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Introduction

Admission to hospital can result in vastly different out-
comes depending on the level of illness severity, morbidities 
and response to treatments.1 Therefore, selecting the right 
treatment is challenging even when patients are initially 
diagnosed with the same conditions. Physicians utilize a 
huge amount of data to determine diagnosis and treatment 
options, including but not limited to a patient’s medical 
history and physicians’ expertise and intuition.1 The intro-
duction of electronic health records (EHRs) mean that more 
information is available to physicians than ever before and 
it is accessed with ease. The transition phase from paper 

records to EHR leads to challenges when analyzing the data 
and attempting to learn from the heterogeneous population 
of hospital admissions.2 As intensive care units (ICUs) are 
the most data-rich hospital department and the importance 
of having quick responses to patient deterioration is large, 
machine learning approaches have mostly focused on these 
environments.1,3–5 Recent progress has also been made for 
general wards.6–9

Two areas of high clinical importance which could ben-
efit from developments with EHRs are outcome prediction 
and risk scoring. Several risk scoring methods have been 
developed and deployed, for example, Rothman index,10 
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Impact Statement

With the introduction of electronic health records, 
hospitals are increasingly using automatic process-
ing of real-time patient data to flag potential issues 
to clinicians. While the National Early Warning Score 
2 (NEWS2) is effective at identifying patients with 
high clinical acuity, it is less reliable at predicting the 
clinical outcomes of patients with diverse presenta-
tions. We argue that including patient subtypes in 
such scores would be beneficial to increase their 
accuracy. We demonstrate a pipeline to hierarchi-
cally subtype patients in an explainable way, result-
ing in improved outcome predictions for many of the 
identified subtypes. Using routinely collected data, 
this work could be widely applied following further 
validation across multiple hospital sites. Evaluation 
is conducted using automatic techniques as well 
as evaluation by clinicians, furthering the field by 
increasing trust in the assigned subtypes and uti-
lizing the mutually beneficial relationship between 
clinicians and machine learning techniques.
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MEWS,11 APACHE IV,12 and SOFA.13 These scoring systems 
typically aim to quantify patient risk in relation to outcomes 
such as in-hospital mortality, admission to ICU, or cardiac 
arrest.14 Supervised machine learning has been applied to 
directly predict these outcomes15,16 in addition to emergency 
admissions17 and readiness for discharge.5 The NEWS218 is a 
score manually designed by the Royal College of Physicians 
that assigns weights to clinical observations to detect patient 
deterioration. NEWS2 is increasingly used in UK hospitals19 
and has good predictive ability in patients with infections 
and sepsis.20 However, for respiratory diseases like COVID-
19, the results are conflicting.6,21,22 This indicates that to 
improve the generalization of scores, patients’ similarities 
must be considered which raises the question: could risk 
prediction be improved by subtyping patients?

We argue that the predictive ability of scoring systems 
could be further improved by incorporating patient subtyp-
ing that physicians can understand and provide feedback on. 
Historically, patients were grouped based on their level of 
sickness, that is, the creation of ICUs. The reorganization pre-
sented an innovation, as expertise in caring for the critically 
ill could be focused on a single location.23 Instead of focusing 
on severity of sickness, patients could be further grouped 
based on their clinical needs.3 While the categorization of 
patients into risk levels, like the ICU, and diagnosis groups 
is useful, there could be subtypes of patients shared between 
these categories that share characteristics, something which 
physicians would benefit from knowing.

In a pilot study, non-ICU patients were physically grouped 
based on similar patient characteristics rather than diagno-
ses, leading to a reduced admittance of low-risk patients to 
ICU from 42% to 22%. In addition, the average ICU length 
of stay was reduced from 4.6 to 4.1 days.24

Automatic patient subtyping aims to assign patients to 
clinically meaningful groups using factors such as their 
disease progression, medical history, EHR, and ultimately 
paves the path to precision or personalized medicine by tai-
loring diagnostic and therapeutic strategies to the patient’s 
needs.2,25 Subtyping can be framed as an unsupervised 
machine learning task, using clustering methods to identify 
distinct high-density regions separated by sparse regions 
within a data set.26 These clusters represent patients who 
are in some sense similar according to the data, where the 
similarity is not always immediately obvious to the practi-
tioner. Clustering algorithms such as k-means and hierarchi-
cal clustering have recently been applied to identify clusters 
in a general ICU population,3 cardiovascular clusters in sep-
sis patients,27 and corticosteroid response in patients with 
severe asthma.28

However, clustering alone is insufficient to provide prac-
tical support to determine treatment options. The interpreta-
tion of the resulting clusters must be validated, by physicians 
and the cluster assignments predictive abilities.

Before these models can be widely deployed in hospitals, 
the final users must “trust” the models. This requires an 
in-depth understanding of the models’ behavior and confi-
dence in individual predictions.29 Model-agnostic explain-
ability approaches such as LIME and variants29 can be used 
for explaining the predictions of clustered data.30 From these 

methods, we can gain an understanding into which patient 
features contribute to each cluster assignment. Utilizing the 
assigned subtypes must also be validated, as our hypothesis 
is that patients within a cluster will present similar hospitals 
stays, that is, length of stay and patient outcome. As such, 
evaluating the predictive power of the cluster assignments 
is a must. Building upon the proof-of-concept explainable 
subtyping process in Werner et al.,31 this article presents a 
pipeline from subtyping to outcome prediction in which we:

•• Demonstrate the use of unsupervised machine learn-
ing techniques to identify patient subtypes on admis-
sion for a data set of hospital patients from a large UK 
teaching hospital.

•• Implement a combination of explainability techniques 
and statistical properties of the clusters to evaluate 
and assign clinical meaning to the identified subtypes.

•• In parallel and independently, hospital clinicians 
derive the main clinical properties of the identified 
subtypes using additional records, a key and neces-
sary step in developing human in-the-loop machine 
learning systems in medical settings.

•• Assess the predictive power of the identified patient 
subtypes for in-hospital mortality and admission to 
high-dependency hospital units, in comparison to the 
unclustered existing NEWS2 scoring system.

Materials and methods

In what follows, subjects are patients who were admitted to 
the Bristol Royal Infirmary, a large teaching hospital cover-
ing most medical and surgical specialties. The clinical char-
acteristics of this historical data source are summarized in 
Table 1. Only patients were considered for which all consid-
ered features were available, that is, six vitals (temperature, 
systolic blood pressure, heart rate, hemoglobin saturation 
with oxygen [SATS], respiratory rate, level of consciousness), 
age at hospital admission, gender and number of attributed 
Tenth Revision of International Classification of Diseases (ICD-10) 
codes at hospital admission. Only patients with vitals taken 

Table 1.  Clinical characterization of the full data set.

Number of patients 64,238
Number of hospital admissions 101,670
Gender (% male) 49.15
Age (years, SD) 60.05 (±20.47)
Length of stay (h, median) 14.77 (6.35, 43.22)
Mortality rate (%) 2.91
NEWS2 (SD) 1.39 (±1.73)
Temperature (°C, SD) 36.83 (±0.57)
Systolic blood pressure (mmHg, SD) 128.93 (±22.22)
Heart rate (bpm, SD) 79.98 (±16.64)
SATS (%, SD) 96.66 (±2.32)
Respiratory rate (bpm, SD) 17.23 (±2.73)
Limited level of consciousness (%) 0.526
Number of ICD-10 codes (SD) 8.81 (±5.29)

NEWS2: National Early Warning Score 2; SATS: hemoglobin saturation with 
oxygen; ICD-10: Tenth Revision of International Classification of Diseases.
Value format is mean (SD) or median (25th, 75th percentile).
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within the first 24 h after hospital admission were consid-
ered, and only their first set of vitals was utilized in this 
study. Patient visits lasting less than 2 h were considered 
as routine appointments and omitted. Some patients were 
admitted several times and each admission is considered 
as an independent event. Patients with restricted or limited 
level of consciousness are described as “unconscious.”

Clustering process

Cluster identification and feature selection followed an 
iterative and hierarchical process. First, the entire popu-
lation was analyzed, characterized, features selected 
and explained, and then the same processing steps were 
repeated for the identified clusters (where number of 
patients ⩾ 1000) individually.

Therefore, each stage followed the same subsequent steps. 
To simplify the analysis and aid interpretability, dimension-
ality reduction was performed using Uniform Manifold 
Approximation and Projection (UMAP)32 based on the six 
vitals (temperature, systolic blood pressure, heart rate, SATS, 
respiratory rate, and level of consciousness), age at hospital 
admission, gender, and number of ICD-10 codes at hospi-
tal admission. The first three vitals were scaled, the latter 
features were transformed with the logit function. After 
dimensionality reduction, HDBScan33 was applied to the 
embedding to identify clusters. The hyperparameters min_
samples (range = 10–100 in steps of 1) and min_cluster_size 
(range = 20 in 100 steps of 10) for HDBScan were selected 
based on the fast approximation of the density-based cluster 
validity (DBSV) score34 which in return also indicated the 
optimal number of clusters. Next, surrogate explanations 
were used to identify the features that did not contribute 
to the cluster separation and could therefore be excluded 
in the next iteration. This process was repeated until only 
contributing features remained. This pipeline is visualized 
in Figure 1.

Subclustering results are only presented for the clusters 
containing the lowest and highest numbers of subclusters.

Clustering explanations

Understanding how and why patients were clustered is a 
fundamental requirement to establish clinical trust and ulti-
mately reduce the risk of unintended harm. Each feature’s 
contribution for the cluster assignment of each patient was 
determined using a surrogate explainer to estimate the local 
decision boundary between the assigned cluster and the rest 
of the data. A total of 25,000 samples were generated around 
a query point and using the TabularBlimeyTree decision tree 
explainer35 within FAT Forensics (v0.1.1): an open source tool-
box,36 a surrogate model was fit in order to predict the cluster 
assignment of the samples. Once fitted, feature importance 
can be determined from the weights within the surrogate 
model. Input features were the scaled features. The probabil-
istic argument was set to false. Default arguments and settings 
were otherwise used. All generated samples were visualized 
in the embedding space to ensure that they approximately 
followed the distribution of the underlying data.

Outcome prediction

Clustering identifies patient subtypes that are more homoge-
neous and could result in improved outcome predictions. In 
this preliminary analysis, the same nine features employed 
for initial clustering were applied for outcome prediction 
and with the same feature scaling regime. Gender was one-
hot encoded. Predictions were made using logistic regression 
classification models for two targets: in-hospital mortality 
and admission to higher care units within the hospital stay, 
comprising general ICU, cardiac ICU, and the critical care 
unit. Data were split 80:20 for training and testing with 
stratified sampling for the two targets. Class_weight was 
“balanced,” all other hyperparameters were as default, and 
hence, no validation set was required. All outcome predic-
tion analysis was in Python 3.9.11, with models and perfor-
mance metrics implemented using scikit-learn 1.0.2.

For comparison purposes, the predictive power of NEWS2 
was assessed. For cases during the study window for which 

Figure 1.  Pipeline overview, from data set import to generation of explainable clusters and clinical outcome predictions. The blue box denotes the iterative clustering 
process.
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NEWS2 was recorded (n = 77,731), values were normalized 
by dividing by the maximum NEWS2 score. The optimum 
threshold for binarizing the prediction for each target was 
computed by maximizing the F1 score in the training set 
for all patient stays and this threshold was used to compute 
performance in the test set.

Clinical evaluation

Clinical validation was conducted by providing two inten-
sive care clinicians with the cluster characterization and 
occurrence of ICD-10 codes for each cluster (Figures 3 to 5). 
The clinicians assessed and evaluated intracluster similari-
ties and intercluster differences according to both the data 
and their clinical knowledge (Figure 1). Blinded to the sur-
rogate clustering explanations, clinicians independently 
assigned a clinically meaningful name and description to 
each cluster, highlighting which input features resulted in 
each cluster’s unique characteristics. Thereafter, the features 
described by the clinicians were compared against those 
computed automatically.

Results

Cluster characterization

The data extracted between November 2017 and March 2021 
comprised 116,004 cases (70,452 patients). Of these, 101,670 
cases (64,238 patients) had all vitals taken within the first 24 h 
of their ⩾ 2 h hospital stay and were included in the study.

Dimensionality reduction and clustering of the entire pop-
ulation revealed eight clusters and a group of unclusterable 
patients (Figure 2, summarized in Tables 2 and 3). Clusters 
0 and 1 are separated from the other clusters, while clusters 
2–7 are closer together, joined via patients our clustering 
algorithm deemed as unclusterable patients. Subclustering 
was performed on all clusters except for clusters 4 and 6 as 
both contained less than 1000 patients (Table 3).

Using surrogate explanations, features contributing to 
cluster separation were identified and irrelevant features 

Figure 3.  NEWS, vitals, age, gender, ICD-10 code count, and length of stay for individual clusters from clustering the entire population. The mean value of each 
cluster is compared to the mean or median value depending on the feature (black line) of the whole population.

Figure 2.  Patients mapped onto the two-dimensional embedding space after 
dimensionality reduction and clustering. Clusters inside black boxes depict the 
subclustering results. Subclustering was not performed for clusters 4 and 6 as 
both contained less than 1000 patients. Unclusterable patients are shown in dark 
blue, often at the edges of clusters.
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Figure 4.  NEWS, vitals, age, gender, ICD-10 code count, and length of stay show the subclustering results for cluster 0. The mean value of each cluster is compared 
to the mean/median value (black line) of the parent cluster.

Figure 5.  NEWS, vitals, age, gender, ICD-10 code count, and length of stay show the subclustering results for cluster 1. The mean value of each cluster is compared 
to the mean/median value (black line) of the parent cluster.
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excluded. Within three iterations of this process, the final set 
of features was established (Figure 9). When repeating this 
process for subclusters, subclusters 1C and 1E required only 
one and two iterations, respectively.

Subclustering disclosed multiple clusters, ranging from 
two new clusters (Figure 2, cluster 0) to eight new clusters 
(Figure 2, cluster 1). Subclustering of cluster 2, however, did 
not reveal any new clusters and only distinguished clustered 
patients from unclusterable patients. The degree of unclus-
terable patients varied from 0% in cluster 0 to 38.6% in cluster 
1. The variations in the degree of unclusterable patients are 
also reflected in the DBSV score. While clustering the entire 
population revealed a DBSV = 0.5442, subclustering affected 
the DBSV score positively (0 = 0.8742, 3 = 0.7895, 5 = 0.6976) 
and negatively (1 = 0.4310, 2 = 0.4165, 4 = 0.4248). Below, clus-
ters 0 and 1 were chosen as examples as they represent the 
extremes of the lowest and highest number of unclustered 
patients and subclusters.

Cluster visualization and vitals

A goal of analyzing the individual clusters is to identify their 
unique characteristics relative to each other and the overall 
population. Figure 3 shows the difference in measurements 

for each cluster relative to the overall population. Figures 
4 and 5 show the same but for the identified subclusters of 
clusters 0 and 1, respectively.

The vast majority of patients in the population (Figure 3) 
are male in clusters 2 and 6, whereas cluster 0 is predomi-
nantly female. The average length of stay is the longest for 
the unclusterable patients and in clusters 6, 2, 5, and 4 (in 
ascending order). Although patients in cluster 5 are close 
to the population average age, this cluster contains patients 
with the highest temperature, heart rate, respiratory rate 
which is also reflected in the highest NEWS2. In contrast, 
cluster 0 has the youngest population, with the lowest respir-
atory rate, the lowest blood pressure, and the lowest NEWS2. 
Consequently, the median length of stay is also the shortest. 
Patients are the oldest in cluster 6, with by far the highest 
blood pressure and the lowest SATS. Unclusterable patients 
(“−1”) are mostly male and have elevated temperature, sys-
tolic blood pressure, heart rate, and respiratory rate, hence 
the increased NEWS2.

Cluster 0 (Figure 4) consists of two subclusters in which 
all patients could be assigned to a cluster; therefore, no 
unclusterable patients were identified. While the median 
NEWS2, mean respiratory rate, and count of ICD-10 codes 
are equal for both clusters, cluster 0A contains much younger 

Table 2.  NEWS and features of identified clusters of the full data set.

Cluster NEWS (median) Temperature 
(°C, mean)

Blood pressure 
(mmHg, mean)

Heart rate (bpm, 
mean)

SATS (%, median) Respiratory rate 
(bpm, mean)

Consciousness 
(median)

−1 2.00 (1.00, 3.00) 37.36 (±0.74) 137.56 (±24.89) 90.73 (±20.17) 96.00 (95.00, 98.00) 18.08 (±3.53) 0.00 (0.00, 0.00)
0 0.00 (0.00, 1.00) 36.83 (±0.48) 124.46 (±17.32) 78.43 (±14.56) 98.00 (97.00, 99.00) 16.41 (±2.04) 0.00 (0.00, 0.00)
1 1.00 (0.00, 2.00) 36.75 (±0.50) 125.96 (±21.11) 77.14 (±15.37) 100 (100.00, 100.00) 16.68 (±2.38) 0.00 (0.00, 0.00)
2 2.00 (1.00, 3.00) 36.84 (±2.33) 127.95 (±24.33) 83.12 (±17.01) 96.0 (94.00, 97.00) 18.34 (±3.33) 0.00 (0.00, 0.00)
3 1.0 (0.00, 2.00) 36.85 (±0.49) 128.99 (±23.83) 82.02 (±17.01) 97.0 (96.00, 98.00) 17.23 (±2.76) 0.0 (0.00, 0.00)
4 1.0 (0.00, 2.00) 37.04 (±0.39) 127.70 (±14.01) 87.07 (±8.78) 96.0 (95.75, 98.00) 18.41 (±3.67) 0.0 (0.00, 0.00)
5 1.0 (0.00, 2.00) 38.69 (±0.51) 129.92 (±21.65) 99.20 (±16.32) 96.0 (95.75, 98.00) 19.59 (±4.20) 0.0 (0.00, 0.00)
6 3.0 (2.00, 5.00) 37.53 (±0.48) 155.65 (±15.27) 91.35 (±16.83) 96.0 (95.00, 97.00) 19.09 (±3.65) 0.0 (0.00, 0.00)
7 1.0 (0.00, 2.00) 36.68 (±0.48) 129.64 (±20.85) 76.77 (±15.26) 96.00 (96.00, 98.00) 17.24 (±2.57) 0.0 (0.00, 0.00)

NEWS: National Early Warning Score; SATS: hemoglobin saturation with oxygen.
Value format is mean (SD). ICD-10 (Tenth Revision of International Classification of Diseases) specifies codes for diseases and diagnoses, where for each cluster, the 
most frequent code corresponds to the following; clusters −1 (unclusterable patients), 4, 5 = sepsis; cluster 0 = acute tonsillitis, unspecified; cluster 1 = lower abdominal 
pain; cluster 3 = chronic obstructive pulmonary disease with (acute) lower respiratory infection; cluster 6 = chronic ischemic heart disease.
Bold values are the highest value per feature.

Table 3.  Cluster characterization of the full data set.

Cluster Count Mortality Number of ICD-10 
codes

ICD-10 (most 
frequent)

Length of stay Gender (% 
male)

Features (subclustering)

−1 1917 4.3297 7.00 (4.00, 13.00) A419 56 h 49 min 83.15 –
0 6457 0.0155 2.00 (2.00, 2.00) J039 20 h 10 min 45.33 BP, HR, SATS, age
1 7569 1.7043 6.00 (4.00, 10.00) R103 39 h 7 min 37.30 BP, temp, age, HR, gender, ICD-10 codes
2 1839 0.7069 26.00 (25.00, 26.00) I500 126 h 48 min 48.02 BP, temp, SATS, ICD-10 codes, AVPU, 

gender, HR, resp, age
3 42,423 0.0942 8.00 (5.00, 12.00) J440 47 h 04 min 3.06 BP, HR, temp, age, ICD-10 codes
4 116 1.7241 24.00 (23.00, 24.00) A419 124 h 44 min 99.14 –
5 2148 4.3762 24.00 (23.00, 24.00) A419 65 h 33 min 60.01 BP, HR, temp, age, gender, ICD-10 codes
6 147 5.4422 9.00 (6.00, 13.00) J189 68 h 26 min 99.32 –
7 39,054 2.6758 8.00 (6.00, 12.00) I251 46 h 31 min 99.40 HR, temp, age, ICD-10 codes

BP: blood pressure; HR: heart rate; SATS: hemoglobin saturation with oxygen.
Value format is mean (SD). ICD-10 (Tenth Revision of International Classification of Diseases) specifies codes for diseases and diagnoses, where for each cluster, the 
most frequent code corresponds to the following: cluster −1 (unclusterable patients), 4, 5 = sepsis; cluster 0 = acute tonsillitis, unspecified; cluster 1 = lower abdominal 
pain; cluster 3 = chronic obstructive pulmonary disease with (acute) lower respiratory infection; cluster 6 = chronic ischemic heart disease.
Bold values are the highest value per feature.
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patients than 0B and approximately 34% more likely to be 
female. In addition, 0A has a 4.5% longer median hospital 
stay, and approximately 90% increase in a limited level of 
consciousness and a lower systolic blood pressure.

Nine subclusters and a group of unclusterable patients 
were identified in cluster 1 (Figure 5). All identified subclus-
ters have the same median SATS of 100%, and subclusters 
1B, 1C, 1F, 1G, 1H, and 1I have an increase of approximately 
6% in respiratory rate. Cluster 1C has the oldest population 
and is mostly female. Compared to the rest of the subpopula-
tion, the temperature is marginally lower, and the number of 
ICD-10 codes increased by ~32%. Patients have the longest 
hospital stay in cluster 1I and the highest median NEWS and 
temperature. Yet, they are also most likely to be conscious.

ICD-10 codes

Figure 6 shows the frequency of identified primary ICD-10 
code groupings per cluster. The highest incidence ICD-10 
code group is “Circulatory system (I00–I99)” with 29%, 28%, 
and 27.0% in clusters 2, 4 and 7, respectively.

Diseases of the “respiratory system (J00–J99)” are com-
mon in clusters 5 (25%) and 6 (23%), with approximately 
twice times higher occurrence than in the other clusters. 
“Infectious/parasitic diseases (A00–B99)” are mostly in clus-
ter 5 (19%) with the second closes being in cluster 4 with 9%. 
“Pregnancy-related (O00–O9A)” patients are almost exclu-
sively found in clusters 0 and 1. In contrast to the other ICD-
10 code groups, “digestive system (K00–K95)” is relatively 
equally split between all clusters, ranging between 10% and 
16%.

The ICD-10 codes for the identified subclusters of clusters 
0 and 1 are distributed differently. For cluster 0’s subclusters 
(Figure 7), the most prominent ICD-10 code is “Pregnancy-
related (O00–O9A)” with 22% in cluster 0A. This is followed 
by “Digestive system (K00–K95)” with 15% and “Not else-
where classified (R00–R99)” with 13%. These two are also 
the most relevant ICD-10 codes in cluster 0B with 16% and 
12%, respectively.

For cluster 1 (Figure 8), “Not elsewhere classified (R00–
R99)” is common occurring in 15% of unclustered patients 
(1Z), followed by “Neoplasms (C00–D49),” “Digestive sys-
tem (K00–K95),” and “Circulatory system (I00–I99)” with 
13%, 13%, and 12%, respectively. “Neoplasms (C00–D49)” 
is overall the most common ICD-10 code and has a value of 
31% in clusters 1A and 1H. “Pregnancy (O00–O9A)”-related 
cases appear almost exclusively in 1E with 25%. “Circulatory 
system (I00–I99)” patients are mostly common in clusters 1F, 
1G, and 1C with 29%, 21% and 21%, respectively. Whereas 
“Infectious/parasitic diseases (A00–B99)” range mostly 
between 2% and 4%, cluster 1I is an exception with 14%.

The distribution of ICD-10 codes allows us to see that the 
clusters are not just comprised of patients with one type of 
disease and in fact that clusters usually contain a mixture of 
different diagnoses. This reinforces the need for additional 
patient clustering as it is not enough to consider only diag-
noses codes when assigning patient subtypes.

Surrogate explanations

Using surrogate explanations, features not relevant for clus-
ter separation could be excluded. Consequently, different 

Figure 6.  Heatmap of primary ICD-10 codes of full-population clustering 
and collated by top-level grouping. For display purposes, only ICD-10 codes 
with ⩾ 2% incidence for at least one cluster are displayed. Since only a subset of 
ICD-10 codes are visualized, each row does not add up to 100.
MSK: musculoskeletal.

Figure 7.  Heatmap of primary ICD-10 codes of the subclusters of cluster 0 as 
recorded by clinicians at the time of patient admission and collated by top-level 
grouping. For display purposes, only ICD-10 codes with ⩾ 2% incidence for 
at least one cluster are displayed. Since only a subset of ICD-10 codes are 
visualized, each row does not add up to 100.
MSK: musculoskeletal.

Figure 8.  Heatmap of primary ICD-10 codes of different subclusters as recorded 
by clinicians at the time of patient admission and collated by top-level grouping. 
For display purposes, only ICD-10 codes with ⩾ 2% incidence for at least one 
cluster are displayed. Since only a subset of ICD-10 codes are visualized, each 
row does not add up to 100.
MSK: musculoskeletal.
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features remained for clustering the entire population and 
subclustering clusters 0 and 1.

For the entire population, “ICD-10 code count” is the 
most important feature for assigning patients to clusters 0, 
2, and 4. Whereas “Gender” is most important for clusters 3, 
6, and 7. “SATS” and “Temperature” are the most important 
factors for clusters 1 and 5, respectively. “Heart Rate” and 
“Blood Pressure” have only a minor role, mostly in cluster 
4 (Figure 9).

Clustering 0 identified only two subclusters with “SATS” 
being by far the most dominant feature with subcluster 0A 
containing patients with a median SATS level of 100% and 
97% saturation for subcluster 0B at their first measurement 
point (Figure 10). The other features, that is, “Age,” “Heart 
Rate,” and “Blood Pressure,” have only a minor impact 
(Figure 10).

In total, nine subclusters were determined for cluster 1. 
“Age” is the most important factor in five clusters, that is, 
1A, 1C, 1D, 1E, and 1I, and has still a high impact on clus-
ters 1F, 1G, and 1H. Other features with high impact are 
“Gender,” “Heart Rate,” and “Blood Pressure.” Whereas 

“ICD-10 code count” and “Temperature” have only a minor 
influence on cluster separation (Figure 11).

Clinical evaluation

The clinicians were able to detect intercluster differences and 
intracluster similarities, enabling the generation of labels and 
descriptions for each cluster (Table 4, full descriptions in the 
Supplementary section). For example, cluster 0 was defined 
by having young healthy patients with few comorbidities, 
an even spread of primary diagnoses, brief stay, median 
NEWS2 of 0, and low mortality. All cluster descriptions are 
available in the Supplementary Materials. The two clinicians 
generally gave similar descriptions for each cluster, although 
there were some differences in which features they used to 
define each cluster. Of the 21 features mentioned by clinician 
A and 30 features by clinician B to describe membership 
to clusters 0–7, 15 were in common. Including in common 
omission of irrelevant features (36), in total out of 72 oppor-
tunities to comment on features, there was an overlap of 51 
features (71%).

Features found to contribute to cluster assignment 
through the automated clustering process (Figure 6) were 
largely identified by the two clinicians when independently 
assessing the characteristics of each cluster (Table 4). Of the 
26 features which contributed to level 1 clustering as identi-
fied automatically, 17 were identified by at least one clini-
cian, and 12 were identified by both clinicians. Including 
in common omission of irrelevant features for the artificial 
intelligence (AI) system and both clinicians (27), in total 
there was an agreement in features of 54% between all three 
agents, and 74% between the AI system and at least one of 
the two clinicians.

Outcome prediction

Relative performance in predicting mortality and admission 
to higher care varied by cluster, and performance metric, 
when compared to the entire cohort (“All”) and NEWS2 
(Table 5). For mortality, clusters −1 (unclusterable patients), 
1, 2, 3, and 7 performed particularly well, and this was 
reflected in the receiver operating characteristic (ROC) and 
precision recall curves (Figure 12(a) and (b)). For admission 
to higher care, clusters −1 (unclusterable patients), 2, and 6 
performed particularly well compared to the NEWS2 scoring 
system. Logistic regression predictive models were gener-
ated for subclusters within clusters 0 and 1 (Supplementary 
Figures 1 and 2 and Supplementary Tables 1 and 2). Several 

Figure 10.  Surrogate explanations for the contribution of each vital in 
determining the assignment of patients into each subcluster of cluster 0.
SATS: hemoglobin saturation with oxygen.

Figure 11.  Surrogate explanations for the contribution of each vital in 
determining the assignment of patients into each subcluster of cluster 1.
SATS: hemoglobin saturation with oxygen.

Figure 9.  Surrogate explanations for the contribution of each vital in determining 
the assignment of patients into each cluster from clustering of the entire 
population.
SATS: hemoglobin saturation with oxygen.
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of these subclusters showed improved performance com-
pared to their parent cluster’s performance: for example, 
subclusters 1D and 1F for admission to higher care units.

Logistic regression mortality prediction models were 
not generated for cluster 0, nor any of its subclusters, since 
there was only one positive example in this cluster. Likewise, 
within cluster 1, no mortality predictions were made for sub-
clusters 1A, 1B, 1D, and 1H nor subclusters 1H and 1I for 
admission to higher care due to insufficient positive exam-
ples. Thresholds for NEWS2’s predictive power were opti-
mized by maximizing the F1 score and were found to be 
NEWS2 ⩾ 5 for mortality and NEWS2 ⩾ 2 for admission to 
higher care.

Discussion

This study presents a pipeline in which explainable hier-
archical clustering is used for patient subtyping and risk 
prediction. Patient subtyping by way of clustering could be 
the first step toward a personalized scoring system, improv-
ing the predictive success of currently deployed risk scoring 
metrics.10–13,19

The clusters identified in this study were based on six 
vitals from the first set of readings taken during a hospital 
stay in combination with age, gender, and number of ICD-10 
codes at admission. Using these few features and the focus on 
hospital departments outside of intensive care are in contrast 
to previous studies. Castela Forte et al.1 and Vranas et al.3 
included 76 and 23 clinical features, respectively, resulting 

in the identification of six subtypes of ICU patients. In this 
study, the first clustering iteration of the entire population 
revealed eight clusters and a group of unclusterable patients. 
The clinicians identified “unclusterable patients” as average 
patients without any distinguishable features. In the second 
clustering iteration, that is, subclustering, identified a total of 
23 subclusters. Cluster 4 and 6 were excluded from subclus-
tering as they contained less than 1000 patients. The subclus-
ters enabled the clinicians to assign descriptions with more 
precise clinical meaning. This could be the result of patient 
subtypes becoming more homogeneous which would also be 
supported by the increase in the DBSV score.

The feature contributions identified by the surrogate 
explanations varied between clusters and were found to be 
largely in agreement with the clinicians. This encourages 
tailored feature selection for individual patient subtypes and 
will, in the future, be expanded upon so that some additional 
features will be available for some patient subtypes, for 
example, additional blood tests for some patient subtypes.

Here, cluster 6 has the highest mortality rate with 5.44% 
which is also reflected in the highest median NEWS2 of 3.0. 
Surprisingly, this does not correlate with the maximum aver-
age hospital length of stay. While cluster 6 patients stay on 
average in hospital for 68 h 26 min, patients in cluster 2 and 4 
stay longer with an average length of stay of 126 h 48 min and 
124 h 44 min, respectively. Cluster 2 also has the highest ICD-
10 code count with 26, followed by cluster 4 and 5 with 24.

To provide further insights into the clinical meaning of 
the patient subtypes, the most frequent ICD-10 codes were 

Table 5.  Cluster outcome prediction performance.

Cluster Positive cases (%) Brier loss Accuracy AUROC AUPRC Balanced accuracy F1 Sensitivity Specificity

(a) Mortality
−1 4.38 0.136 0.807 0.835 0.256 0.731 0.229 0.647 0.815
1 1.78 0.132 0.814 0.932 0.155 0.887 0.156 0.963 0.812
2 22.68 0.222 0.641 0.701 0.414 0.649 0.455 0.663 0.635
3 2.63 0.145 0.787 0.885 0.213 0.801 0.167 0.816 0.786
4 16.38 0.343 0.583 0.325 0.120 0.550 0.286 0.500 0.600
5 4.38 0.190 0.714 0.687 0.088 0.624 0.140 0.526 0.723
6 5.44 0.188 0.667 0.482 0.062 0.357 0.000 0.000 0.714
7 2.77 0.147 0.792 0.865 0.214 0.790 0.174 0.788 0.792
All 2.91 0.138 0.804 0.886 0.195 0.813 0.196 0.822 0.803
NEWS2 – 0.033 0.925 0.739 0.127 0.626 0.201 0.307 0.945
(b) Admission to higher care
−1 11.22 0.180 0.781 0.879 0.446 0.806 0.462 0.837 0.774
0 1.08 0.217 0.642 0.785 0.041 0.713 0.045 0.786 0.641
1 4.44 0.200 0.691 0.754 0.174 0.682 0.161 0.672 0.692
2 37.25 0.210 0.668 0.737 0.563 0.672 0.606 0.686 0.658
3 7.56 0.221 0.645 0.687 0.158 0.625 0.204 0.603 0.648
4 40.52 0.279 0.458 0.421 0.434 0.436 0.316 0.300 0.571
5 7.45 0.197 0.693 0.755 0.224 0.662 0.233 0.625 0.698
6 11.56 0.263 0.533 0.667 0.695 0.593 0.222 0.667 0.519
7 14.49 0.224 0.638 0.692 0.284 0.635 0.335 0.630 0.639
All 10.23 0.209 0.670 0.739 0.246 0.669 0.293 0.668 0.670
NEWS2 – 0.106 0.426 0.536 0.131 0.516 0.199 0.633 0.400

NEWS: National Early Warning Score; AUROC: area under receiver operating characteristic curve; AUPRC: area under precision recall curve.
Performance metrics in predicting (a) mortality and (b) admission to higher care (general ICU, cardiac ICU, and critical care unit) by implementing a logistic regression 
model for each cluster and the unclustered “All” patient cohort. Models are compared against predictive performance of the existing NEWS2 risk scoring system by 
thresholding at NEWS2 ⩾ 5 for mortality and NEWS2 ⩾ 2 for admission to higher care. Mortality was not predicted for cluster 0 since only one positive case occurred. 
Models with better performance than NEWS2 are highlighted in bold.
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identified. Vranas et al.3 found “Sepsis” as the most common 
diagnosis in ICU patients in five out of six clusters, whereas 
Castela Forte et al.1 determined a different leading cause for 
each cluster. In this study, “Sepsis” is found as the most com-
mon diagnosis in two out of nine clusters plus the uncluster-
able patient group. However, all three clusters account for 
only about 2.23% of the hospital population. The two largest 
clusters found “Respiratory Infections” and “Heart disease” 
as the most common ICD-10 and account for 41.73% and 
38.41% of the hospital population, respectively. Castela Forte 
et al.1 also identified two clusters with high prevalence of 
respiratory failure.

The identified NEWS2 thresholds for best predicting 
mortality and admission to higher care are lower than the 
national guidelines’ triggers for emergency assessment.18 
This is unsurprising since our study focuses on the initial 
set of observations at the time of admittance and the patient 
may only deteriorate days or weeks later. Hence, other stud-
ies often limit performance evaluation to outcomes pre-
dicted within 24 h of a recorded score.37 However, clusters 
and subclusters identified in this study were better able to 
predict early signs of these patient outcomes compared to 

the existing NEWS2 system even though the average stay 
per cluster was often two or more days (Table 2). For exam-
ple, cluster 2 saw consistent improvements in predictive 
performance, specifically F1 score, for both targets when 
compared to NEWS2. A defining characteristic of cluster 2 
independently noted by both clinicians was cardiovascular 
disease. This provides further evidence that certain subtypes 
could benefit from improved predictive performance via 
a clustering process if deployed clinically. Of note, cluster 
−1 (unclusterable patients) models performed well com-
pared to NEWS2 and often better than other clusters. This 
suggests that even those identified patients not in a clearly 
defined cluster could benefit from the presented approach. 
Generally, admission to higher care predictive performance 
for each cluster was better than mortality when compared 
to the NEWS2 baseline. For mortality, individual clusters 
and subclusters generally showed improved sensitivity com-
pared to NEWS2, whereas for admission to higher care, they 
had both improved sensitivity and specificity. Admission to 
higher care was less imbalanced than mortality with 10.2% 
of cases in the positive class compared to 2.9% for mortal-
ity (Table 1), which may have contributed to the improved 

Figure 12.  Predictive performance for classification models compared against the existing NEWS2 risk scoring system for the two predicted outcomes: in-hospital 
mortality and admission to higher care (general ICU, cardiac ICU, and critical care unit). “All” refers to the entire unclustered patient cohort. Mortality was not predicted 
for cluster 0 since only one positive case occurred: (a) mortality ROC, (b) mortality PRC, (c) admission to higher care ROC, and (d) admission to higher care PRC. 
Figures in brackets are the area under the curve.
ROC: receiver operating characteristic curves; PRC: precision recall curve.
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predictive performance. However, class imbalance, and 
small sample size, remained an issue and likely influenced 
performance for some clusters, in particular for metrics such 
as area under precision recall curve (AUPRC), recall, and F1 
score which are affected by imbalances. These results illus-
trate the potential utility of applying the presented pipeline 
for prediction of patient outcomes. The presented prediction 
results involved no hyperparameter optimization and uti-
lized only the first time point of measurements for each hos-
pital stay. Predictive performance may be further improved 
by hyperparameter tuning, addressing the class imbalance, 
using more data point for each patient, and/or implement-
ing a more sophisticated predictive model.

Surrogate explainers were generated to improve cluster 
explainability. A previous analysis showed that the level of 
consciousness and SATS are the key criterion for separating 
clusters.31 The importance of the level of consciousness has 
also been previously identified as the key feature in predict-
ing discharge from ICU.5 However, in this study, the level 
of consciousness appeared less important and SATS only 
in some cases. It was also shown that the number and type 
of features varies between clusters. For example, clustering 
the entire population mostly only utilized five features, 
whereas subclustering cluster 0 almost exclusively relies on 
SATS. This result was verified by a 74% overlap between 
features independently identified by clinicians and the sur-
rogate explainers (Table 4). The integration of surrogate 
explainers and clinicians helped validate and verify the 
presented results. Future studies and the deployment in 
hospital settings should consider this approach to increase 
fairness, accountability, and transparency. This also aids in 
building trust between the clinicians and machine learn-
ing systems. However, the identified patient subtypes 
and associated predictive performance should be treated 
with care, and considered merely illustrative, as the whole 
analysis is based on a data set from one hospital. Adding 
data from other hospitals as well as considering additional 
features may reveal other or alter the identified patient sub-
types. Further work should be completed to validate the 
presented results before clinical application of the pipeline. 
Furthermore, two clinicians were part of the team in order 
to co-design the process. Future studies will increase the 
number of clinicians for additional feedback, increasing 
the acceptance of and trust in the identified patient sub-
types. In summary, once validated, the presented pipeline 
could become a useful tool to assign patients to subtypes 
and could thereafter inform clinical decisions for improved 
patient care.
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