiffness, and pain (knee and 43 

back) and were strongly related to disease fate. Interestingly, the absence of supplemental 44 

vitamins from an individual’s diet was protective from disease progression. Moreover, we 45 

established a phenotyping tool and prognostic model from 5 variables (WOMAC disability score 46 

of the right knee, WOMAC total score of the right knee, WOMAC total score of the left knee, 47 

supplemental vitamins and minerals frequency, and antioxidant combination multivitamins 48 

frequency) that can be utilized in clinical practice to determine the risk of knee OA progression 49 

in individual patients. We also developed a prognostic model to estimate the risk for total knee 50 

replacement and provide suggestions for modifiable variables to improve long-term knee health. 51 

This combination of unsupervised and supervised data-driven tools provides a framework to 52 

identify knee OA phenotype in a clinical scenario and personalize treatment strategies. 53 

 54 

 55 

 56 

 57 

 58 

  59 
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Introduction 60 

 Osteoarthritis (OA) is the most common form of joint disease and a major cause of pain 61 

and disability and is a heterogenous disease in which aging, obesity, trauma, and genetic 62 

factors are implicated as drivers of pathogenesis1. OA affects 9.6% of men and 18% of women 63 

over 60 years of age2 and 250 million people worldwide3. The United States Food and Drug 64 

Administration (FDA), Centers for Disease Control (CDC), and National Institutes of Health (NIH) 65 

all recognize the impact of OA and have guidelines and research agendas to reduce the 66 

prevalence and burden. This public health issue is projected to worsen as life expectancy 67 

increases and the US population skews towards older individuals4. Still, there are no disease-68 

modifying OA drugs (DMOADs) approved by the FDA or European Medicines Agency5 and as 69 

a result, managing OA remains largely palliative. 70 

 One complicating factor is that OA phenotypes vary from patient to patient and there is 71 

likely no “one size fits all” treatment6. It may be that the failure of numerous phase II/III OA 72 

clinical trials, such as iNOS7, bisphosphonates8, and calcitonin9, 10, has been due to the inability 73 

to decipher the specific underlying drivers of OA at the individual patient level and therefore 74 

DMOADs are not delivered to the most suitable subgroups. Thus, identifying OA phenotypes is 75 

a critical task for the community. Machine learning (ML) is a computational tool that learns 76 

complex non-linear patterns between many variables without precise instructions11 12, 13. 77 

Classification ML models can identify novel, clinically significant features in patients14, 15. These 78 

methods have been used to determine disease phenotypes in many clinical populations16. 79 

Furthermore, predictive ML models have been used to determine disease risk factors, 80 

complications, and survival outcomes in clinical practice17. Our global hypothesis is that the 81 
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heterogeneity in knee OA phenotypes can be organized with unsupervised learning and that 82 

supervised learning models can predict disease progression. 83 

 In the current study, we used unsupervised and supervised ML methods to identify knee 84 

OA phenotypes and predict disease progression in the open access Osteoarthritis Initiative 85 

(OAI) dataset (Figure 1). The OAI is a longitudinal, observational study of knee OA with 4,796 86 

enrollees. It includes greater than 1,000 descriptive variables, including demographics, pain, 87 

exercise habits, diet and nutrition, socioeconomic status, medical history, radiographic 88 

evaluation, and psychological evaluation. We determined OA phenotypes by performing 89 

unsupervised learning on enrollment data (k-means clustering) and visualized relationships 90 

between phenotypes via dimensionality reduction. Then, we utilized data from multiple follow-91 

up time points over 8 years to develop supervised learning models that predicted long-term 92 

disease progression, including the likelihood of total knee replacement (TKR). 93 

 94 

Materials and Methods 95 

Data extraction and cleaning 96 

 We included all 4,796 participants who enrolled in the OAI study with 1032 variables that 97 

were measured at enrollment (variables: Data S1). We performed a data cleaning procedure 98 

to remove individuals with incomplete data, remove variables that had missing values or low 99 

variance, and remove variables that were highly correlated. All data was processed in either 100 

Python or R as noted below. 101 

 First, we excluded 127 subjects with more than 595 variables (50% of total variables) 102 

whose value were missing (Figure S1A). Next, we generated a correlation matrix for each 103 
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combination of numerical and categorical variables with the following calculations: 1) numerical 104 

vs. numerical: Pearson’s coefficient (pearsonr function from scipy.stats Python library, V1.10.1); 105 

2) categorical vs. categorical: Cramers’ V (customized function based on Python); 3) numerical 106 

vs. categorical: R value from ordinary least squares liner regression (ols function from 107 

statsmodels.formula.api Python library, V0.13.5). We performed hierarchical clustering 108 

(Heatmap function from ComplexHeatmap R package, V2.14.0) to group variables in the 109 

correlation matrix and found that variables with missing values were grouped together. We 110 

screened different cutoffs (i.e., 25%, 50%, 80%) for the relative subject number of missing 111 

values (number of subjects with missing value relative to total subject number) and found that 112 

a 25% cutoff removed clustered variables with majority missing values (Figure S1B, C, and D) 113 

(Data S1). Therefore, we removed 295 variables among which more than 25% data points were 114 

missing (Figure S1A). 115 

 116 

Clustering and dimensionality reduction for identifying knee OA phenotypes. 117 

 After data extraction and cleaning, we identified groups of similar individuals via 118 

unsupervised learning and performed dimensionality reduction for data visualization. First, we 119 

used the one-hot encoding method (get_dummies function from pandas Python library, V1.5.3) 120 

to convert the categorical variables to numerical variables. We replaced missing values using 121 

a k-Nearest Neighbors imputation (KNNImputer function from sklearn.impute Python library, 122 

V1.2.2) with 2 neighboring samples and uniform weights. Imputed data was scaled and 123 

normalized (StandardScaler function from sklearn.preprocessing Python library, V1.2.2) and 124 

principal component reduction was performed (PCA function from sklearn.decomposition 125 
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Python library, V1.2.2). Based on the elbow method for variance thresholding (Figure S2A), 126 

the top 16 principal components were selected for dimensionality reduction (Uniform Manifold 127 

Approximation and Projection, UMAP, umap function from umap-learn Python library, V0.5.3) 128 

and K-Means clustering (KMeans function from sklearn.cluster Python library, V1.2.2). We 129 

calculated Silhouette scores (Figure S2B, silhouette_score function from sklearn.metrics 130 

Python library, V1.2.2) for 2 to 21 clusters and identified that 4 was the optimal cluster number. 131 

 We performed statistical comparisons to identify variables that differentiated each cluster. 132 

We used the Kruskal Wallis test for numerical variables (kruskal.test function from stats R 133 

package, V4.2.3) and Fisher’s exact test for categorical variables (fisher.test function from stats 134 

R package, V4.2.3). P-values for both numerical and categorical variables were adjusted by 135 

Benjamini & Hochberg method (Data S2, adjust_pvalue function from rstatix R package, 136 

V0.7.2). We identified the top 10 variables that differentiated each cluster based on the following 137 

criteria: numerical variables: maximum fold difference between means, categorical variables: 138 

Chi-square statistic (chisq.test function from stats R package, V4.2.3). Cluster annotations were 139 

determined by authors based on these cluster markers. 140 

 141 

Long-term outcomes across clusters and cohorts 142 

 For the four clusters identified in our study and for the three cohorts defined at OAI data 143 

collection, we performed Kaplan-Meier (KM) survival analysis using data from enrollment and 144 

each follow-up visit on the following 6 outcome variables: Kellgren-Lawrence (KL) grade, joint 145 

space width (minimum joint space width in the medial compartment), Western Ontario and 146 

McMaster Universities Osteoarthritis Index (WOMAC) disability score, WOMAC stiffness score, 147 
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WOMAC pain score, WOMAC total score (WOMTS). We defined a survival event as the change 148 

of each outcome variable from the first visit to any follow-up visit above a defined threshold (KL 149 

grade Δ≥1; joint space width Δ≤-25%; all WOMAC scores Δ≥25%). We used exact enrollment 150 

and visit dates to account for variability in time between visits (Data S3). Once a progression 151 

event was identified, all following visits were discarded. We also extracted whether an individual 152 

received a total knee replacement (TKR) in either knee, where TKR was considered as the 153 

survival event. With such converted survival information, we built KM curves for all outcome 154 

variables for both knees (surv and survfit function from survival R package, V3.5.5). To quantify 155 

the hazard ratios for each cluster, we built Cox regression models (coxph function from survival 156 

R package, V3.5.5). 157 

 To further examine the prognostic values of our clusters, we implemented the same KM 158 

survival analysis on all four clusters within the progression cohort and incidence cohort 159 

separately. We built KM curves for all outcomes variables for both knees (surv and survfit 160 

function from survival R package, V3.5.5). To quantify the hazard ratios for each cluster within 161 

these two cohorts, we built Cox regression models (coxph function from survival R package, 162 

V3.5.5). 163 

 164 

Development of a clinical tool to predict cluster assignment via supervised learning. 165 

 With well-defined clusters and survival outcomes by cluster, we developed a clinical tool 166 

that assigns individual patients to the appropriate cluster to determine their long-term knee 167 

health. To do so, we benchmarked common supervised learning models to predict cluster 168 

assignment. We evaluated logistic regression (LogisticRegression function from 169 
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sklearn.linear_model Python library, V1.2.2; solver: newton-cg solver, maximum iterations: 170 

1000), random forest (RandomForestClassifier function from sklearn.ensemble Python library, 171 

V1.2.2; trees: 100, entropy criterion), and support vector machine (SVC function from 172 

sklearn.svm Python library, V1.2.2; kernel: sigmoid, probability estimation enabled). 173 

 As above, we utilized numerical data and one-hot encoded categorical data as input data. 174 

We scaled each variable to its corresponding minimum and maximum range (MinMaxScaler 175 

function from sklearn.preprocessing Python library, V1.2.2). To determine the optimal number 176 

of input variables, we first ranked input variables based on the importance metrics calculated 177 

by fitting a random forest classifier (RandomForestClassifier function from sklearn.ensemble 178 

Python library, V1.2.2) to all the input variables with the cluster labels (Data S4) and then 179 

screened the input variable number from 2 to 50 for all ML models. To obtain robust accuracies 180 

of each input variable number, we utilized a random permutation cross-validator with 20 splits, 181 

and within each split, 90% samples were considered as training data while the left 10% were 182 

validation data (ShuffleSplit function from skleran.model_selection Python library, V1.2.2). As a 183 

multi-classification problem, we computed the accuracy classification score (accuracy_score 184 

function from sklearn.metrics Python library, V1.2.2) and area under the receiver operating 185 

characteristic curve (ROC AUC) using both one-vs-rest and one-vs-one approaches 186 

(roc_auc_score function from sklearn.metrics Python library, V1.2.2) (Data S5). We averaged 187 

the above metrics across all 20 test splits for each input variable number. 188 

 The most accurate model was exported and built on a web-based interface 189 

(www.predictoaphenotpe.org). With free registration, users will be able to fill in required 190 

information of the patient and the website will provide a prediction of the cluster (phenotype) 191 

http://www.predictoaphenotpe.org/
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this patient could belong to. 192 

 193 

Supervised learning for predicting WOMTS and identifying key predictor variables. 194 

 We benchmarked common supervising learning models to predict WOMTS at 4 and 8 195 

years from enrollment data. To identify effective predictor variables, we computed the 196 

correlations between input variables and WOMTS across all yearly visits for both knees. We 197 

computed Spearman’s correlation coefficients (spearmanr function from scipy.stats.stats 198 

Python library, V1.10.1) or R from ordinary least squares regression (ols function 199 

statsmodels.formula.api Python library, V0.13.5) to quantify the correlation between WOMTS 200 

and numerical or categorical variables (Data S6). We visualized the top 10 highly correlated 201 

variables based on their average correlation coefficients. 202 

 We directly predicted the WOMTS for both knees at 4th and 8th year visit. We evaluated 203 

linear regression (LinearRegression function from sklearn.linear_model Python library, V1.2.2), 204 

random forest (RandomForestRegressor function from sklearn.ensemble Python library, V1.2.2; 205 

trees: 10, 20, 40, 60, 80, 100), support vector machine (SVR function from sklearn.svm Python 206 

library, V1.2.2; kernels: linear, polynomial, rbf, sigmoid; regularization: 100, kernel coefficient: 207 

reciprocal of variable number), and an artificial neural network (ANN). We followed the same 208 

scaling, input variable selection, and cross-validation procedures used in predicting clusters. 209 

As WOMTS is a continuous variable, all ML models were regression models and used to 210 

compare the measured and predicted WOMTS we calculated root mean square error (RMSE, 211 

mean_squared_error function from sklearn.metrics Python library, V1.2.2) and Pearson’s 212 

correlation coefficient (PCC, pearsonr function from scipy.stats Python library, V1.10.1) as 213 
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accuracy metrics (Data S7). Average accuracy metrics across all cross-validation tests were 214 

calculated to select the optimal input variable number. 215 

 For the ANN, we built a sequential model (Sequential function from keras.moedls Python 216 

library, V2.11.0) with one input layer, adaptive hidden layers, and one output layer (Dense 217 

function from keras.layers Python library, V2.11.0). The node number of the input layer was 218 

dependent on the number of input variables during the screening, and the output layer had one 219 

node to represent the WOMTS. The hidden layers were adaptively designed based on the 220 

number of input variables, where each hidden layer was 75% of its previous layer (including 221 

input layer). All activation functions were linear functions, Adam optimization with 0.001 as the 222 

learning rate (optimizer.Adam function from tensorflow.keras Python library, V2.11.0) was used 223 

to train the model, and mean squared error was taken as the loss function. We trained the 224 

model with 100 epochs and 10 as the batch size. 225 

 As the ANN achieved the most accurate and robust predictions, we utilized the ANN model 226 

to identify the most effective predictor variables using a customized random search algorithm. 227 

We firstly built the same sequential model (Sequential function from keras.models Python 228 

library, V2.11.0) with one input layer, adaptive hidden layers, and one output layer, adaptive 229 

hidden layers, and one output layer (Dense function from keras.layers Python library, V2.11.0) 230 

as the above ANN model. The node number of the input layer was 25 based on the screening 231 

results, and the output layer had one node to represent the WOMTS. Similarly, the hidden 232 

layers were adaptively designed based on the number of input variables, where hidden layer 233 

was 75% of its previous layer (including input layer). All activation functions were linear function, 234 

Adam optimization with 0.001 was the learning rate (optimizer. Adam function from 235 
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tensorflow.keras Python library, V2.11.0) was used to train the model, and mean squared error 236 

was taken as the loss function. We trained the model with 100 epochs and 10 as the batch size. 237 

Here, we randomly selected 25 variables to train an ANN model based on the above design 238 

principles. To reduce the number of potential combinations, we only selected variables from the 239 

cluster markers identified from the unsupervised clustering (adjust p-value <0.05, Data S2). 240 

Within each test, we also used the same random perturbation cross-validator with the same 241 

parameters to obtain the accuracies. After 10,000 random selection tests, we ordered the test 242 

based on their average prediction accuracy and selected the top 10 to 1,000 most accurate 243 

tests to investigate the composition of their input variables. We quantified the popularity of each 244 

variable by computing the relative occurrences of each variable within the most accurate tests 245 

to the total 10,000 tests. 246 

 247 

Additional Statistics 248 

 Graphs and statistics were performed using R (v4.2.3), and Python (v3.9.16) as described. 249 

The Kruskal Wallis test, Fisher’s exact test, and log-rank test were implemented to compare 250 

numeric, categorical, and survival data across different phenotypes or cohorts. Pearson’s 251 

correlation coefficient, Spearman’s correlation coefficients, and Cramer’s V were calculated to 252 

quantify the associations. Accuracy, one-vs-one, and one-vs-rest AUC were calculated from 253 

multi-class prediction. Root-mean-square-error and correlation between prediction and 254 

measurements were calculated for regression. Experiment specific detailed statistical methods 255 

are described in corresponding figure legends and Methods sections. Calculated p values are 256 

displayed as *, p<0.05; **, p<0.01; ***p<0.001; ****, p<0.0001. 257 
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 258 

Data and code availability 259 

 All scripts used in this publication are available in 260 

https://github.com/weihuaguo/cluster_oai. All other data are available in the main text or the 261 

supplementary materials. 262 

 263 

Results 264 

Unsupervised learning identified four knee OA phenotypes in OAI. 265 

 We identified four knee OA phenotypes by unsupervised learning: a group with low 266 

supplemental and dietary vitamin intake (‘Low Vitamin’), a group with poor knee health (‘Poor 267 

Knee’), a group with intermediate knee health (‘Intermediate Knee’), and a group with good 268 

knee health (‘Good Knee’) (Figure 2A, Table 1). These names are based on the most 269 

significant and abundant variables between the groups (Figure 2B&C, Figure S3A&B). 270 

Specifically, the Low Vitamin group was characterized by low frequency of vitamin 271 

supplementation and low percentage of vitamins obtained from daily food intake, despite 272 

demonstrating good knee health and daily function. The Poor Knee group was characterized 273 

by poor knee health, in addition to low quality of life, poor general health, and poor daily function. 274 

The Intermediate Knee group exhibited relatively poor knee health, intermediate quality of life, 275 

and intermediate daily function. Lastly, the Good Knee group demonstrated good knee health, 276 

along with good quality of life, good general health, good mental health, and good daily function, 277 

(Figure 2D-I). 278 

 279 

https://github.com/weihuaguo/cluster_oai
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Knee OA phenotypes are associated with disease progression. 280 

 Survival analysis using KL grade (Figure 3A), joint space width (Figure 3B), WOMAC total 281 

score (Figure 3C), WOMAC pain score (Figure 3D), WOMAC stiffness score (Figure 3E), and 282 

WOMAC function score (Figure 3F) showed that the Good Knee group in both right and left 283 

knees. KL grade matched these trends for both knees; however, joint space width matched this 284 

trend in the right knee (p=0.00027) but not the left knee (p=0.44). By directly comparing these 285 

outcomes through all visits, we found that Good Knee group always had the lowest KL grade 286 

(Figure S4A), highest joint space width (Figure S4B), lowest WOMAC total score (Figure S4C), 287 

lowest WOMAC pain score (Figure S4D), lowest WOMAC stiffness score (Figure S4E), and 288 

lowest WOMAC function score (Figure S4F) on average. More importantly, survival analysis 289 

with total knee replacement outcome showed that the Good Knee group had the highest 290 

survival probability (Figure 3G). 291 

 Since the OAI has defined sub-cohorts (progression, incidence, and non-exposed control 292 

group)18, we first examined the composition of these sub-cohorts within our knee OA 293 

phenotypes (Figure 4A). We found that more than 85% of Good Knee subjects were from the 294 

incidence cohort, more than 60% of Poor Knee subjects were from the progression cohort, and 295 

more than 70% of Low Vitamin subjects were from incidence cohort. Since disease progression 296 

in these sub-cohorts were clinically well-defined, we tested our definitions of disease 297 

progression and survival by examining whether our cluster-based survival analysis results 298 

using patient WOMAC total scores (Figure S5A), KL grade (Figure S5B) joint space width 299 

(Figure S5C), and TKR (Figure S5D). As expected, our definition of disease progression and 300 

survival analysis comprehensively captured the disease progression based on the pre-defined 301 
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sub-cohorts (i.e., non-exposed control group was the least progressed and progression cohort 302 

was the most progressed). Additionally, we also investigated the prognostic values of our knee 303 

OA phenotypes within incidence and progression sub-cohorts. The results showed that our 304 

knee OA phenotypes remained partially significant in patient WOMAC total scores (Figure 4B), 305 

KL grade (Figure 4C) and joint space width (Figure 4D), and TKR (Figure 4E) within the 306 

incidence and progression cohort. Except for joint space width, our four OA phenotypes tended 307 

to be associated with all the other clinical outcomes (p<0.10). 308 

 309 

Supervised learning accurately predicts cluster assignment. 310 

 To accurately predict knee OA phenotypes, we benchmarked commonly used supervised 311 

learning models (four major types, i.e., logistic regression, random forest with six different tree 312 

numbers, supporting vector classifier with four different kernels). Generally, all models reached 313 

accuracy around 90%, above 0.975 AUC for ROC in both one-versus-one and one-versus-rest 314 

analyses (Figure 5A). Furthermore, we found that a minimum of five variables were necessary 315 

to achieve optimal predictive accuracy, namely: WOMAC disability score of the right knee, 316 

WOMAC total score of the right knee, WOMAC total score of the left knee, supplemental 317 

vitamins and minerals frequency, and antioxidant combination multivitamins frequency (Figure 318 

5B). 319 

 320 

WOMAC total score predictive modeling 321 

 Since WOMAC total score for both right and left knee is among the top variables for 322 

constructing accurate group prediction model, we first used univariate analysis to identify 323 
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predictors at the screen phase (baseline) for the WOMAC total score of each visit (Figure 6A). 324 

The results showed that variables that were positively correlated were baseline right knee 325 

functional scores (difficulty in bathtub, standing, bending, car, shopping), baseline right knee 326 

WOMAC pain and disability scores, and baseline right and left knee WOMAC total scores. 327 

Variables that were negatively correlated include comorbidities and Knee Injury and 328 

Osteoarthritis Outcome Score (KOOS) scores (left and right knee KOOS pain, right knee KOOS 329 

quality of life, left and right knee KOOS symptom score). 330 

 We then developed ML prediction-based multivariate analysis to identify a set of key 331 

variables related to WOMAC total scores (details in Methods). The principle of this analysis is 332 

that the input variables, which are necessary to accurately predict WOMAC total scores through 333 

ML models, are key variables. Based on this principle, we first benchmarked 12 multivariate 334 

supervised ML models on their accuracies in predicting WOMAC total scores for either knee. 335 

We found that the ML model built by ANN, linear regression, and an 80-tree random forest 336 

showed the best predictive accuracy reflected by lower RMSE (Figure 6B) and higher PCC 337 

between measurements and predictions (Figure 6C). Because ANN has the best robustness19, 338 

we utilize ANN as the ML model and randomly selected 25 input variables to train the ANN 339 

model and evaluate the corresponding prediction accuracy. With 10,000 random selections, we 340 

analyzed the relative occurrences of the input variables within most accurate predictions. Based 341 

on this analysis, we identified the top 5 variables with highest average occurrences from top 10 342 

to 1,000 most accurate predictions of WOMAC total score at both 4-year and 8-year follow-ups. 343 

The results showed that variables had the greatest relative occurrence were age, iron 344 

supplement, knee difficulty – kneeling, difficulty with knees, B12 supplement, left knee WOMAC 345 
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disability score, left knee WOMAC pain score, and left knee WOMAC total score. Among them, 346 

the baseline right knee WOMAC disability score had the greatest relative occurrence (Figure 347 

6D). 348 

Discussion 349 

 OA is a heterogeneous disease and modern multivariate solution is likely necessary to 350 

identify disease phenotypes and progression patterns. In this study we identified four distinct 351 

knee OA phenotypes using unsupervised learning in the 4,796 participants of the Osteoarthritis 352 

Initiative. Phenotypes were primarily determined by nutrition and disability, stiffness, and pain 353 

(knee and back) scores and were strongly related to disease fate. In addition, we established 354 

a phenotyping tool from 5 variables that can be utilized in clinical practice to determine the risk 355 

of knee OA progression in individual patients. We also developed a prognostic model that can 356 

predict the risk of total knee replacement and provide suggestions for modifiable variables to 357 

improve long-term knee health. 358 

 We utilized all available subjects and variables from 10 years of follow-up data in the OAI. 359 

Our results show four distinct phenotypes that can be determined by simple questionaries 360 

related to general health, knee health, nutrition, and psychological evaluation. The groups 361 

included a group with a hallmark of low supplemental and dietary vitamin intake (‘Low vitamin’), 362 

a group with hallmarks of poor knee health (‘Poor Knee’), a group with hallmarks of intermediate 363 

knee health (‘Intermediate Knee’), and a group with hallmarks of good knee health (‘Good Knee’) 364 

(Figure 2A, Table 1). The names of these groups are based on the most statistically significant 365 

and prevalent variables between the groups (Figure 2B&C). Among them, the top variables 366 

were related to the frequency of vitamins/minerals intake, the amount of the supplemental 367 



 17 

Calcium, Beta-Carotene, Zinc, vitamin B6, B12, and D, WOMAC sub-scores, and WOMAC total 368 

score. Previously, other studies have tried to identify knee OA phenotypes. For example, by 369 

using biochemical markers data from IMI-APPROACH cohort, Angelini et al.20 found that OA 370 

patients could be divided into three phenotypes: low tissue turnover, structural damage, and 371 

systemic inflammation. In addition, by using RNA sequencing data from knee OA patients tissue 372 

(cartilage, subchondral bone, and synovium) Yuan et al.21 showed that OA patients could be 373 

divided into four subtypes: metabolic disorder subtype, collagen metabolic disorder subtype, 374 

activated sensory neuron subtypes, and inflammation subtype. In this work, we present a 375 

concise and clinically applicable OA phenotyping method that does not require intra-articular 376 

procedures, bloodwork, or sequencing that may be susceptible to error from environmental 377 

factors22.  378 

 Survival analysis revealed that the phenotypes defined by unsupervised learning were 379 

associated with long-term knee symptom, structure, and clinical outcomes (WOMAC total score, 380 

KL grade, TKR). More importantly, we developed phenotype prediction models and narrowed 381 

the necessary parameters down to 5 variables (WOMAC disability score, right knee; WOMAC 382 

total score, right knee; WOMAC total score, left knee; multivitamin frequency; antioxidant 383 

multivitamin frequency) which can be conveniently deployed in daily clinical scenarios. In the 384 

past, several studies tried to use ML methods to establish predictive models for TKR and 385 

achieved good accuracy23-25. However, there are limitations prohibiting these models from wide 386 

clinical use. Firstly, willingness to receive TKR is determined not only by medical related factors 387 

but also by others such as socioeconomic status and culture. Secondly, not all models served 388 

as a prognostic purpose. As OA is a chronic condition that is widespread, often ongoing, and 389 
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frequently marked by episodes of exacerbation, long-term management of the disease is crucial 390 

for individualized treatment. Thus, the most important scientific question in this field is how to 391 

identify the appropriate patient for the correct treatment. Previously, Driban et al.26 utilized OAI 392 

data and found that 80% of people with end-stage knee OA did not have progressive 393 

radiographic severity, suggesting radiographic results alone are not an optimal variable for 394 

disease stage definition. In addition, Pierson et al.27 used an algorithmic approach and found 395 

out that radiologist-based X-ray interpretation could only explain 9% of unexplained racial 396 

disparities in pain, which makes determining the risk for TKR more difficult. We surmise that 397 

our approach which incorporates a holistic view of knee health is well-suited to a clinical setting. 398 

 Interestingly, we identified a phenotype of Low Vitamin group with similar survival 399 

probability to the Good Knee group. The signature variables associated with the population 400 

from this group were the frequency of vitamin A and C intake. Antioxidant supplements such as 401 

vitamin A and C have long been advocated for the treatment of OA28. Although various 402 

approaches have been employed to tackle this issue, there is still a dearth of substantial 403 

evidence to support these treatments. In a systematic review, Canter et al.29 summarized 9 404 

RCTs results and found that no convincing evidence to support vitamin A and C in OA treatment. 405 

Kraus et al. identified that Vitamin C can actually exacerbate OA in a guinea pig model30. In 406 

recent study, Qu et al.31 applied mendelian randomization to the data from UK Biobank and 407 

failed to find the causal association between vitamin A and OA. Our findings were supported by 408 

these data as a low supplemental vitamin intake did not worsen OA prognosis. 409 

 In the current study, other relevant factors like BMI, comorbidities, and depression 410 

statistically differentiated phenotypes in addition to signature variables mentioned above. BMI 411 
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was one factor that contributed to the phenotypes and fate of the disease. This is consistent 412 

with the literature that suggests that BMI has long been considered as a risk factor for OA32. 413 

We also found that higher comorbidities were associated with worse knee OA phenotype and 414 

disease progression. Gustafsson et al.33 have shown that compared to matched references 415 

from the general population, knee OA patients were more commonly associated with one or 416 

more comorbidities, which was independent of socioeconomic status. We found the highest 417 

depression score and worst prognostic results in the Poor Knee group, which implies the 418 

importance of depression intervention in knee OA management. The association between 419 

mental health, especially depression, and knee OA has long been established. In an OAI sub-420 

cohort, Rathbun et al.34 has reported the association between depression and faster disease 421 

progression and faster disease progression among individuals with radiographic knee OA. 422 

Additionally, in an older OA cohort, Parmelee et al.35 further confirmed depression as a 423 

moderator between OA pain and negative affect. 424 

 Our study has several strengths. First, our phenotyping models are parsimonious and do 425 

not rely on invasive or expensive genetic and biomarker outcomes. Secondly, all predictors can 426 

be collected when a patient seeks clinical care using validated questionnaires. Thirdly, the 427 

phenotyping we developed can predict long-term symptomatic and radiographic OA 428 

progression using modifiable predictors. Thus, it could be used to assist clinicians for clinical 429 

decisions to modify the risk factors and potentially lead to change of disease progression. 430 

Finally, our models were designed to not only address end-stage knee OA patients, but also 431 

individuals seeking clinical care due to recent knee pain, thus allowing for comprehensive 432 

disease cycle management. 433 
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 Several limitations of our study are worth noting. First, although the OAI dataset used for 434 

our analysis enrolled a diverse patient group from sites across the USA, our findings need to 435 

be validated in independent populations. Secondly, in the current study, it was not possible to 436 

assess how using our phenotyping model as a decision aid would affect patient outcomes. 437 

However, we have built our phenotyping model into an online platform which can be openly 438 

accessed as validation step prior to its approval by regulatory bodies for clinical use. 439 

 440 

Conclusion 441 

 In summary, we identified four distinct knee OA phenotypes using unsupervised ML 442 

methods reflecting differences in knee symptoms and supplemental vitamin intake. Phenotypes 443 

were strongly associated with long-term disease fate. Supervised ML results confirmed that this 444 

phenotyping could be achieved with parsimonious, modifiable variables, and we propose this 445 

strategy could improve clinical decisions. 446 
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Figure Legends 477 

Figure 1. Overview of the experiment design. Osteoarthritis Initiative (OAI) data was 478 

organized and cleaned with 4,669 subjects (patients) and 737 variables. Unsupervised 479 

clustering was used to stratify the patients into four clusters. The detailed characteristics of 480 

each cluster were investigated with cluster annotation and survival analysis. A web-based 481 

clinical tool was developed to predict the cluster new patient could belong to with required 482 

information. Based on the most accurate WOMAC total score (WOMTS) prediction from an 483 

artificial intelligence model, and OA care guideline was also provided for translational usage. 484 

 485 

Figure 2. Cluster characteristics of OAI. (A) Four clusters on UMAP. (B) Top 10 numeric 486 

variables of each cluster. Kruskal-Wallis test was used to determine the statistics between the 487 

cluster of interests and all the other clusters together. Benjamini & Hochberg method was used 488 

to adjust the p-value. The numerical variables with adjusted p-values <0.05 were ranked by the 489 

log2 fold changes (log2FC) to select the top 10 of each cluster. (C) Top 10 categorical variables 490 

of each cluster. Fisher’s exact test was used to determine the statistics between the cluster of 491 

interests and all the other clusters together. Benjamini & Hochberg method was used to adjust 492 

the p-value. The categorical variables with adjusted p-values <0.05 were ranked by the 493 

Pearson’s chi-squared statistics to select the top 10 of each cluster. (D)~(I) Key variables 494 

categorized into demographic (V00AGE, age; P02RACE, race; P02SEX, gender; P01BMI, BMI 495 

at baseline), medical record (V00COMRB, Charlson Comorbidity Index; V00HSPSS, Short 496 

Form 12 Physical Summary Score), pain evaluation (V00WOMKPL/R, WOMAC pain score of 497 

left/right knee), diet & nutrition (V00VITCCV, Vitamin C single vitamin, how often taken in past 498 
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12 months; V00SUPVITC, average daily Vitamin C supplement, mg), psychological evaluation 499 

(V00CESD, Center for Epidemiology Studies Depression Index; V00HSMSS, Short Form 12, 500 

Mental Summary Score), socioeconomic status (V00INCOME, annual personal income; 501 

V00EDCV, education level) on UMAP. 502 

 503 

Figure 3. Prognostic values of 4 OA phenotypes. Kaplan-Meier plots (first and third from left) 504 

and forest plots (second and fourth from left) considering good knee health cluster as reference 505 

of KL grade (A), joint space width (B), WOMAC total score (C),WOMAC pain score (D), 506 

WOMAC stiffness score (E), WOMAC function score (F), and total knee replacement (G) were 507 

shown in a table format for both left (left two columns) and right (right two columns) knees. Log-508 

rank p-value was shown in the KM plots. A univariant cox regression model for each outcome 509 

variable and each knee was built with the Good Knee group as the reference group and 510 

visualized in the forest plots. 511 

 512 

Figure 4. Prognostic values of four OA phenotypes within baseline cohorts. (A) Relative 513 

distribution of 4 OA phenotypes within each baseline cohort. Kaplan-Meier plots for WOMAC 514 

total score (B), KL grades (C), joint space width (D), total knee replacement (E) were shown in 515 

a table format for both left (left first and third columns) and right (left second and fourth columns) 516 

knees within incidence cohort (left two columns) and progression cohort (right two columns). 517 

Log-rank p-value was shown in the KM plots. 518 

 519 

Figure 5. Prediction accuracies of cluster labels. A) Screening the optimal number of input 520 
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variables (from 2 to 50) with different machine learning models (lr=linear regression, logistic 521 

regression model; rf10/20/40/60/80/100tree = random forest model with 10/20/40/60/80/100 522 

trees; svclinear/poly/rbf/sigmoid = supporting vector classifier with linear/polynomial/radial 523 

basis function/sigmoid kernels). As a multi-class prediction problem, three accuracy metrics 524 

were used, i.e., accuracy (relative correct prediction numbers), roc_auc_ovo (area under curve 525 

of receiver operating characteristic curve, one vs one), and roc_auc_ovr (area under cuve of 526 

receiver operating characteristic curve, one vs rest). B) Detailed screening of the optimal 527 

number of input variables (from 5 to 15). The dot represents the mean of corresponding metric 528 

and the error bar represents the standard error of the mean from the cross-validation. 529 

 530 

Figure 6. Prediction accuracy of WOMAC total score at fourth and eighth year. A) 531 

Correlation coefficients between WOMTS of all visiting years and baseline variables. The top 532 

10 baseline variables were colored based on the average correlation coefficients crossing all 533 

the visiting years. W. = WOMAC, K.=KOOS. B) Screening the optimal number of input variables 534 

(from 2 to 50) with different machine learning models (linear, linear regression model; 535 

rft10/20/40/60/80/100 = random forest regressor with 20/40/60/80/100 trees; 536 

svrlinear/poly/rbf/sigmoid = supporting vector regressor with linear/polynomial/rbf/sigmoid 537 

kernels, ann = artificial neural network). As a regression problem, two accuracy metrics were 538 

used, i.e., RMSE (root mean squared error) and r (correlation coefficient between prediction 539 

and measurements). D) Top 5 variables with highest occurrences from the top 10000 most 540 

accurate prediction tests. We randomly selected 25 input variables from the cluster markers 541 

and used these variables to train an ANN model with the same settings with cross-validation. 542 
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The above procedure was repeated 10,000 times. The top 1000 most accurate tests were 543 

extracted and the relative occurrence of each variable to these 1000 tests was calculated. The 544 

top 5 with highest relative occurrences for WOMTS of both left and right knees at fourth and 545 

eighth year were selected to visualize here. The dot represents the relative occurrences. W. = 546 

WOMAC, K.=KOOS 547 

  548 
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Figures

Figure 1

Overview of the experiment design. Osteoarthritis Initiative (OAI) data was organized and cleaned with
4,669 subjects (patients) and 737 variables. Unsupervised clustering was used to stratify the patients into
four clusters. The detailed characteristics of each cluster were investigated with cluster annotation and
survival analysis. A web-based clinical tool was developed to predict the cluster new patient could belong
to with required information. Based on the most accurate WOMAC total score (WOMTS) prediction from
an arti�cial intelligence model, and OA care guideline was also provided for translational usage.



Figure 2

Cluster characteristics of OAI. (A) Four clusters on UMAP. (B) Top 10 numeric variables of each cluster.
Kruskal-Wallis test was used to determine the statistics between the cluster of interests and all the other
clusters together. Benjamini & Hochberg method was used to adjust the p-value. The numerical variables
with adjusted p-values <0.05 were ranked by the log2 fold changes (log2FC) to select the top 10 of each
cluster. (C) Top 10 categorical variables of each cluster. Fisher’s exact test was used to determine the
statistics between the cluster of interests and all the other clusters together. Benjamini & Hochberg
method was used to adjust the p-value. The categorical variables with adjusted p-values <0.05 were
ranked by the Pearson’s chi-squared statistics to select the top 10 of each cluster. (D)~(I) Key variables
categorized into demographic (V00AGE, age; P02RACE, race; P02SEX, gender; P01BMI, BMI at baseline),
medical record (V00COMRB, Charlson Comorbidity Index; V00HSPSS, Short Form 12 Physical Summary
Score), pain evaluation (V00WOMKPL/R, WOMAC pain score of left/right knee), diet & nutrition
(V00VITCCV, Vitamin C single vitamin, how often taken in past
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12 months; V00SUPVITC, average daily Vitamin C supplement, mg), psychological evaluation (V00CESD,
Center for Epidemiology Studies Depression Index; V00HSMSS, Short Form 12, Mental Summary Score),
socioeconomic status (V00INCOME, annual personal income; V00EDCV, education level) on UMAP.

Figure 3

Prognostic values of 4 OA phenotypes. Kaplan-Meier plots (�rst and third from left) and forest plots
(second and fourth from left) considering good knee health cluster as reference of KL grade (A), joint
space width (B), WOMAC total score (C),WOMAC pain score (D), WOMAC stiffness score (E), WOMAC
function score (F), and total knee replacement (G) were shown in a table format for both left (left two
columns) and right (right two columns) knees. Log-rank p-value was shown in the KM plots. A univariant
cox regression model for each outcome variable and each knee was built with the Good Knee group as
the reference group and visualized in the forest plots.



Figure 4

Prognostic values of four OA phenotypes within baseline cohorts. (A) Relative distribution of 4 OA
phenotypes within each baseline cohort. Kaplan-Meier plots for WOMAC total score (B), KL grades (C),
joint space width (D), total knee replacement (E) were shown in a table format for both left (left �rst and
third columns) and right (left second and fourth columns) knees within incidence cohort (left two
columns) and progression cohort (right two columns). Log-rank p-value was shown in the KM plots.



Figure 5

Prediction accuracies of cluster labels. A) Screening the optimal number of input
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variables (from 2 to 50) with different machine learning models (lr=linear regression, logistic regression
model; rf10/20/40/60/80/100tree = random forest model with 10/20/40/60/80/100 trees;
svclinear/poly/rbf/sigmoid = supporting vector classi�er with linear/polynomial/radial basis
function/sigmoid kernels). As a multi-class prediction problem, three accuracy metrics were used, i.e.,
accuracy (relative correct prediction numbers), roc_auc_ovo (area under curve of receiver operating
characteristic curve, one vs one), and roc_auc_ovr (area under cuve of receiver operating characteristic
curve, one vs rest). B) Detailed screening of the optimal number of input variables (from 5 to 15). The dot
represents the mean of corresponding metric and the error bar represents the standard error of the mean
from the cross-validation.



Figure 6

Prediction accuracy of WOMAC total score at fourth and eighth year. A) Correlation coe�cients between
WOMTS of all visiting years and baseline variables. The top 10 baseline variables were colored based on
the average correlation coe�cients crossing all the visiting years. W. = WOMAC, K.=KOOS. B) Screening
the optimal number of input variables (from 2 to 50) with different machine learning models (linear, linear
regression model; rft10/20/40/60/80/100 = random forest regressor with 20/40/60/80/100 trees;



svrlinear/poly/rbf/sigmoid = supporting vector regressor with linear/polynomial/rbf/sigmoid kernels, ann
= arti�cial neural network). As a regression problem, two accuracy metrics were used, i.e., RMSE (root
mean squared error) and r (correlation coe�cient between prediction and measurements). D) Top 5
variables with highest occurrences from the top 10000 most accurate prediction tests. We randomly
selected 25 input variables from the cluster markers and used these variables to train an ANN model with
the same settings with cross-validation.

25

The above procedure was repeated 10,000 times. The top 1000 most accurate tests were extracted and
the relative occurrence of each variable to these 1000 tests was calculated. The top 5 with highest
relative occurrences for WOMTS of both left and right knees at fourth and eighth year were selected to
visualize here. The dot represents the relative occurrences. W. = WOMAC, K.=KOOS
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